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Abstract. Let Ik denote the identity matrix of order k and set

**-

Let SrX&,Ç) denote the group of all complex Ik X k matrices which satisfy
the equation gskg' ■ sk. Let £ be the linear space of all n X 2k complex
matrices with k > n, and let S(E*) denote the symmetric algebra of all
complex-valued polynomial functions on E. The study of the action of
Sp(At,C), which is obtained by right translation on S(E*), leads to a concrete
and simple realization of all irreducible holomorphic representations of
Sp(k,C). In connection with this realization, a theory of symplectic Stiefel
harmonics is also established. This notion may be thought of as a generali-
zation of the spherical harmonics for the symplectic Stiefel manifold.

Introduction. Let Ik denote the unit matrix of order k and set

Let Sp(zt,C) denote the group of all complex 2k X 2k matrices g satisfying
gskg' = sk. If G is a complex Lie group and F is a finite-dimensional complex
vector space, then by a holomorphic representation of G in V we mean a
complex analytic homomorphism of G into GL(F). The object of this paper
is to present, in as simple and explicit a form as possible, a description of all
irreducible holomorphic representations (up to equivalence) of the complex
linear symplectic group Sp(£,C). This realization is obtained by analyzing
certain natural actions of Sp(Â:,C) on a symmetric algebra of polynomial
functions of matrix argument. We rely on some general results of S. Helgason
[3] and B. Kostant [4] to study this symmetric algebra. The techniques they
used to decompose a symmetric algebra of polynomial functions were based
on the existence of a symmetric bilinear form defined on this algebra. The
situation is somewhat different in the context of our investigation, because
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266 TUONG TON-THAT

the bilinear form defined on our algebra, which is required to be invariant
under the above action of Sp(fc,C), is not symmetric. Thus modification and
adaptation are necessary. This constitutes our main contribution in § 1.

Theorem 2.2 of §2 is the central result of this paper. As a consequence of
this theorem, we also obtain certain irreducible representations of the unitary
symplectic group Sp(k) on a space of continuous functions defined on a
symplectic Stiefel manifold. These functions, which we call symplectic Stiefel
harmonics, are to the unitary symplectic group what the Stiefel harmonics are
to the rotation group (cf. [2] and [6]). Since the Stiefel harmonics generalize
the spherical harmonics, in view of the importance of this notion, the
symplectic Stiefel harmonics seem interesting.

The main results of this paper were announced in [7]. Finally, it is a great
pleasure for the author to express here his gratitude to the Department of
Mathematics of Harvard University for the postdoctoral fellowship that
supported him during the accomplishment of this work.

1. A decomposition of the symmetric algebra S(E*). Suppose k and n are
integers with k > n > 2. Set G = Sp(k,C) and let E denote the vector space
of all complex n X 2k matrices. Then G acts linearly on E by right multi-
plication and leaves invariant the skew-symmetric bilinear form on E given
by

(X,Y) = trace(Xî*Y' ),   for all X,Y in E.

If X E E, let X* denote the linear form Y^>(X,Y) on E. Since (•,•) is
obviously nondegenerate, E is isomorphic to its dual E* via the mapping
X -* X*. Consider the symmetric algebra S(E*) of all complex-valued poly-
nomial functions on E, and define a representation R of G on S(E*) by
(R(g)p)(X) = p(Xg) (p E S(E*),X E E,g E G). Given X E E, let X*(D)
denote the differential operator defined by

(X*(D)f)(Y)=\[jif(Y+tX)^     ,       (fES(E*),tER,X,YEE).

Define (Xf ■ ■ ■ X?)(D)f = Xf(D)[(X^ • • • X*)(D)f] inductively on r. If m
and / are nonnegative integers and if Sm denotes the symmetric group of m
elements, then a simple argument by induction on / shows that
(1.1)
[Xf ■ ■ ■ XriD)]Yt ■ " Y*

0      if/n</,
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SYMPLECTIC STIEFEL HARMONICS 267

If follows immediately from the above equation and by linearity that the
mapping X* -» X*(D) (X E E) can be extended to an algebraic homomor-
phism p -*p(D) of S(E*) into the symmetric algebra S(E) of differential
operators on E. As direct consequences of equation (1.1), one obtains the
following relations:

(1.2) p(D)(Y*)m= ((-l)'m(m - 1) • • • (m - I + l)p(Y))(Y*)m-',

(1.3) p(D)q = (-l)'q(D)p,
where / and m are integers with m > I > 0, and p,q are homogeneous
elements of S(E*) of degree /.

Define a bilinear form < •,•> on S(E*) by

</i>/2> = (/. (£)/2)(0)        (fj2 E S(E*)).
If p and q are homogeneous polynomials of degree m and /, respectively, then
one can easily deduce the following formulas from equations (1.1), (1.2), and
(1.3):

0.4)     <*f>-frw i',zm
I (x*)m       \

(1.5) \-mT'Pl=P^'
(1-6) (X*,Y*)=-(X,Y).

The fact that the mapping p-»p(7J>) is an algebraic isomorphism is an
immediate consequence of the following result.

Lemma 1.1. The bilinear form < •,•> is nondegenerate.

Proof. We begin by observing that if X E E then R(g)X* = (Xg~x)* for
all g in G. If Mrt E E denotes the matrix with entry 1 in position (r,t) and 0
everywhere, then

[*(*)*£](*#) = (M»0*W - ôuAj (i.< '">« < «;i < 7.0 < 2/V).
It follows then from (1.1) that if p = l\l<l<ñ,l^^(Mjp and ? =
nd<(<n>,<7<2*)(^)^ with 2,jcty - 2,^ = m, then
(17) <p,A(Jjt)c>-0   ifp^r?.

(p,R(sk)p) = axx\aX2\- - - \an2k\.

Define a conjugation X* -» X* on F* by setting X* = (X)*. This conjugation
extends to a conjugation p-*p on £(£*); moreover, we have R(g)p =
R(g)ß(g EG). Let
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268 TUONG TON-THAT

/=  2 c(mxx,..., mnak)(Mtx)m"(Mt2)m» ■ • • (Mfa)""»
m0>0

(c(mxx,...,m„ak)EC)

be a homogeneous polynomial of degree m = 2y»ty; then from relation (1.7)
we infer that

</>*&)/> = </.*(*)/ > - 2«n! - • • !"V*!|cKi, • • •. «„,2*)|2.
mu

This relation in turn shows that < •,•) is a nondegenerate bilinear form on
S(E*).   U

Definition 1.2. A polynomial / E S(E*) is said to be G-invariant if
R(g)S = S for all g EG. A differential operator p(D) E S(E) will be called
G-invariant if

R(g)(p(D)S) =p(D)(R(g)S)       (gEGjE S(E*)).
The following result will be needed later.

Proposition 1.3. A polynomial p E S(E*) is G-invariant ¡S and only if the
differential operator p(D) is G-invariant.

Proof. Before proving this proposition, a preliminary observation is
needed, namely: ifp and/are elements of S(E*) then [R(g)p(D)R(g~x)]f
— [(R (g)p)(D)]S f°r all g E G.To see this, we notice that it is sufficient to
establish this identity for/? = X*X^ ... Xf and/ = 7f Y\ ... Y* (X¡,Yj E
E;m > I). Now, for all g E G and Z E E, we have

(R(g)p(D)R(g-x)S)(Z) = (p(D)R(g-x)S)(Zg).

But clearly for such/? and/,Ä(g)/? = (Xxg~x)* ... (X,g-1)* and R(g~l)S
= (Yxg)* . .. (Ymg)*. Therefore, according to equation (1.1),

(p(D)R(g-x)S)(Zg)

(-1)'      ^
= / _ ,v    2  Xt(Y„(x)g)...Xr(Yo(l)g)(Y„a+x)g)*(Zg)

...(Ya(m)g)*(Zg)

(-1)' 2 (*.¿rW(»)i.m -1)\ 0rs„

... ixlg-xy(Yoa))Y:tl+x)(z)... Y*UZ)
= [(R(g)p)(D)S](Z).
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SYMPLECTIC STIEFEL HARMONICS 269

Hence, [R(g)p(D)R(g~x)]f = [[R(g)p](D)]f. Now ifp is G-invariant, then
[(R(g)p)(D)]f = p(D)f for all g E G and / E S(E*). By the preceding
paragraph, we infer that [R(g)p(D)R(g~x)]f = p(D)f, which is obviously
equivalent to saying thatp(D) is (/-invariant. Conversely, if p(D) is (/-in-
variant, then (R(g)p)(D) = p(D) for all g E G. But since the mapping
p-+p(D) is injective this implies that R(g)p = p for all g EG. This
achieves the proof of the proposition.    ■

Definition 1.4. A polynomial / E S(E*) is called G-harmonic if it is
annihilated by all homogeneous G-invariant differential operators with con-
stant coefficients and without constant term.

Now, if J(E*) denotes the subalgebra of S(E*) consisting of all G-in-
variant polynomials, and if J *(E*) denotes the set of all G-invariant poly-
nomials without constant term, then it follows from Proposition 1.3 that/is
G-harmonic if and only if p(D)f = 0 for allp E J +(E*). But from the theory
of polynomial invariants (cf. [8, Chapter IV]), J(E*) is generated by the
constant function 1 and \n(n — 1) algebraically independent homogeneous
polynomials p¡¡ which are defined by

Pij(X)=     2     (X¡,i+kXji ~ xuxj,i+k )
(1.8) i-i.....*

(1 < i<j<n;X = (Xrs)EE).

If follows that, if H(E*) denotes the subspace of S(E*) consisting of all
G-harmonic polynomials, then 77 (7Í*) = {/ E S(E*): p0(D)f= 0, 1 < z <
J < »}•

Let J+(E*)S(E*) be the ideal in S(E*) generated by J+(E*), and denote
by V the algebraic variety in E of common zeros of polynomials in
J+(E*)S(E*). Then from the above paragraph, it is easy to see that V — {x
E E: XskX' = 0}.

Theorem 1.5. The idealJ+(E*)S(E*) is prime.

In the proof we use several lemmas.

Lemma 1.6. Let W be a 2k-dimensional vector space over a subfield of the
complex numbers, and let (-\ • ) be a nondegenerate skew-symmetric bilinear
form on W. Suppose U i? a subspace of W of dimension n(n < k) such that the
restriction of (-\ • ) to U is the zero form; then there exist k pairs of vectors
(a,,jß,),(a2,)ß2),..., (ak,ßk) with the following properties:

(1) The vectors ax,..., anform a basis for U.
(2) (a,,ßj) = 8iJ,l< ij < k.
(3) (a¡,aj) = (ßt,ßj) = 0, 1 < ij < k.

For a proof of this well-known fact see, for example, E. Artin's Geometric
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270 TUONG TON-THAT

algebra, Interscience (Theorem 3.8, p. 120).

Lemma 1.7. Let 1 denote the matrix [In 0] in E, where In is the identity matrix
oS order n and 0 is the n X (2k — n) zero matrix. IS Vn denotes the subset oS V
consisting of all elements of maximal rank in V, then V„ is the orbit Orb(l) of 1
under the action of G.

Proof. It is obvious that Orb(l) is contained in Vn. To establish the reverse
inclusion we consider the vector space clx2* and equip clx2* with the
bilinear form (• | • ) defined by

k
(x\y) = tr(xSfcy') = 2 {x¡+ky¡ - *,»+*)       (w e CXx2k).

i = i
Clearly (• | • ) is skew-symmetric and nondegenerate. If X E E and Xj denotes
the jth row of A' (1 < / < n), we let Span{x„ ..., x„) be denoted by Ux.
Now X belonging to Vn implies that dim(Ux) = n and that the restriction of
(•| • ) to Ux is the zero form. Thus the hypotheses of Lemma 1.6 are satisfied
and we conclude  that there exist vectors zx,..., zn,att+x,..., ak and
Ä+i. • • • > ßk   in   CIx2*   such   that   the   pairs   (x„z,), . . . , (xn,zn),
(«B+i-ß/i+i)' • • • » (ak>ßk) verify conditions (1), (2), and (3) of Lemma 1.6. If
gx denotes the 2k X 2k matrix with rows arranged in the following order:
zx,..., zn,ßn+x,.... ßk,xx,..., xn,an+x, . .., ak, then gx belongs to G. Set
g = skg{, then g belongs to G since sk and g{ belong to G. Obviously,
Xg = Xskg{ = 1, i.e., X E Orb(l). This achieves the proof of the lemma.   ■

Lemma 1.8. Let pv (I < i <j < n) be the generators oj J+(E*)S(E*) as
deSined by equation (1.8). Suppose X E E and rank(X) > n - 1, then the rank
oS the Jacobian matrix J (Py)(X) = [Drspv](X) is equal to \ n(n — 1) (1 < r <
n;l < s < 2k).

Proof. We proceed by induction on n. If « = 2, the assertion is obviously
true. Assume the lemma true for all / < n — 1, and let X E E with rank^)
> n — I. We may assume that the (n - 1) X 2k matrix X3 which is obtained
by deleting the ^th row from X has rank n — 1. Next, let X denote the matrix
which is obtained from X by shifting the qth row of X to the last position
without changing the relative order of the other rows. Similarly, we order the
polynomials /?,-, (1 < / < j < n) by shifting the n — 1 elements
P\q, • • • >Pq-i,q>Pq,<,+ i> • • • iPqn m the last positions. Clearly, the Jacobian
matrix J(pX2,... ,pXq,... ,pqn)(X) has the same rank as J(p¡/)(X). By a
simple computation, we obtain

J(pX2,...,Pqn)(X) =

where A = [DmPiJ\(Xq) (1< / <j < n - 1) and

A     0
B    C

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SYMPLECTIC STIEFEL HARMONICS

x\,k + \ x\,2lc ~x\l

^-1,4+1 Xq-\ßk ~Xq-\,\

"~-*«r+l,*+l '  '  * ~Xq+l,2k Xq + l,l

-X„,ZC+   1 — Xn2A; XnX X„k

It is easy to see that rank(C) = rank(A^) = n — 1. Since by the inductive
hypothesis rank(v4) ■ j(n — 2)(n - 1), we conclude that

rank(/(p„,... ,p?,„)(f )) = rank(yl) + rank(C) - \(n - l)zz.   ■

Lemma 1.9 (Kostant). Assume J(E*), as an algebra, is generated by I
algebraically independent homogeneous polynomials p, (1 < z < /) and by the
constant functions. Assume also that there exists an orbit 0 (under the action of
G) that is dense in V. Then V is a subvariety of dimension 2nk — I. Moreover,
J+(E*)S(E*) is prime if and only if there exists X E V such that (dp¡)x,
1 < z < /, are linearly independent.

Proof. See [4, Proposition 7, p. 347].   ■
Proof of Theorem 1.5. The proof follows immediately from Lemmas 1.7,

1.8, and 1.9 if we observe that V„ is obviously dense in V.   ■
Suppose X E V and m is any nonnegative integer; then we notice that

PiJ(D)(X*)m = 0 for all zy(l < i <j < n), so that (X*)n is G-harmonic.
Indeed, this fact is obvious for m < 2 and it is an immediate consequence of
equation (1.2) for m > 2. Let HV(E*) denote the subspace of 77(7¿*) spanned
by all (X*)m (X S V,m > 0). If A is a subspace of S(E*) and m is a
nonnegative integer, Am shall denote the set of elements in A of degree m; A
is said to be homogeneous if A = "2m>0Am. The spaces 77(7?*), HV(E*),
J(E*), and the ideal J +(E*)S(E*) are clearly homogeneous.

Under the above notations we obtain the following result.

Theorem 1.10. The space S(E*) is decomposed into a direct sum as S(E*)
= J+(E*)S(E*)®H(E*). In addition, the identities S(E*) = J(E*)®
H(E*) and H(E*) = HV(E*) also hold.

Proof. Since all subspaces involved are homogeneous, we need only to
prove that, for m > 2,

(S(£*))m= (J+(E*)S(E*))m® (H(E*))m
and

271

~X\,k

~Xq-\,k

Xq+\,k
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272 TUONG TON-THAT

(H(E*))m=(Hv(E*))m.

Recall from (1.4) that (p,q} = (-l)m<?,/?> for all p,q E (S(E*))m. Let
< •>')m denote the restriction of the bilinear form < •,•> to (S(£*))m; then
< -,->m is either symmetric or skew-symmetric depending on the parity of m.
But in either case, by Lemma 1.1, <-,->„ is nondegenerate; thus if A is a
subspace of (S(E*))m we shall denote by Ax the subspace of (S(E*))m
which is orthogonal to A with respect to < •,•/„. We contend that
(J+(E*)S(E*))i = (H(E*))m. Indeed, if h E (H(E*))m and jf E
(J+(E*)S(E*))m where/ E J+(E*), then

<7/,Ä>m=[(y/)(ö)A](0) =[/(D)(/(Z>)A)](0) = 0.
Conversely, if h E(J+(E*)S(E*))„, then in particular we must have
(puS,h}m = 0 for all generators/?^ of / +(E*)S(E*). But then,we have

0 - (PuSh)m=[PiJ(D)S(D)h](0) = (S,PiJ(D)h)m-r
Since < v)m-2 is nondegenerate, p¡j(D)h must vanish everywhere, i.e., A E
(H(E*))m. To show that (5 (£*))„ is an orthogonal direct sum of
(J+(E*)S(E*))m and (H(E*))m, it is now sufficient to show that < -,->„ is
nondegenerate on (J+(E*)S(E*))m. So let// E (J+(E*)S(E*))m; then since
P (sk)Jf = P (sk)jR (s*:)/' anc* smce clearly/ belongs to J +(E*) if and only if
j EJ+(E*), it follows that R (sk)j¿ belongs to ((7+(£*)S(£*))„. Now, by
Lemma 1.1, the quantity {jS>P(sk)JS} Is strictly positive if// is different from
zero.

Now suppose that/ E (H(E*))m satisfies </,(A-*)m>„, = 0 for all X E V;
then equation (1.5) implies that S(X) = 0 for all X E V. By Hubert's Null-
stellensatz, / must belong to the nil radical of J+(E*)S(E*) which is
obviously equal to the ideal J+(E*)S(E*) itself by Theorem 1.5. Therefore,
/= 0 by the first part of the proof. From this, we infer that (H(E*))m =
(Hy(E*))m. To finish the proof of the theorem, we need only to invoke the
following proposition proved by Kostant in [4].

Proposition 1.11. Assume that J+(E*)S(E*) is prime and there exists an
orbit 0 under G such that 0 is dense in V. IS S(E*) = J+(E*)S(E*) ©
H(E*) is a direct sum then the mapping J(E*) ® H(E*)^>S(E*) given by
S ® g^>Sg is an isomorphism.

Corollary 1.12. IS S(V) denotes the algebra oSJunctions on V obtained by
restricting elements oS S(E*) to V, then the restriction mapping /^/|F
(/ E H(£*)) is a G-module isomorphism oSH(E*) onto S(V).

Proof. Since V is the variety of the ideal J+(E*)S(E*) it follows readily
from Theorem 1.10 that the map /-»/|F (/ E H(E*)) is a G-module
epimorphism. Next, suppose that / E H(E*) and f(X) = 0 for all X E V;
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SYMPLECTIC STIEFEL HARMONICS 273

then by Hubert's Nullstellensatz/ E J+(E*)S(E*) since the latter is equal to
its nil radical. But then Theorem 1.10 implies that/= 0. This completes the
proof of the corollary.    ■

2. The irreducible holomorphic representations of G and the symplectic
Stiefel harmonics. In this section we shall make use of the Borel-Weil theory.
Accordingly, we shall recall succinctly some results of this theory when the
symplectic group G is concerned. For the general theory, see [1] and [9].

Define

C =
0

c-x GL(2£,C): c, diagonal k X k matrix L

(2.1)
U =

'i
«2      "ÍV

-1
GL(2¿,C): u? = («,')   ,uxu'2 - u2u[ = 0,

«, lower triangular unipotentk

V = U' = {v E GL(2k,C): v = u',u EU};
then C, U, and V are closed subgroups of G. In fact, if we let r E GL(A,C)
and 9 E GL(2A:,Q be given by

1

1 and    8 = 0
0

1 0
then under the mapping g-* 0g0-1 (gEG) the triple {C,U,V) corre-
sponds to the Gauss decomposition of G as given in [9]. Let T be a
finite-dimensional irreducible holomorphic representation of G in a complex
vector space 77. A nonzero vector A E 77 is called a weight vector correspond-
ing to the weight X if X is a holomorphic character of the group C and if T
satisfies the relation T(c)h = X(c)h for all c E C. In this context, the highest
weight vector of T may be defined as the unique vector A (up to a multiplica-
tive constant factor) of 77 such that T(v)h = A for all v E V. A character X
of G is called inductive if it is the highest weight of an irreducible holomor-
phic representation of G. According to [9], we know that if X is an inductive
character of an irreducible holomorphic representation T of G then X is given
by c->X(c) = cft'cg1 • ■ - ckkk, where the ¿-tuple (mx,..., mk) consists of
integers satisfying the condition mx> m2> • • • > mk > 0. Under this con-
dition, the ¿-tuple (mx,..., mk) is called the signature of the representation
T.
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274 TUONG TON-THAT

Now let B denote the lower triangular subgroup of GL(zz,Q and define a
holomorphic character £ = i(mx, . . . , mn) on B by setting £(6) =
bub222 • • • b2 (b G B)> where the mi's O < » < ") are integers satisfying
mx> m2> - • • > mn > 0. A polynomial / E £(£*) will be called ^-co-
variant if f(bX) - £(£)/(*) (6 E B,X E E). Let 77(7i,£) denote the sub-
space of H(E*) constituted by all £-covariant G-harmonic polynomials.
Notice that 77(7i,£) is nonzero since if we letf^ E S(E*) be defined by

2) f((X) = A^-^(X)A^-^(X) ■ ■ ■ ùfcr^iXWHX)
(X E E)

where the A,-LY) (1 < z < zz) are the principal minors of X, then it is easy to
verify that/4 belongs to 77 (£,£). Furthermore, 77(£,£) is certainly invariant
under R, because by definition the action of the G-invariant differential
operators commutes with the action of G on S(E*). Thus if we let R(-,(■)
denote the restriction of R to H(E,Q then under the above context we have
the following result.

Theorem 2.1. The representation R(-,£) of G on H(E,Ç) is an irreducible
holomorphic representation of G, and its signature is (mx,m2,. . ., mn,0, . . . , 0)
(k factors).

Proof. Suppose C, U, V are defined as in equation (2.1), then CU is. a Borel
subgroup of G. Define a holomorphic character f on CU by setting J (czz) =
cu ' • • em (CM e GU), with the same integers w, as in £(mx, . . . , mn). Let
Hol(G,f ) denote the space of all f-covariant holomorphic functions f on G
(i.e., f(cug) = Ucu)f(g), all g E G). Then by the Borel-Weil theorem the
representation m(-,Ç) of G which is obtained by right translation on Hol(G,f)
is irreducible and its signature is (zu,,.. ., zzt„,0,..., 0) (see [1], and also [9,
Chapter XVI]). Define a map $ from H(E,Ç) into Hol(G,?) by the equation
($/)(g) = /(ig) (/ g 77 (£,£), g E G), where 1 = [7„ 0] is such that the orbit
of 1 under the action of G is a dense submanifold of V (cf. Lemma 1.7). It is
then routine to verify that 4» is a well-defined linear map which intertwines
R(-,H) and m(-,Ç). Moreover, $(/{) is the highest weight vector of m(-,Ç).
Next, suppose / E 77 (E,Q is such that $/ = 0, i.e., f(\g) = 0 for all g EG.
Then Corollary 1.12 together with Lemma 1.7 imply that/ = 0. It follows that
$ is a monomorphism; but since m(-,Ç) is irreducible, $ is a G-module
isomorphism.   ■

When k = n, the following theorem is an immediate consequence of
Theorem 2.1.

Theorem 2.2. Suppose that E = C**2* (k > 2) and £ = £(zjj,, ..., mk);
then the representations i?(-,£) of G on various spaces H(E,£) realize up to
equivalence all irreducible holomorphic representations of G when the m/s
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SYMPLECTIC STIEFEL HARMONICS 275

(1 < i < k) are allowed to take all integral values subject to the condition
mx > m2 > ... > mk > 0. Moreover, to each representation R(-,¡í) corre-
sponds a highest weight vector /{ E S(E*) deSined by the equation

S((X) = ^-m*(X)Uï>-m>(X) ■ • • A£i-r"<t(A')A£'(A')      (x g E)

where the a¡(X) (1 < / < k) are the principal minors of X.

Assume k > n > 2 and let G0= G n U(2k) denote the unitary linear
symplectic group Sp(k). Let KQ denote the image of Sp(k — n) under the
imbedding

E Sp(k - n)   of Sp(k - n)

into G0. Under the action of G0 on E it is obvious that the isotropy subgroup
of G0 at 1 = [/„ 0] is K0. Therefore, the orbit 0Go(l) of 1 under the action of
G0 is diffeomorphic to K0 \ G0. We contend that 0Go(l) consists of all
elements X of the variety V that satisfy XX* = In. Indeed, it is clear that
0Co(l) C Orb(l) c V, and also (lg)(lg)* = /„ for all g in G0. Let us show the
reverse inclusion. For this purpose, let H be the division ring of quaternions
with generators l,V^l J, and (V^l)j. The space Hlx* of all 1 X A;
matrices over H may be considered as a complex vector space which is
identified to Clx2* via the mapping

9: [xx + xk+xj,..., xk + x2kj\ -»[x,,x2,..., x2k]

(x,. E C, 1 < / < 2Ä:).

Let G0 act on cXx2k by right multiplication, then under the above identifica-
tion 0 there exists a bijection between G0 and the group of all matrices of
order k over H which acts on H1 xk and preserves the symplectic product

([ft. ■. •. 1k]\[l'v • • • - <?'*]) =      2     ?i(f',)V       (frfi 6 H).
/-I.*

Now, suppose X E E with XskX' = 0 and A'A'* = /„, and let x, (1 < / < n)
denote the ith row of X; then it is easy to verify that [9 ~ x(xx),..., 9 ~ x(x„)}
forms an orthonormal system with respect to the above symplectic product.
This orthonormal system may be completed to an orthonormal basis. Let o~x
denote the k x k symplectic matrix formed by this orthonormal basis with n
first rows consisting of 9 ~ x(xx),..., 0 ~ x(xn). Clearly,

"l       «2
«3      "4

c»
10    0    0
0    u 0    u2
0    0     10
0       M3       0       H4
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9-x(xx)

Let gQ denote the matrix of G0 which corresponds to o; then obviously
Xg0 = 1. Hence, our contention is proved. Set S£" = {X E E: XskX' =
0 and XX* = I„); then we just showed that Stf1 is diffeomorphically identi-
fied to K0 \ G0. For this reason, we shall call S%f the (zz,fc)-symplectic Stiefel
manifold. Let H(S£k) (resp. 77 (££*,£)) be the algebra of functions on Sff
which are obtained by restricting elements of H(E*) (resp. 77 (£*,£)) to S£k.
By analogy with the notion of generalized spherical harmonics given in [6],
elements of H(SJ¿k) will be called symplectic Stiefel harmonics. Now, since G0
acts transitively on S£k, by Proposition 4.1 in [6], the restriction mapping
f-*f\S£k (/ E H(E*)) is a G0-module isomorphism. On the other hand,
according to the well-known "unitarian trick" (cf. [8]) the representation
R(-,Q (of G on 77(£,£)) remains irreducible when restricted to G0. As an
immediate consequence of the above facts we have the following result.

Theorem 2.3. 7//?0(-,£) denotes the representation of G0 wAz'cA is obtained by
right translation on H(S$k,Ç), then R0(-,Q is irreducible. Moreover, its highest
weight is indexed by (mx,..., mn,0,..., 0) (k factors).

We conclude this article by singling out the following interesting problem:
How to decompose explicitly the G-module H(E*) into simple G-modules.
One general technique to obtain this decomposition consists of studying the
decomposition of the Hilbert space L2(S£-*) in connection with the sym-
plectic Stiefel harmonics (cf. [6]). This leads to the natural conjecture that
L2(S£k) is the Hilbert sum of the finite-dimensional Hilbert spaces L2(S&k,Ç)
where each L2(S£k,Ç) is a (noncanonical) direct sum of d( copies of
#(££'*>£)> d( being an integer determined by £ = £(m,, • • •. *nn). An alternate
approach to solve this problem may be based on the so-called "algebraic
Frobenius reciprocity" (cf. [4]). We shall give below a partial result following
this second method (cf. [4] for the terminology used here).

Suppose that k > n and zz is even, i.e., n = 21. Let

Z =

and Orb(Z) = {Zg: g E G). Then

Orb(Z) m\X eE: XskX' - s„ s, =

o = [7„0].

I,    0    0    0
0    0    I,    0 E E
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and Orb(Z) may be diffeomorphically identified to the homogeneous space
K \ G where K is the image of Sp(A: - /,C) under the imbedding Sp(k - l,C)
<^Sp(k,C). Let 5(Orb(Z)) denote the ring of functions on Orb(Z) obtained
by restricting elements of S(E*) to Orb(Z).

Theorem 2.4. If 3l(Orb(Z)) denotes the ring of all rational functions on
Orb(Z) then the restriction mapping f'-»/|Orb(Z) (/ E H(E*)) is a G-module
isomorphism of H(E*) onto &[Orb(Z)].

Proof. Since Z is quasi-regular the restriction mapping/->/|Orb(Z) is a
G-module isomorphism of H(E*) onto 5(Orb(Z)) (cf. [4, Proposition 5]).
Now Orb(Z) is a smooth, hence normal, variety (cf. [5, Theorem 1, p. 93]); it
follows then from [4, Proposition 9] that ft[Orb(Z)] = 5(Orb(Z)).   ■

Remark 2.5. Since the G-module structure of 6l[Orb(Z)] is in theory
completely determined (cf. [4, Proposition 8]), Theorem 2.4 may be used to
obtain a decomposition of the G-module H(E*) into simple G-submodules.
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