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S Y M P L E C T I C S U R F A C E S I N A F I X E D H O M O L O G Y 
C L A S S 

RONALD FINTUSHEL & RONALD J. STERN 

1. In troduct ion 

The purpose of this paper is to investigate the following problem: 

For a fixed 2-dimensional homology class a in a simply con­
nected symplectic 4-manifold, up to smooth isotopy, how 
many connected smoothly embedded symplectic submani-
folds represent al 

It has been conjectured in some quarters that such a homology class 
a should be represented by at most finitely many connected embedded 
symplectic submanifolds; some have conjectured that such a represen­
tative must be unique. 

As motivation for this conjecture, suppose one fixes a homology 
class a G H^iX; Z) where X is a Kahler surface and asks, up to smooth 
isotopy, how many nonsingular complex curves represent this class. If 
a G H2(X; Z) is the Poincaré dual of a, then each complex curve repre­
senting a is the zero set of a section of a holomorphic line bundle with 
c\ = a. Thus we must ask about the preimage of a under the map 

Cl:H\X;ö*x)^H\X;2.). 

Equivalently, we study the kernel of c\. This is an analytic variety, and 
hence has finitely many connected components. Since the points corre­
sponding to singular curves form a subvariety of complex codimension 
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at least one, up to smooth isotopy, there are at most finitely many non-
singular complex curves representing a. In particular, if H1(X; Z) = 0, 
then the Picard torus, ker(ci) = 0; so there is a unique representative 
of the class in question. 

In contrast we shall prove the following theorem in §5. 

T h e o r e m . Let X be a simply connected symplectic 4-manifold 
which contains a c-embedded symplectic torus T. Then in each homology 
class 2m [T], m > 2, there is an infinite family of smoothly embedded 
symplectic tori, no two of which are smoothly isotopie. 

To say that a torus T is c-embedded means that T is a smoothly 
embedded homologically essential torus of self-intersection zero which 
has a a pair of simple curves which generate its first homology and 
bound vanishing cycles (disks of self-intersection —1) in X. (See [5].) 
The simplest examples of c-embedded tori are generic fibers of simply 
connected elliptic fibrations. One can also find c-embedded tori in many 
surfaces of general type (including Horikawa surfaces) via the process 
of rational blowdowns [4]. 

One might then ask for what families of symplectic 4-manifolds are 
there only finitely many smooth isotopy classes of symplectic surfaces 
in any fixed homology class. In light of the above theorem, a reasonable 
conjecture might be that this fmiteness condition holds for ruled surfaces 
or rational surfaces with c2 > 0. Siebert and Tian have shown that each 
symplectic surface in S2 x S2 with genus < 3 is smoothly isotopie to a 
complex curve; so fmiteness holds in that situation. 

The technique of this paper, described in detail below, is to replace 
the torus T in its tubular neighborhood, T = S1 x S1 C S1 x S1 x D2, 
with S1 x B C S1 x S1 x D2 where B is a closed braid in S1 x D2. In 
case the braid B has an even number of strands and also represents the 
unknot in S"3, let LB denote the 2-component link in S5 obtained as the 
preimage of the axis of B under the 2-fold cover of S5 branched over 
B. We can then identify the double cover of the symplectic manifold 
X branched over S1 x B as the manifold XLB of [5]. This manifold 
has a Seiberg-Witten invariant which was computed in [5]; it is related 
to the Alexander polynomial of the link LB- Note that if B has 2m 
strands, S1 x B is homologous to 2mT. In order to obtain infinitely 
many nonisotopic such tori homologous to 2raT, we will utilize a braid 
construction of Birman and Menasco [2], [3] to construct infinitely many 
such braids which are distinguished by their Alexander polynomials. 

The construction of this paper contrasts with an older construction 
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of the authors that produced (under mild hypotheses) infinitely many 
non-smoothly isotopie embedded surfaces, all topologically ambiently 
isotopie to a given embedded surface [6]. This older construction re­
placed an annulus S1 x I x {0} C S1 x I x D2 with S1 x K C S1 x I x D2 

where K is the result of tying a knot in the core I x {0} of the cylinder 
I x D2. If S is a symplectic surface of positive genus and nonnegative 
self-intersection, and Sjf is the result of performing this knotting oper­
ation, it is shown in [6] that Sjf is not smoothly isotopie to a symplectic 
submanifold as long as the Alexander polynomial of K is nontrivial. 

There have also been informal conjectures asserting the fmiteness 
of the number of smooth simply connected symplectic 4-manifolds in a 
fixed homeomorphism type which admit symplectic Lefschetz fibrations 
with a fiber of fixed genus. In the last section of this paper we produce 
counterexamples, stemming from our examples, to these conjectures. 
Other, more easily obtained, counterexamples are given in [7]. 

It is interesting to ask whether the nonfiniteness results of this paper 
are a general phenomenon applying to surfaces of arbitrary genus or 
whether they are unique to tori. The authors have general constructions 
which apply to surfaces of higher genus, but they have been unable to 
determine whether or not the resulting surfaces are smoothly isotopie. 

Finally, the authors wish to express appreciation to Bill Menasco for 
(e-mail) conversations concerning his joint work with Joan Birman, and 
to Gang Tian whose interest stimulated this work. 

2. Braids 

In this section we shall describe a sequence of families of closed 
2m-strand braids B2m>k m S"3? m ? k = 1 ,2 , . . . , whose corresponding 
double branched covers yield fibered 2-component links in S5. We begin 
by describing a construction of fibered 2-component links due to D. 
Goldsmith [8]. Let B b e a closed 2m-strand braid in S3 with axis A. 
I.e., B is a braid in an unknotted solid torus V = S1 x D2 in S"3, and A 
is the core of the complementary unknotted solid torus. We may think 
of A fibered knot, whose fibers are the disks {t0} x D2 of V. Each 

such disk contains 2ra points of the braid B. 
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F I G U R E 1 

Now suppose further that B represents an unknotted circle in 513, 
that is to say, B can be isotoped to the unknot in S3 when one allows it 
to pass through A. The double branched cover of S3 branched over B 
is then S"3 again, and since A links B an even number of times, it lifts 
to a 2-component link LB in the cover S5. This link is fibered, and its 
fibers are simply the double branched covers of the fibers of the unknot 
A. These are twice-punctured surfaces of genus m — 1. So we have 

<-> \ J^B = <-> x ^ i- iT O_i , 

where S ^ _ x is the surface of genus m — 1 with two boundary compo­
nents. The monodromy map </? can be calculated from the braid B. 
The braid group on 2ra strands is generated by the elementary braid 
transpositions ßi,. • • , Ä m - i i where ß;b denotes a right-hand crossing of 
the i th strand over the (i + l)st . In the double branched cover each 
such crossing contributes a Dehn twist. (See e.g.[l, p.172].) If we write 
the braid group element corresponding to B as a word in the {ßi}, it 
follows that the monodromy will be the product of Dehn twists about 
the simple closed curves {Ci} as shown in Figure 1. 

Our next task is to construct for each integer n > 4 a family of closed 
n-braids {-Bn,fc}> k a nonnegative integer, with the properties that each 
Brhk is unknotted in S"3 and, for fixed ra, the Alexander polynomial 
of the 2-component link iJß2m k is distinguished by the integer k. It is 
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these braids which will be used to construct our examples of symplectic 
submanifolds. 

We begin with the 4-strand braid #4,0, shown in Figure 2, first 
constructed by Birman and Menasco [2]. For us, the key property of 
this braid is that it represents the unknot in S"3. 

F I G U R E 2. _B4j0 

Using the integer j as shorthand for the braid transposition ßj and 
j for ß~ , the braid B^^ is given by the expression 

£4,0 = (2.2.1.2). 3.(2.2.2.1.2). 3. 

We define braids Bm^ inductively as follows. Assume that Bmß is given 

by ' 

Bm,o = ®m-(m - l ) . ^ m . ( r a - 1), 

where <&TO and ^m are expressions involving only the braid transposi­
tions j < m — 1 and their inverses. Define 

Bm+itQ = (ra — 2).(m — l ) . $ m . ( m — l).m.(m — l).^m.(m — l ) .m. 

Thus 

$ m + i = (m - 2).(m - l ) . $ m . ( m - l ) 

and 

^ m + i = ( m - l ) . * m . ( m - 1). 

A schematic is given in Figure 3. 



208 RONALD FINTUSHEL & RONALD J . STERN 

<ï> m 

X 

A q m 

B. m,0 
FIGURE 3 
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Lemma 2.1. When the braids Bmß (m > 4) are considered as 
knots in S3, they are unknotted. 

Proof. Figure 4 shows how Bm+i^ is isotopie to Bm^ in S"3, and 
this completes the proof since B^Q is unknotted. q.e.d. 

<§>m 

1 
1 

1 

* m 

lB. m+1,0 

<$> n ^ m 

lB 
FIGURE 4 

m,0 

In [3], Birman and Menasco introduced an operation on m-strand 
braids of the form B = <E».(m — l).^.(m — 1) where <3> and \I> are ex­
pressions in braid transpositions j < m — 1 and their inverses. This 
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operation is pictured in Figure 5. 
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FIGURE 5 

The Birman-Menasco operation preserves the link-type of the braid 
(as a link in S5). Formally, the Birman-Menasco operation is: 

$.(m - l) .*.(m - 1) 

where 

r-i_2.$.rm_2.(m l).V.(m-l) 

Tr = r.{r - 1). • • • .2.1.1.2. • • • .(r - l).r. 

Our family of m-strand braids is {Bm^} where Bm^ is the result 
of applying the Birman-Menasco operation k times to the braid Bmß. 
Hence 

B. m,k 

or Br $ 

TO_2-vm-i m-2 

1).* 

m D.* m 1) 

m,fe = *m,itAra - L)-Vm-{m-l) where $TO;fc = i"m_2.Ym.±. m_2. 
From Lemma 2.1 and the fact (easily seen in Figure 5) that the Birman-
Menasco operation preserves the link type of the braid, it follows that 
the braids Bm^ all represent unknots in S"3. 

3. The double covering links 

In this section we shall study the 2-component links I*2m,fc which 
result from taking the preimage n~l(A) of the axis in the double cover 
of S"3 branched over i?2m,fc- Recall from §2 that Z*2m,fc is a fibered link 
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and its fiber is the twice-punctured surface S ^ _ x of genus m — 1. We 
are interested in the monodromy of this fibration. As was discussed 
in §2, this monodromy is a product of Dehn twists given by the braid 
transpositions which describe B^m^ as an element of the braid group 
on 2m-strands. Each transposition ßj corresponds to the Dehn twist 
about the curve Cj of Figure 1. We orient these curves so that their 
intersection numbers are 

Ci-Cj = 0, j ? i ± l , 

(^i—1 " kj = 1, 

Ci • Cj+i = — 1-

In homology, the Dehn twist corresponding to ß^ is given by a —> a+ (a-
Cfc) Cfc. Thus the matrix representing this Dehn twist on _H"i(S^l_1; Z) 
is T>2m,k = hm-i + Jim-i,k where hm-i is the identity matrix of rank 
2ra — 1, and J2m-i,fe is the (2m — 1) x (2m — 1) matrix whose entries 
are all 0 except for (J2m-i,fe)fc,4_1 = 1 and (J2m-i,fc)^ f c+1 = - 1 -

Denote the matrix representing the homology monodromy of iv2m,fc 
by 0 2 m , k . For example, £4,o = (2.2.1.2).3.(2.2.2.1.2).3; so 

^4,0 = D42 • D42 • D^i • D42 • D±ß • D4 ;2 • -04,2 • -^4,2 ' - C 4 1 • Z?4,2 ' -^4,3-

This matrix is 

/ - 1 0 - 1 7 1 1 \ 
fi4,o = 4 6 73 - 4 6 . 

V 7 10 - 6 / 

In order to save notation we shall denote by $ „ , $n,fc) and ^n the 
rank n — 1 square matrices corresponding to the product of Dehn twists 
resulting from the braid group elements with the same name. (For 
these purely combinatorial expressions, there is no need to assume that 
n is even.) Similarly, we let r n > r be the rank n — 1 square matrix 
corresponding to Tr. An easy inductive argument gives: 

L e m m a 3 . 1 . For any integer k, the matrix power r ^ n _ 2 is given 
by: 



SYMPLECTIC SURFACES IN A FIXED HOMOLOGY CLASS 211 

/ 

0 
o 

/ 

0 
o 

In-3 

— In-3 

0 
0 

0 
0 

2k 0\ 
0 0 

2k 0 
0 0 

2k 0 
0 0 

2k 0 
1 0 
0 1 

-2ft 2\ 
0 0 

-2k 2 
0 0 

-2k 2 
0 0 

-2k 2 
- 1 0 

0 1 

A; even, 

A; odd. 

Recall that the matrices ^ „ ^ are recursively defined by the formulas 

Thus 

$ n,fc 2 . y n . i nn_2, 

$ n+1 ( n - 2 ) . ( n - ! ) . $ „ . ( n - 1 ) . 

$2m,fc 

$2m+2 

-p—fc .*. pfe 
1 2m,2m-2 , v2m-L 2m,2m-2? 

(2m - f).(2m).(2m - 2).(2m - l).$2m-(2m - l).(2m). 

Since we have $4 = 
2 - 1 - 1 
5 3 5 , we obtain the following 
0 0 1/ 

closed formulas for $2m fc (and consequently for $2m = $2m o): 
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L e m m a 3 .2 . For m>3, the matrices &2mk «re given by 

/lOfc + 2 
2 

10fc + 2 
2 

10fc + 2 
2 

10fc + 2 
2 

10fc + 2 
-5 
0 

6k 
1 

6fc + l 
1 

6k+ 1 
1 

6fc + l 
1 

6fc + l 
-3 
0 

0 
-1 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
-1 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
-1 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
-1 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

-1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

0 
-1 
0 
0 
0 

20k2 -8k-
2k-11 

20k2 -8k-
2k-11 

20k2 -8k-
2k-11 

20k2 -8k-
2k-11 

20k2 -8k-
-10fc + 6 

0 

1 

1 

1 

1 

2 

Also f2m = (2m - 2).(2m - 3).*2m-2-(2m - 3).(2m - 2) 
/ 2 1 - 1 

^4 = 7 4 —7 so we similarly obtain: 
\ 0 0 1 

L e m m a 3 .3 . For m > 3, the matrices ^>2m o,re given by 

( 2 
7 

-7 
7 

-7 

7 
-7 

7 
0 

0 0 
3 0 

4 r 
4 
4 

4 

4 L 
4 0 
0 0 

L 2m—5 

0 
0 

1 

J 
0 
0 

1 
7 

-7 
7 

-7 

7 
-7 
8 
0 

-1\ 
-7 
7 

-7 
7 

-7 
7 

-7 

V 

Finally, since 

tt 2m,k — J- 2 m - 2 $2m-I1m_2 .(2m - l ) . t f 2 m . (2m - 1) 

we obtain an expression for the monodromy. 
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Proposition 3.4. For m > 3, £Ì2m,k is given by 

( a(k) b{k) 0 ••• 0 c{k) -a{k) + l\ 
Uk + 4 -8A; + 1 r 1 30A; + 3 -Uk - 3 

a{k) b{k) + 1 c(k) -a{k) + 1 
14& + 4 -8k + I — 7 2 m - 5 30A; + 3 -Uk - 3 

a(k) 6(A) + 1 c(k) -a{k) + 1 
Uk + 4 -8A; + 1 |_ J 30A; + 3 -Uk - 3 

a(fc) 6(A)+ 1 0 ••• 0 c(&) + l -a(Ä) + l 
46-70A; -35 + 40A; 0 ••• 0 -150& + 108 70A; - 46 

y 7 - 4 0 0 14 -16 y 

lo/iere a{k) = UOk2 - 64A; - 10, b(k) = -80k2 + 54A; + 8, and 
c(k) = 300k2 - 156k - 25. 

The Alexander polynomial of the 2-component link L<im & is a func­
tion A£2mfc(ìi,Ì2) of 2 variables. The reduced Alexander polynomial 
is the single variable polynomial defined by Ai2mjfc(t) = A£2mjfc (*,£). 
For a fibered link L with homology monodromy // whose characteristic 
polynomial is pß(t) one has 

AL{t) • (t - 1) = pß{t) 

(see [10]). For our construction it will suffice to compute the reduced 
Alexander polynomials of the links L2m,fc- Again this will be an induc­
tive calculation relying on the explicit form for 02TO)fc given by Proposi­
tion 3.4. 

Theorem 3.5. The reduced Alexander polynomials A.L2mk(t) for 
the 2-fold covering links L^m^ are given by: 

(a) for m = 2, KLik (t) = t2 - (UOk2 - 174k + 56)* + 1, 

(b) for m > 3, 

hL.2mk (t) =(t2"»-2 + 1) - (UOk2 - 222Ä; + 92)(t2m"3 +1) 

m-2 

+ (136A;2 - 258A; + 119) ^ *2j 

i= i 
m—3 

- (140A;2 - 270A; + 128) ^ *2j+1-
i= i 
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Proof. Let pm,k = det(Q2m,£i — ti), the characteristic polynomial of 
^2m,fc- First, for m > 4, we give recursive formulas which reduce the 
calculation of pm,k to that of ps,fc- According to Lemma 3.4, iÌ2m,k — ti 
is a rank 2m — 1 matrix of the form 

:i) a 2m, k ti 

/a — t 
X 

a 
X 

a 
X 

a 
a 

ß 

b 
y-t 
6 + 1 

y 

6 + 1 
y 

6 + 1 

7 
<y 

0 
- i 
-t 
0 

0 
0 
0 
0 
0 

0 •• 
0 •• 

- 1 
-t 

0 
0 
0 
0 •• 
0 •• 

• 0 
• 0 

0 
0 

0 
- 1 
-t 

• 0 

• 0 

c 
z 
c 
z 

c 
z 

c + 1 
£ - t 

c 

d \ 
w 
d 
w 

d 
w 
d 
•& 

K - t 

where we have left out the dependence on k. Expand its determinant 
by the third column to obtain 

(2) Pm,k = det(C/m;fe) - tdet(Vm,k). 

Expanding det(FTO;fc) twice, each time by the third column, we obtain 

(3) det(ym, fe) = t 2 det(F m _i , f c ) . 

Similarly, always expanding by the third column gives 

(4) 

(5) 
(6) 

(7) 

det([/TO;fc) 

det(QTO;fc) 

det(5'TO)fc) 

det(JRTO;fc) 

= det(QTO;fc) - tdet( JRT O ; f c) , 

= det(Um-ljk) - tdet(Sm,k 

= t2det(5'TO_i)fc), 

= t 2det( i?m_i , f e ) . 

Equations (2) - (7) reduce the problem of calculating p m &, m > 4, to 
the calculation of the quantities in these equations for m = 4, and this 
is accomplished directly from equation (1). Similarly, p6)j. is calculated 
from (1) and p4>k is easy to calculate as well. The theorem follows by 
dividing p„hk by t - 1. q.e.d. 

Corollary 3 .6 . The two components of the links L<2nhk have nonzero 
algebraic linking number. 
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Proof. The algebraic linking number of the 2 components of Lim% 
is Ä i 2 m fc(l), [10]. This is easily calculated from Theorem 3.5: 

-KL.2mk(\) = (Am + U2)k2 - (12m + 150)fc + (9m + 36), 

and the lemma follows simply from this. q.e.d. 

4. S o m e background on link surgery and S e i b e r g - W i t t e n 
invariants 

The Seiberg-Witten invariant of a smooth closed oriented 4-manifold 
X with b^(X) > 1 is an integer-valued function which is defined on 
the set of spin0 structures over X (cf. [12]). In case H\(X;Z) has 
no 2-torsion there is a natural identification of the spin0 structures of 
X with the characteristic elements of H2(X\ Z) (i.e., those elements k 
whose Poincaré duals k reduce mod 2 to 102PO). In this case we view 
the Seiberg-Witten invariant as 

S W X : {k G H2(X; Z)\k = w2(TX) (mod 2))} - • Z. 

The sign of S W j depends on an orientation of 

H°(X; R ) <g> det H2
+(X- R ) <g> det Hl(X- R ) . 

If SWx(/3) 7̂  0, then ß is called a basic class of X. It is a fundamental 
fact that the set of basic classes is finite. Furthermore, if ß is a basic 
class, then so is -ß with S W x ( - j 8 ) = ( - l ) ( e + s i g n ) ( x ) / 4 S W X ( ^ ) where 
e P O is the Euler number, and sign(X) is the signature of X. 

Now let { ± / 9 i , . . . , ±/3„} be the set of nonzero basic classes for X. 
Consider variables tß = exp(/3) for each ß G H2(X; Z), which satisfy the 
relations ta+ß = tatß. We may then view the Seiberg-Witten invariant 
of X as the Laurent polynomial 

n 

SWx = SWx(O) + ^ S W x C S j ) • (tß. + ( - l ^ + ^ P O / ^ - i ) . 

i= i 

We next recall the link surgery construction of [5]. This construction 
starts with an oriented n-component link L = {Ki,..., Kn} in S"3 and 
n pairs (JQ,Tj) of smoothly embedded self-intersection 0 tori in simply 
connected 4-manifolds. The tori are assumed to be c-embedded, that 
is, each torus Ti is homologically essential and has a pair of embedded 
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curves which generate its first homology and bound vanishing cycles 
(disks of self-intersection —1) in JQ. For example, T is c-embedded if it 
has a neighborhood N C X such that the pair (TV, T) is diffeomorphic to 
(Nc, F), where Nc is a neighborhood of a cusp fiber in an elliptic surface 
and F is a smooth elliptic fiber in Np. Let N(K,b) be disjoint tubular 
neighborhoods of the components K,b of L in S5 and N(L) = L)N(Ki). 

Let «L : 7Ti(S'3 \ L) —> Z denote the homomorphism characterized 
by the property that it sends the meridian m, of each component K,b to 
1, and let t-b denote the longitude of K,b. The curves 7$ = t-b + a^t^rru 
on dN(Ki) form the boundary of a Seifert surface for the link, and in 
case L is a fibered 2-component link, the 7$ are given by the boundary 
components of a fiber. 

In S1 x (S 3 \ iV(Z,)) let Tmi = S1 x m „ and define the 4-manifold 
X p r i , . . . X n ; J L ) b y 

n 

X ( X l 5 . . . Xn; L) = (S1 x (S 3 \ 7V(L)) U ( J p Q \ (T,b x £ 2 ) ) , 
i = l 

where S1 x dN(K,b) is identified with dN(Tj) so that for each i: 

[TmJ = [T,], and [7i] = [pt x dD2]. 

We have the following calculation of its Seiberg-Witten invariant: 

T h e o r e m 4.1 ([5]). If each Ti is c-embedded in X;b and each 
7Ti(X\Tj) = I, then X(Xi,... Xn; L) is simply connected and its Seiberg-
Witten invariant is 

n 

swx{Xl,...Xn,L)=AHti,..., *») • n s w ^ • ^/2 - ^"1/2)' 
i = i 

where tj = exp(2[Tj]) ; and A ^ / m ( t i , . . . ,tn) is the symmetric multivari­
able Alexander polynomial. 

In case each pQ,Tj) = ( X , T ) , a fixed pair, we write 

X (Xi,... Xn ; L) = XL . 

(We implicitly remember T, but it is removed from the notation.) As an 

example, consider the case where each X;b = E(l), the rational elliptic 

surface (E(l) ^ C P 2 # 9 C P 2 ) and each T- = F is a smooth elliptic 

fiber. Since SWE^ = (t1/2 - t - 1 / 2 ) - 1 , we have that 

(8) SWE{1)L=^m{ti,...,tn). 
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5. Symplec t i c submanifo lds 

Let T be a c-embedded symplectic torus in the simply connected 
symplectic 4-manifold (X,oo). Then T has a tubular neighborhood 
which may be identified with N = S1 x S1 x D2, and T = S1 x S1 x {0}. 
The symplectic tubular neighborhood theorem implies that the restric­
tion of co to this neighborhood is equivalent to the symplectic form 
dx A dy + rdr A dB. Let B be a closed 2m-strand braid contained in 
an unknotted solid torus in S3 with axis A. Define Tg to be the torus 
TB = S1 x B C N. Then Tg represents the homology class 2m [T]. 
Furthermore, Tg is a symplectic submanifold of X because its tangent 
space at each point is spanned by d/dx and the tangent vector w along 
the curve B, and w always has a nontrivial (<9/<9y)-component, 

(dx A dy + rdr A dB) (d/dx, w) = dx A dy (d/dx, w) ^ 0. 

Given m > 2, consider our family of braids, B2m>k of § 2. Our 
examples are the symplectic tori Tg2m fc. Let us fix m > 2 and denote 
B2m,k by Bk and Tg 2 m^ by Sfe. 

It is plausible that one might be able to distinguish the isotopy 
classes of the tori E& by means of the fundamental groups of their com­
plements. However, in our situation, where T is c-embedded, the fol­
lowing lemma points out that one has to work harder. 

L e m m a 5 .1 . If T is c-embedded, then the complement of E& satis­
fies H\(X \ Efc; Z) = Z2TO and iri(X \ £&) is independent of k. If also 
•KI(X \ T) = 1 then ni(X \ E^) 

Proof. The fundamental group of the complement of T is normally 
generated by the boundary /J,T of a normal disk to T. The fundamental 
group of X \ Eft is an amalgamated free product, 

(9) 7n(X \ Efc) = 7n(X \ T) * M 9 ( T x D 2 ) 7Ti((T x D2) \ Sfc) 

and (T x D 2 ) \E^. is the product of a circle with the fiber bundle S1 xv A 
where A is a 2-disk with 2m punctures. (Of course, </? depends on k.) 
Thus 

7T 1 ( (Tx J D 2 ) \E f c ) 
(10) 

= (fJ,i,...,fJ,2m,S,t | [s,/ij] = l,[s,t] = l,t(J,it X = (f(fJ>i)). 

Since each braid -Bfc is connected, the action of the monodromy ip is 
transitive on the [i;b. Also, s and t both lie in the image of ni(d(TxD2)). 
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If T is c-embedded, then it has a cusp neighborhood N, containing 
both vanishing cycles, so that the inclusion induces the trivial map 
7Ti(T) —> TTi(dN). Thus s and t are both trivial in the amalgamated 
free product (9). It follows from (10) that all the \n are equal in 
7Ti(X \ Efc), and /J,T = ß2m- The lemma now follows directly from (9). 

q.e.d. 

(Note that the most obvious examples, such as (X, T) = (E(n),F), 
where E(n) is the elliptic surface over C P l without multiple fibers 
and with holomorphic Euler number n and F is a smooth fiber, have 
ni(X \ T) = 1.) We shall show that the symplectic tori E .̂ are not 
smoothly isotopie in X by considering the double branched covers 
irk : Xk —T- X branched over the E^.. 

Let Lk = n~l{A) be the double branched covering link. This is the 
link that was denoted I/2m,fe m § 3. We may write 

(11) Xk = (X\N)uS1x(S3\Lk)U(X\N), 

since the double cover is trivial over X \ N and 

(D2xS\Bk) = (S3\A,Bk). 

In the branched cover (11), the pieces are glued together so that the 
boundary circles of the fiber ETO_i \ (D 2 U D 2 ) of S3 \ Lk are glued to 
the boundaries dD2 of X \ N = X \ (D2 x T) . Thus Xk is the manifold 
XLk of § 4. It follows that: 

SWxk =As
L^(t1,t2) • SWXl • (t{/2 - t-112) 

(12) 

•swX2-(tl
/2-t-1/2), 

where Tj is a copy of T in the j t h (j = 1,2) copy Xj of X, and 
tj = exp(2[Tj]). 

Assume that there is an isotopy in X which takes Ej to E j . This 
isotopy gives rise to a diffeomorphism h : X —> X satisfying /i(Ej) = Ej 
and /t* = id on homology. There is a lift to a diffeomorphism h : X;b —> 
Xj of double branched covering spaces. For a fixed homology class 
ß G H2(X, Z) consider all the basic classes ß of Xj satisfying 7TJ*(/?) = ß. 
For any such class, it is also true that irjji*{ß) = ß since /i* = id. The 
invariance of the Seiberg-Witten invariant under diffeomorphisms also 
implies that SW^ .&*(&)) = S W x X ß ) - T h u s f o r a fixed ß G H2{X; Z), 

E SWx,(/3)= E SW (̂7). 
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This equation implies that the Seiberg-Witten invariants of X;b and 
Xj become equal after applying the projections 7r,* and TTJ^. Equiva­
lenti^ working with the Laurent polynomials as in equation (12), we 
get 

hslm(t) • (SWx)2 • (t1/2 - t " 1 / 2 ) 2 

(13) 

= Ä ^ ( i ) • (SWX? • (t1/2 - £ - 1 / 2 ) 2 , 

where i = exp(2[T]). 

T h e o r e m 5.2. Let X be a symplectic ^-manifold which contains 
a c-embedded symplectic torus T. Then each homology class 2ra[T] ; 

m > 2, contains the infinite family {Tß2m k} of symplectic tori, no two 
of which are smoothly isotopie. 

Proof. Fix m and consider the double branched covers X^ of 
(X,TB2mtk). If TB2ni)i is smoothly isotopie to TB2mJ, then equation (13) 
follows. However, since X is symplectic, SWx 7̂  0 [11], and it follows 
from Theorem 3.5 that the As^m(t) are all distinct for different k. Thus 
equation (13) can hold only if i = j . q.e.d. 

Notice that since we are unable to compute the 2-variable Alexander 
polynomials for the links L;b, this proof, in itself, does not show that the 
covers X^ are mutually nondiffeomorphic — only that they can not be 
made diffeomorphic via a Z2-equivariant diffeomorphism which covers 
the identity on H2(X;Z). Thus, without further information about 
the Alexander polynomials of the links, we are unable to show via this 
technique that there is no diffeomorphism of X which throws Tg2m { 

onto Tg2m . for i ^ j . However for the case X = E (I), we get a stronger 
result. 

T h e o r e m 5.3 . Let T denote a smooth elliptic fiber in the rational 
elliptic surface, E(l). Then each homology class 2m [T], m > 2, con­
tains the infinite family {Tß2m k} of symplectic tori, no two of which are 
equivalent under diffeomorphisms of E (I). 

Proof. In this case the double branched covers X^ cannot be diffeo­

morphic for different k. For, it follows from equations (12) and (8) that 

SWx = As^m(ti,t2). Thus A ^ / m ( l , 1) is a diffeomorphism invariant 

of Xfc, the sum of all its Seiberg-Witten invariants. The calculation of 

Corollary 3.6 shows that these numbers are different for different k. 
q.e.d. 
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6. Lefschetz fibrations 

In this section, we show how our constructions above naturally yield 
examples of infinite classes of homeomorphic but nondiffeomorphic sym-
plectic manifolds, all of which admit Lefschetz fibrations of fixed fiber 
genus. (There is a more general construction presented in [7].) For sim­
plicity, we restrict ourselves with the application of this procedure to 
the rational elliptic surface E(l). Let T = F, a generic elliptic fiber in 
E (I) and let X2m,k be the double branched cover of E (I) with branch 
s e t TB2m,k- T l i e n x2m,k - Eil)L2m,k is a homotopy K3 surface. 

It is well-known that -E'(l) admits a genus 0 fibration with 4 singular 
fibers. This is seen by noting that E(l) is the double branched cover of 
S2 x S2 with branch set equal to 4 disjoint copies of S2 x {pt} together 
with 2 disjoint copies of {pt} x S2. The resultant branched cover has 8 
singular points (corresponding to the double points in the branch set), 
whose neighborhoods are cones on R P 3 . These are desingularized in 
the usual way, replacing these neighborhoods with cotangent bundles of 
S2. The result is E(l). The horizontal and vertical fibrations of S2 x S2 

pull back to give fibrations of E(l) over C P . A generic fiber of the 
vertical fibration is the double cover of S2, branched over 4 points — this 
gives an elliptic fibration on E (I). The generic fiber of the horizontal 
fibration is the double cover of S2, branched over 2 points — this gives 
the genus 0 fibration of -E'(l). The 4 singular fibers are the preimages 
of the four S2 x {pt}'s in the branch set. The generic fiber T of the 
elliptic fibration meets a generic fiber So of the horizontal fibration in 
2 points, Eo • T = 2. This means that Tg2m k meets So transversely in 
^o " î s 2 m k = 4m points. Therefore the horizontal fibration on S2 x S2 

lifts to a fibration on X2m,k whose generic fiber is the double cover of 
S2 branched over 4m points, that is, a genus 2m — I fibration. The 
definition of a Lefschetz fibration requires the monodromy around each 
singular fiber to be a Dehn twist. This is not true for these examples, 
but they can be perturbed to be Lefschetz (see [9]). 

One can give an alternative description of this fibration on X^m^ = 
E(l)L2m k • The elliptic fiber T of E(l) meets each genus 0 fiber trans­
versely, and it meets a generic genus 0 fiber So twice. Thus E o \ ( E o n T ) 
is an annulus. The construction of 

£ ( 1 ) W = W ) \ NP)} U^1 x ML2m,k \ (Nft) 

UN(T2))} U{E(1)\N(T)} 
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preserves the fibrations. In the manifold (with boundary) 

{E(l) \ N(T)} U {S1 x ML2mk \ (N(n) U N(T2))} 

a generic fiber of the induced fibration is the union of 2 fibers of the 
fibration 

S J U ->• S1 x ML2mk \ (N(n) U N(T2)) = S1 x (S3 \ L2m,k) 

S1 xS1 

together with the annulus So \ (So flT). This is a surface of genus 2m — 2 
with 2 boundary components. Adding the second copy of E(l) adds an 
annulus which closes up the surface, and we obtain a surface of genus 
2 m - 1. 

It is not difficult to see that the fibrations on X2m,k which are de­
scribed here are actually hyperelliptic, that is, the hyperelliptic involu­
tions on the fibers extend to a global involution of X2mik- In fact, the 
orbit space of this hyperelliptic involution is E(l), and the image of the 
fixed point set is just the torus Tg2m k. 
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