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I. Symplectic Capacities 

Denote by (V, co) a symplectic vectorspace, i.e. co is a skewsymmetric and non- 
degenerate bilinear form. We call a linear map T � 9  L(V) symplectic if it preserves co, 
that is 

co(x, y) = co( Tx, Ty) 

for every x, y �9 V. The set of all linear symplectic maps will be denoted by Sp(V). 
We then have the notion of symplectic for a smooth nonlinear map simply by 

looking at the derivative. A map f :  U ~ V, where U c V is open, is called 
symplectic i f f '  (x) e Sp(V) for every x �9 U. With other words f is symplectic if it 
preserves co, 

f:tr CO = CO. 

In the following we denote by D(V) the group of symplectic diffeomorphisms of V. 
By Dc(V) we denote the subgroup of those having compact support, i.e. f ( x ) =  x 
outside a compact set. 

We are interested in studying nonlinear symplectic maps. In the course of this 
paper we provide answers to such questions as: given two sets S and T in V does 
there exist a symplectic diffeomorphism of V mapping S into T (mapping problem)? 

* The results were obtained while the first author  held a Distinguished Visiting Professorship at 
Rutgers and the second author  was a member of the Institute for Advanced Study 
** Research partially supported by NSF Grant  DMS-8603149, the Alfred Sloan Foundation,  and a 
Rutgers Trustees Research Fellowship grant 
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What is the uniform limit of a sequence of symplectic maps (rigidity problem)? Is 
there a notion of symplecticity for maps which are only C~ 

Since f *  co = co implies f *  co" = co" an injective symplectic map preserves the 
measure associated to co". So the measure is an interesting symplectic invariant. 
The following discussion however shows that better invariants are needed. 

Consider a connected compact smooth hypersurface A in V. We define the so- 
called characteristic distribution L,q~ ~ A by 

I ~ = ( T 4 )  ~ = {(x,  ~ ) e  r 4 1 ~  Vx4 }. 

Here ~ T x A  means ~ is co-orthogonal to TxA. 
Clearly ~,e a c TA is a one dimensional and therefore integrable distribution and 

in fact orientable since V \  A has exactly two components by Alexander duality. We 
denote the bounded component  by B a. Let H: V ~ N be a smooth map having A as 
a regular energy surface so that A = H - I ( 1 ) ,  VH(x)~O on xeA,  and 
inf H(Ba) < sup H(V\Ba).  Then the Hamiltonian vectorfield XH defined by 

dH = co(X H, ") 

induces a nonzero section of LP a ~ A giving 5r a preferred orientation. A closed 
integral curve for 5r a is called a closed characteristic or a periodic Hamiltonian 
trajectory. Denote by [A] the set of all closed characteristics on A. If P e  [A] we 
have 

TP= ~a[P 

giving P an induced orientation. G i v e n f ~ D ( V )  we have the following formulas 

(1) Tf(~Ca) = ~S(a) 

f ( [ A ] ) =  [ f (A) ]  

Note that all orientations are preserved, for examplef l  P: P ~ f ( P ) i s  orienta- 
tion preserving. Now let 2 be a 1-form on V such that d2 = co. For  P~[A] we 
define the action A(P) by 

A(P) = ~2IP 

Clearly the definition of A does not depend on the choice of 2 as long as d 2 = co 
on V. From (1) we derive the formula 

(2) A(f(P)) = A(P) for every P c  [A]. 

Here of course feD(V) .  This gives the following. 

Lemma 1. Denote by U1, U2 open bounded subsets of V with smooth boundaries. 
Denote for i = 1, 2 by [ 0 Ui] the closed characteristics on the boundary eomponents. 
Then the following sets are equal 

{A(P)IPE[~?UlJ} = {A(Q)IQE[Ou2]} 

provided f (U 1 ) = U2 for some f e D(V). [] 

As an example consider V =  C" with the symplectic form co = d2, where 

2 =  ~ pkdqk and z = q + i p ,  q,p~N". Given c~=(cq , . : . , c~ , )  with 0 < c q  =< 
k = l  
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~2 "~ " ' "  ~ 0~n we define an ellipsoid E(~) by 

E(~) = {zeC"l~:~klZkl 2 < 1}. 

Assuming that the numbers ~-1 are linearly independent over 7/we see that 

[~E(~)] = {e  1 . . . .  ,P~ 

and Pk = {ze~3E(e)lzj  = 0 fo r j  # k}. Moreover 

TC 
A(Pk) = - - .  

O~ k 

If nowf(E(~))  = E(fl) for s o m e f ~ D ( V ) ,  where again 0 < fix ~- f12 ~ �9 �9 �9 ~ f i n ,  

then the numbers f i l l  are independent over Y because otherwise as one easily 
verifies { 0E(fl)] is an infinite set. By the previous discussion applying Lemma 1 we 
see that e = ft. Note that the conservation of volume would only give a condition 
like 

0~1 0~ 2 " " " O~n ---- f l  l f 1 2  " " * f i n  

which is of course much weaker. So better invariants are needed. Symplectic 
capacities are such invariants. 

Denote by 2 v the power set of V, and by BZ'(r) the euclidean ball of radius r in 
C", i.e. 

B2"(r)-- {zeC"l[z[ < r}. 

Given symplectic vectorspaces (V, 09,) and (W, COw) the product is defined by 

(v,  09v) x (w ,  09w)=(v  x w, 09v| 09w). 

Definition 1. A symplectic capacity is a map c which associates to a subset S of a 
symplectic vectorspace V a number c(S) = cv(S) so that the following axioms hold: 

(A1) (Normalization) 

(A2) (Monotonicity) 

(A3) (Conformality) 

cc,(B2"(1)) = cc,(B2(1) x C ' -  1) = 7r 

s = r c  ( v , 0 9 ) ~ c v ( S )  <= cv(T) 

I f w / a f e D ( V ,  W) for some e > 0 then ~c( f (S) )  = c(S) 
for all S c V. 

Here D( V, W) is the set of all symplectic diffeomorphisms f :  V ~ W. 

Let us point out immediately that it is by no means clear that symplectic 
capacities exist. Gromov,  [12], was the first one to construct a symplectic capacity. 
He calls it symplectic width and defines it for every symplectic manifold ( V, 09) as the 
lower bound of the numbers a > 0 such that for every almost complex structure J 
on V tamed by 09, and for every x e V, there exists a nonconstant properly mapped 
J-holomorphic curve f :  S ~ V (where S is a Riemannian surface) passing through 
V, such that the symplectic area o f f  satisfies 

~ f*  co < a. 
S 

In the next section we will give an alternate construction in symplectic vector- 
spaces V utilizing Hamiltonian systems. This allows to define a capacity for any 
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subset S of V. In a forthcoming paper our approach also allows to define higher 
order capacities, which provide us with a tool to prove some optimal embedding 
theorems, for example for Lagrangian Tori into a ball. 

Acknowledgement. We would llke to thank Professor M. Gromov for very stimulating discussions. 

II. Construction of a Symplectic Capacity 

Drawing upon Lemma l and the subsequent example, we might be tempted to 
construct a symplectic capacity in the following way. Given an open bounded 
connected subset U of V with smooth boundary c~ U, pick some Pv e [c~ U] and set 
c ( U ) ' =  A(P,). 

This fails dismally. First of all, there are no results which guarantee the 
existence of closed characteristics under smoothness and compactness assumption 
alone. Finally, even if [~ U] would be nonempty, where should the monotonicity 
come from? 

The approach will be salvaged by exploiting an idea of Hofer and Zehnder, 
[17]. Loosely speaking they associate with U a variational problem and construct 
a critical value thereof, which we call c(U). It turns out that c(U) has the desired 
properties, and that in the cases when [~ U] is known to be nonempty, there exists 
always some P~[~?U] such that c ( U ) =  A(Pv) or perhaps kA(Pv) for some 
k ~ N, k > 1. Let us give some precise statements. We need the following. 

Definition 2. A compact smooth connected hypersurface A in V is said to be of 
restricted contact type if there exists a 1-form )o on V such that d2 = co and 
2(x, 4) =I = 0 for every nonzero vector in ~a .  We denote the collection of all those 
hypersurfaces by R. 

Note that 2(x, 4) > 0 for every nonzero vector in ~ a  which is positive for the 
orientation. It has been proved by C. Viterbo that [A] 4= ~b for A ~ R; see [17] and 
[21]. Our main result in this section is the following. 

Theorem 1. There exists a symplectic capacity c such that 

(1) c(A) = c (Sa )=  kaA(na) 

for every A ~ R, where B a is the bounded component of V \  A. Here ka > 1 is a suitable 
integer and Pa a suitable element in [A]. 

The proof follows in the first part the pattern in [17]. 
We begin by introducing the Hilbert space E consisting of all functions 

x e L z (0, 1; C") whose Fourier series 

satisfies 

x(t) = ~ Xk e2~ikt, Xk~C" 
keZ 

Z l k l l x k l  2 < oO. 



Symplectic Topology and Hamiltonian Dynamics 359 

The inner product in E is defined by 

(x,y) = ( x o , Y o )  + 2 n . r l k l  ( xk ,  Yk). 

. e r e  = a n d  w e  put  us a, 
\ j = l  

IIx II 2 _- (x,x) 

We denote by p - , p o ,  p+ the orthogonal projections on the subspaces 

E - : =  {xlxk = 0 for k > O} 

E ~  { x l x  k = 0 for k 4= O} = C" 

E + : = { X l x k = O  for k =< 0}. 

For a smooth loop x: R / Y  -~ C" we define by 

1 1 
a(x) = ~ ! ( - -  Uc, x ) d t  

the action of x. a extends to a continuous quadratic form on E which we denote 
again by a. Then we have 

(2) a(x) = - -  �89 P -  x t l  2 + � 8 9  xlb 2. 

Next we introduce a subgroup F of the group of all homeomorphisms of E. 

Definition 3. A homeomorphism h: E --* E belongs to F iff it can be written in the 
form 

h(x) = e ~§ (~)P+ x + pOx + e~-(~)P - x  + k(x) 

=:  u(x)x + k(x) 

with u(x) = eT+(~)P+x + pOx + e ~ - ( x ) p - x .  Here 7 +, 7 : E-~ R are continuous 
and map bounded sets into bounded sets, and k: E ~ E is continuous and maps 
bounded sets into compact sets. In addition there exists a p > 0 such that 

(3) a(x) < 0 or Itxll > p  implies that 

7 + ( x ) = 7 - ( x ) = 0  and k ( x )=O.  

We leave the easy verification that F is a group to the reader. 
Now we need an infinite dimensional intersection result. Introduce the unit- 

sphere in E + by 

S + = {x~E+l  Ilxll = 1} 

and the function e 6 E + defined by 

e(t) = (e 2~", O, 0 . . . .  , 0 )~  C". 

Proposition 1. For h ~ F we have 

h(S+)c~(E - @ E ~  ~e) 4: •. 
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Proof. We shall show that h ( S + ) n ( E  - @ E ~  [0, + oo)e)4= qS. Since F is a 
group this is equivalent to 

S + n h(E - (~ E ~ @ [0, + oo)e) 4= ~b. 

We embed h in a h o m o t o p y  ht, t e l 0 ,  1], defined by 

ht(x) = e~+(x~P+ x + pox  + et~-~x)P-x + tk(x) 

so that h o = Id and h 1 = h. We claim 

(4) S + ~ h i (E-  @ E ~ (~ [0, + ~ ) e )  4 = 4 

for all t~ [0 ,  1]. I f x e E -  �9 E ~ we have a(x) <-_ 0 so that h,(x) = x by condit ion (3). 
Hence 

(5) h , (E -  • E ~  + = qSVte[0,  I].  

N o w  consider the vectorspace F = E -  �9 E ~ | Re and in that space the open 
cylinder Q = f2 b defined by 

g2 = { x ~ F I x  = y + ~ e , y ~ E -  | E ~ 

Ily]l < b,0, < ~ < b}. 

Choose b > max {p, 10 } where p is the number  associated to h by condit ion (3). 
I f x  = y + ~e~ c~f2 where we take the boundary  of O in F, then either r = 0 so that  
x e E -  @ E ~ which gives h , (x )~S  + by (5), or ~ 4= 0 in which case Ilxll > b which 
gives ht(x) = x by (3), so that ht (x)~S + again. Hence 

(6) ht(~?12)n S + = 4~ for t~ [0 ,  1]. 

We can restate problem (4) in the form 

(pO + e-t~ (x)p-)h~(x) = 0 

1 - II ht(x)II = 0 

to be solved for x e f2. This is equivalent to 

with 
x + T~(x)=O, x ~ O  

Tt(x ) = t(P ~ + e - '~- (x) P -  )k(x)  - (~ + 1 - II h,(x) I] )e 

y e E -  @ E ~ x = y + ~ e ,  

We have just seen that 

(7) x + T t ( x )  4=O for all t e [0 ,1]  and xec3P.  

For  t = 0, we have 
x +  T o ( x ) = x - ( ~ +  1 --II xll)e 

= y - ( 1  - I j x l l ) e .  

Since the map (t,x)---, Tt(x ) is compact,  we can apply Leray-Schauder-Degree 
theory. Using (7) we see that 

deg(I  + T1, O, 0) = deg(I  + To,f2,0 ). 
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On the other hand, I + T o is homotopic  to the translation I - e through maps of 
the form identity + compact  having no zero on c~Q (just take a convex com- 
bination of I -  e and I + To). Since e e Q  we infer 

deg(I  + T o, Q, 0) = deg ( I  - e, O, 0) 

= deg(I ,  Q, e) 

z l .  
This completes the proof. [] 

N o w  we set up the variational problems. Denote  by ~ the family of all smooth  
maps  H:  C" -~ R such that 

(B1) There exists a nonempty  open set U of C" such that H = 0  on U. 
Moreover  H(z) > 0 for all z e C " .  

(B2) There exists p > 0 and a number  fi > ~ with cir N~ such that H ( z ) =  filz[ 2 
for ]z] > p. 

To H ~ ~ we associate ~H E C ~ (E, R) defined by 

1 
(8) q)H(X) = a(x) -- j H(x ( t ) )  dr. 

0 

Proposition 2. Let  H ~ ~ and set 

(9) c u : =  sup inf  ~u(h(x)). 
h ~  F x ~ S  

Then 
O < C H <  + c o  

and c n is a critical o f  qbn, i.e. there exists x H e E with 

r  = 0 and ~)H(Xu) = cu. 

Proo f  Given e > 0 and Xo ~ E ~ we find h e F such that  

h(S +) = x o + eS  + 

We may assume that H is zero in a ne ighborhood Of Xo. Since H(xo)  = O, H ' ( xo )  
= 0 and H"  (x o) = 0 we see that  

cbu(Xo) = 0, ~ / (Xo)  = 0 and 4~h(Xo) = - P -  + P+ .  

Hence, if e > 0 is small enough 

(10) inf Cn(h(S  + )) > O. 

F r o m  Propost ion  1 we know that h(S +) c~ ( E -  �9 E ~ �9 Re)  4= c~ which implies 
that 

inf q~H(h(S+)) < sup q~u(E- ~3 E ~  Re). 

It follows from (B2) that the r ight-hand side is finite (fi > ~). Summing up, we have 
shown that 

0 < e l l <  -~ 00. 

Arguing as in [17] or [10], we see that the Palais-Smale condit ion holds. 
Assuming cn is not  a critical level we shall derive a contradiction. Since we have the 
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Palais-Smale condit ion we can find e o e (0, min { 1, cn }) such that  

(11) IO~(x)-cul <= 6o~ II~;~(xo)l[ = 60. 

Then we pick h o e F with 

cu =< infcbH(ho(S+)) + �89 

N o w  introduce three locally Lipschitz cont inuous maps qo 1, q~2 , ~o3: E ~ [0, 1] 
such that 

(12) 

~1 (X) = 0 if cku(x ) (i [cH - go, CH + gO] 

Cpl(X)= 1 if q~u(X)E [On --�89 + �89 

(pz(X)= 1 if II ~;~(x)II < 1 

~o2(x)= 11 q,~(x)l1-1 if ]]~h(x)tl .> 1 

2 
~3(x) = 1 if IIXI] __< (sup 11 ho(S +) ]l) + - -  

go 

~03(X)= 0 if IlXll is large 

and consider the differential equat ion 

= q~l (x) q~2 (x) ~o3 (x) 4~h (x). 

Solutions are defined globally since the r ight-hand side is bounded  in norm by one. 
Denote  by ~ • E ~ E: (t, x) --, x * t the associated flow. If  ]] x ]] is large or  a(x) < 0 we 

1 
have h(x) = x where h(x) = x * - - .  (In the first case ~o3(x ) = 0; in the second case 

60 
cbn(x ) < 0  < c n -  go so that ~o 1 (x) = 0.) Combining (11) and (12) gives, whenever 
14~n (x) - c~l < �89 and llx tt < sup I] ho (S + )It, 

d 
~ ( x , t )  __> 6o ~ 

as long as ] ~ u ( x * t )  - cnl < ~eo and t~  0, . Hence 

4' H x* > cH + ~ eo. 

This implies the inequality 

1 
inf 4~ u (h o h o(S § > cH + ~ eo- 

If we can show that  h e F then we have obtained the contradict ion c~ > cn. This 
would prove that cn is a critical level. We define a map  d: R x E ~ N by 

a(t,x) = ~o~ (x. t )  ~o~ (x. t )  q~ (x . t ) .  
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and 

1 
We put r = and define 

~0 

9+ ( s , x )=  i d ( a , x ) d a  
s 

? -  (s, x) = ~ - d (,r, x), dcr 
$ 

k(x) = i [e~* (s,x)p + x + pOx + e~- (s,x)p- ] d(s,x) h(x*s)  ds 
0 

1 

where b is the gradient in E of x ~ ~H(x)(t)dt.  Finally we define 
0 

+ (x) = i + (0, x )  

- (x) = ~ -  (0, x ) .  

This gives the desired decomposi t ions of h. See for example [18] for more 
details. [] 

Next  we show that  c o is a symplectic invariant. 

Proposition 3. Let  H E ~ and let s--+ 7is be a smooth homotopy of  the identity in 
De(C"). Define H ~ E ~  by H~ = H ~ ~s. Then the map 

S ~ COs 

is constant 

Proof  The critical levels of q~s:= ~n,  are independent of  s, since q~Ho~(q)-a(x)) 
= q~n(x) for q~ exact symplectic and since q~-l(x) is a solution for the Hamil tonian 
vectorfield associated to H o q) iff x is a solution for the Hamil tonian vectorfield 
associated to H. Further,  there is an estimate of  the form 

IHs(x) - n , (x)[  < 6(It - s[) 

for all x a C" with 6 (e) ---, 0 as e --* 0. Hence 

{q~(x) - 4~,(x)l < 6(It - s[). 

F r o m  the definition we obtain in obvious nota t ion 

Ic~ - c,I _-__ a ( I s  - t l ) .  

F r o m  this estimate it follows that  whenever c n is an isolated critical level of cb n 
the map  s ~ c~ has to be constant.  Since H ( z ) =  g~fzl 2 for rz[ > p with fi >re and 
ci~ N re, there can be no critical point  with L ~-norm exceeding p. Using s tandard 
genericity results, as in [20], we can find a sequence ( H , ) c  C~~ ", ~), H ,  ~ H, 
coinciding with H for Izl _-> p so that  H ,  ~ ~-  and all positive critical levels are 
isolated. So s --* Ca. o ~ is constant  and passing to the limit n --* oo we obtain the 
desired result. [] 

That  for example cn, ~ co is clear since lB.(x) - H(x) l < e, for every x e C" where 
e,--* 0. F rom this it follows immediately that I c n . -  cnl < e,. 

Next we need 
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Proposition 4. Let  H e Y  and define for  2 > 0 the Hamiltonian H x e ~  by 

H ~(Z) = 2 - 2 I-1(2Z). 

Then we have the equality 
) 2  C2 = CH 

for 2 > 0 where c~: = ell. 

Proof. Since for large Izl we have H(z) = ~Izl 2 we see that H~(z) = ~Izl 2 for large Izl, 
too. Since ~ > 7z and ti~rt N again the Palais-Smale condit ion holds, 1-17]. I f x  is a 
1-periodic solution of 2 = X n ( x )  then xz defined by 

xa(t) = 2 -2x( t )  

is a 1-periodic solution of 3) = XH~(y) and 

�9 .~(x~) = 2 -2 ~.(x). 

In other  words ifX c ~ is the set of critical levels ofq~ n, then X~:= 2 - 2 z ~  is the set 
of critical levels of ~uz- Arguing as in Proposi t ion 3 we see that  the map 2 ~ 2 2 c~ is 
continuous. If cu is an isolated critical level the map 2 ~ 2 2 cz has to be constant.  
Finally, using a genericity argument  we conclude that in all cases 

2 2 C 2 = e H 

proving the desired result. [] 

Assume now S is a bounded  subset of  the symplectic vectorspace ( C", co), co as 
introduced before. Denote  by .~(S) the collection of all Hamil tonians H in ~ such 
that H vanishes on an open ne ighborhood  U of cl(S). We define 

(13) c(S) = inf{ cul H ~ . ~  (S) }. 

Proposition 5. Given 7JeDiff(C ") such that for  some c~ > 0 7s'co = ~o9, we have 

c ( ~ ' ( s ) )  = ~c(S) 

where S is a bounded subset. 

Proof  Assume first a = 1. Then we find a smooth  arc s --* ~s in Dr ~) such that 

qq (S) = ~(S). 

By Proposition 3 we obtain 

CH o ~,~, = c u for H ~ ~ (S) 

and therefore 
e ( ~ ' ( s ) )  = e(Cq (s)) = e(S). 

Next assume a > 0  is different from one. Then a - ~ T J e D ( C  ") and by the 
previous step 

c(~-~ 'e(s)) = e(S). 

Next we employ Proposi t ion 4 in order to obtain 

c ( : ~ - ~  7 " ( s ) )  = ~ -  ~ ( 7 ' ( s ) ) .  
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Summing up we find 

c(~'(s)) -- ~c(S) 

as required. 

Next we define for any subset S of C" a number c(S) ~ [0, + oo] by 

(14) c(S) = sup {c(T)l T is bounded, T = S }. 

As a corollary of Proposition 5 we find 

[] 

Corollary 1. For any subset S of  C" and any diffeomorphism ~P of  C" such that ~P * ~o 
= eco for some ct > 0 we have 

(15) c ( ~ ( s ) )  = ~c(S). 

Moreover, i f  S ~ T then c(S) < c( T). 

Proof  The first part  is evident by Proposition 5. For the second part we just note 
that if S ~ T, then Y ( T )  c i f (S) .  [] 

In view of (15) we can now define for any subset S of a symplectic vectorspace 
(V, co~) a number c,(S) by 

(16) c~(S): = c(7J(S)) 

where 7J: ( V, co~) ~ (C", me, ) is a linear symplectic diffeomorphism. Clearly c,(S) is 
well defined. We shall show that c is the desired capacity. From our definition it is 
clear that we may assume in the following that (V, co~)=(C",co). From our 
previous discussion we know that (A2) and (A3) hold. So it remains to prove (A1) 
(Normalization). In fact, we shall show even more, namely the properties claimed in 
Theorem 1. 

Proposition 6. Given A E R we have~ 

c(A) = c(Ba)= ka~2lPa 

for  some positive integer k a and a suitable Pa6 [A]. 

Proof  Following [10, 17, 21, 22] we can foliate a bounded neighborhood of A by 
conformally symplectic images of A. More precisely we pick a l-form on C" such 
d2 = o2 and 2(x,~) # 0 for nonzero ( x , ~ ) ~  a. We define a vectorfield q on V b y  
2 = ~off/, .), Then L,~o = o) since dco = 0. Consequently r/ generates a symplectic 
dilation; see [22]. We may also assume that ~/ has linear growth as one easily 
verifies. So r/generates a global flow ( ~ ) .  We define As:= ~U~(A). Note that r/is 
transversal to A. Hence for eo > 0 small enough, to simplify notation say t o = 1, we 
can write a small neighborhood of A in C" as the disjoint union of the A t 
for ~ ( - 1 , 1 ) .  Clearly [A~]=~u~([A]) and 7J*oJ=e~co. Define r o = d i a m  
/ x 

( U A~) and fix for k e N , k  > 1, a number b > (k +�89 Pick a s m o o t h  
\ / 
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map g: ~ ~ N such that 

g(s)  = b 

g(s)= (k + ~ ) ~  

g(s) >= (k + 1) ~s 2 

O< g'(s) <= (2k + 1)~s 

for s < ro 

for s large 

for s _-> r o 

for s > r o. 

Moreover,  let (o: ~ ~ N be a smooth  map such that 

q)(s) = 0 for s < fil 

(17) ~o'(s)> 0 for fll < s < f12 

~o(s)= b for f12 =< s 

for suitable 0 < fl~ < f12 < 1. Define a Hamil tonian H ~ , ~ ( B a )  by 

(18) H(z)  = 

m 

0 if z s B a  

(p (e) if z e A~ 

b i f z ~  ,[z[ < r o B~f~ = 
g(Izl)  if [zl > ro. 

Arguing as in [17] we have the following fact: 
If (bu(x) > 0 and (bh(x)=  0, then x ( [ 0 , 1 ] ) c  A s for some ee(fi1,fl2). We 

denote by 2; the set { k A ( P ) [ k  e N, P e [A ] }. If S t denotes the corresponding set for 
At, we see that we must  have 

Z t = e~X. 

Let us first assume that Z is a discrete set. Then the critical levels of ~ n  are 
discrete as one easily verifies. (Note that 22 ~ (7, + ~ )  for some ~ > 0 since A eR.) 
Moreover,  the positive critical levels only depend on the choice of  ~0 but not  on the 
choice of g (assuming g has the stated properties). In particular c n does not  depend 
on the choice of g, since we can homotope  from one g to another  so that  the critical 
levels would change continuously,  whereas the critical level e n has to be a priori in 
a discrete set. Define ~(Ba)b,  k by 

H ~ ( B a ) b , k  i f H e o ~ ( B a )  and H ( z ) < _ _ b f o r l z r < r o a n d  
(19) 

H(Z)---- (k -~- 1 ) ~ [ z I 2  for [zl large. 

Define 
c(Ba)b, k = inf{ cn [ He~(Ba)~ ,k} .  

Now we construct  a particular sequence (Hm), where Hm is as in (18) and (o = cp,, 
and g = gin' For  that we choose the fl~' and fl~' in such a way that 

(20) go'~(s)6Z s if g0,,(s)e [fl~', b - fiT]- 

N o w  given any H e Y ( B a ) b , k  we can pick such an H,, such that H,, => H. 
(Perhaps we have to modify the gin, but positive critical levels do not depend on gin.) 
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Hence 

cn~ ~ c(B a)b,k. 

Using the choice of  b and the definition of H "  we can argue as in [17] to find 
critical points  x,, such that  

�9 ' = 4~H,,, ( x ' )  u~ (Xm) = 0, C,m 

x ' ( [ 0 ,  1 ] ) =  A ~ ,  ~m~(fln~,flT). 

N o w  using (20) we see that  

~%(e ' ) e [O,  flT] or ~ o ' ( e ' ) e [ b - f l ' ~ , b ] .  

Since a(x ' )  = (p~,(e') as one easily verifies, we obtain  

Ic/t~ - a ( x ' ) l  < fi t  

or Ic~ m - a (x ' )  + bl < fiT. 

Since A ~ R we have an est imate of the form 

length(x,,)  < ca(x ' ) .  

1 

In fact, a ( x ' )  = ~ 2 (2"), where 2 is a 1-form such that  d 2 = co and 12 (x, r > 2cl (p I 
o 

for (x, 3)~ 5~ Since "restricted contact  type" is a C l -open  condit ion we see that  
[2(x,~)l >clq~l for ( x , ~ ) ~ a ~  and Fef small. Since a(x,,) > 0 we infer that  

,~.(2") __> cl2"1 

provided m is large enough, since e" ~ 0. Consequent ly  the length can be est imated 
by the action. 

As in [17] changing perhaps  the parameter iza t ion  of the x"  we can use the 
Ascol i -Arzela-Theorem to find lb ~ 7/, lb > 1, and Pb ~ [A] such that  

(21) c (B a)b, k = Ib A (P) 

o r  c(Ba)b,k = lbA(Pb) - -  b. 

The m a p  b~c(Ba)b ,  k is nonincreasing. Hence the m a p  b--*lbA(Pb) must  be 
nonincreasing in bo th  cases in (21) since it takes values in a discrete set 22 Since 

c(Ba)b,k > c(Ba) 

the second case in (21) is impossible for large b. This shows that  

C(Ba)b,k = lbA(Pb). 

Since c (B a)b, k --* C (Ba) as b, k ~ + oo and since X is discrete, we find P e [A ] and 
k e N, k > 1, with 

c(Ba) = k A  (P) 

as required. So far we assumed that  22 is discrete. If  S is not discrete we take a 
generic A being C~-close  to A. This can be done due to results in [20]. N o w  being 
of restricted contact  type is a C l -open  condition. So we can approx imate  A by 
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z] e R so that  our  arguments  hold for A. We can pick k'e N, k" > 1, and /5  e [zt] such 
that  

c(Bs) = kA(P). 

If A ~ A we find c(Bs) ~ c(Ba). In fact, we have if z~ is close enough to A, 

Ba_ ~ ~ B 5 c Ba~ 

(The convergence A --* A is unders tood in the following sense: z~ is the graph of a 
section of the no rma l  bundle of  A and the section converges in C ~ to the 
zerosection.) (*) implies using the monotonic i ty  of c, 

e-~c(Ba) <c(B5) <-_ e%(Ba). 

Moreover ,  since length (/3) __< cA (/3) if z] --+ A for some constant  c > 0 (since 
A e R), we can use the Ascoli-Arzela-Theorem, as in [17] for a suitable parametr i -  
zat ion of the /~  to find k e N ,  k >__ l, and PE[A] such that  

c(Ba) = kA (P). 

By our definition of c(S) we immediately  see that  

c(A) < c(n~) 

We like to show equality. In  order  to do so we go through our  construct ion 
which gives (18) again. Define 7a: C" --, N as follows. Pick for a > 1, za: R --+ N such 
that  

1 
ra (s) = a for s < - - 

a 

1 1 
z 'a(s)<0 f o r - - < s <  - - -  

a 2a 

1 
% (s)= 0 for s > 

= 2a" 

N o w  define 7a by 

I a for zeBal_~ I1 

ya(Z)= Z a ( e )  f o r z E a ~ , - - - < e < 0  
a 

0 for zCB a. 

N o w  consider for any Hami l ton ian  H e Y(Ba)  the Hami l ton ian  Ha e ~,~ (BA) 
defined by 

H~ = H(z) + ~o(z). 

If x is a noncons tan t  1-periodic solution of 2 = Xt~o(x) and x(0)eBa,  we see 
that  x(0) e A~ for some e e ( -  1, 0) and moreove r  

~ ' ~ o ( x )  = * 'a(e)  - -  z a (~ )  < O. 
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Hence the positive critical levels of  ~ba, and q~a are the same. By a genericity 
a rgument  the m a p  (0, + o o ) ~  (0, + oo): s ~ ca+sy, has to be constant  since 

c~ + ~ = q~H + ~o (xa + ~o) = ~a(xr l  + . o )  

and the m a p  s ~ cn+~r, has to be continuous.  Since for eve ry /4  E ~ ( A )  there exists 
a H ~ ( B a )  and a y, as just described so that  

we infer 

This implies 

co > = c a > e(Ba). = CH+~, a 

e(A) > c(Ba) 

proving  our  desired result since we already know that  c(A) < c(Ba). [] 

Finally we have to show the normal iza t ion  proper ty  

L e m m a  2. Define for fie(O, 1) the set Bp by 

B~ = { z E C " I  Izll 2 +B(Iz21 z + . . .  + Iz.I 2) < 1}. 

Then 
e(B~) = ft. 

Proof Pick a smooth  m a p  r  R ~ R such that  for given 5e(0 ,  1) 

~o(s) = 0 f o r s <  1+c5 

~o"(s) > 0 for s > 1 + 3 

~0'(So) 
(22) = 2zr for a unique soe(1 + 6, 1 + 26) 

So 

~o' (s) < 3zrs for all s e R. 

We find H e , ~  (Bp) such that  H(z) > ~p (lzl]) where z = (z l , . . . ,  z , ) a  C". Using 
the intersection result we est imate 

inf q 'a(h(S + )) 

(23) < sup ~a(E-  E) E~174 Re) 

< sup ~ o ( E -  | E ~ @ Re) 

1 
where ~ ( x ) = a ( x ) -  ~ ~o([xl(t))])dt where x = ( x l , . . . , x , ) e E .  The last 

0 
expression in (23) can be explicitly computed.  One easily sees that  there 
exists x ~ ( E -  �9 E ~ @ Re) such that  x = (xl ,  0 . . . . .  0) and 

~ ' ( I x l  1) 
(24) - i2 = x 

Ixll 

x ( 0 ) =  x(1). 
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This implies immediately that 

~0' ( Ix l (01)  
- 2~ for all t e 

Ix1 (t) l 

which shows without loss of generality that we may assume that 

X(t)  = (S o e  2nit, O, . . . ,  O) 

= soe( t  ). 

Hence 

e A x )  = ~so ~ - q,(So) 

__< ~so ~ 

< zc(1 + 2c5) 2. 

Summing up this implies that 

c(B e) <= c11 < ~z(1 + 23) 2. 

Since 6 > 0 was arbitrary we obtain 

(25) c(Be)  < ~. 

On the other hand, we have by monotonicity 

(26) c(B2"(1)) < c(Be)  < zc. 

By Proposition 6 we infer that 

(27) c(B2"(1)) = c($2"(1)) = kn 

for some positive integer k. Therefore combining (25)-(27) we find that 

c(Ba) = 7r. 

Now consider 2;(r) = B2(r) x C"-  1. Since B e c 2"(1) we find that 

c( , r (1) )  __> ~. 

Next assume S is a bounded set. For  given c~e(0,1) we find/3~(0, t) such that 

6S  = B~. 

Hence, using the already established properties of c, 

c~2c(S) __< c ( B a )  = re, 

which gives, since 6e(0, 1) was arbitrary: 
For every bounded subset S of ~(1) we have c(S) < re. 
By definition 

c(S(1)) = sup {c(S)IScS,(1) ,  S is bounded} 

=<7C. 
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Since we know already that c(s > ~ we must have 

c(B2(1) x c n - 1 )  = ~. [ ]  

Remark.  To give some more examples of capacities of certain sets consider a 
# 

bounded open set ~ and a linear subspace W of codimension 2, then, as proved in 
Lemma 3, 

c ( ~ 2 + W ) =  + o e  i f W  ~ ' c  W 

c ( I 2 + W ) < + o e  i f W ' ~ 1 6 2  W. 

For example, if W =  { z e C " l p l  = p 2  = 0}, then W ~ c W, if W =  {zeC" lz t  = 0}, 
then W~ ' r  W. 

III. Applications to Embedding Results 

Assume 7": B2n(l) ~ C n is symplectic embedding. Recall the folklore "extension 
after restriction principle" which says that for given 5 ~ (0,1) there exists a f0 e D(C") 
(one can take even f ieDc(C") such that 

7"1B2"(6) = f~l B2"(6). 

This result is not difficult to prove. We may assume that 7"(0) = 0. Then define 

7", (z) = l t 7' (tz) for t ~ (0, 1) and 7"0 (z) = 7" (0)z. Then t --* 7", is a continuous arc in 

the space of symplectic embeddings of B(1) into C". We can smoothen the arc and 
take a Hamiltonian H: U ~ ~, where U c [0, 1] • C ~ is open in [0, 1] x C", which 
generates the smoothened arc. Then we restrict H to a suitable smaller set and 
extend the restriction smoothly to a Hamiltonian of compactsuppor t .  If y is the 
time 1-map for the associated Hamiltonian system then f =  f o  7"o is the desired 
global symplectic diffeomorphism. Using this simple remark we can use the 
capacity c to prove a celebrated result of Gromov  [-12]. 

Theorem 2. Assume 7":BZ"(r) q S(r'): = BZ(r ') • C n- 1 is a symplectic embedding. 
Then r <_ r'. 

Remark.  Note that the cylinder 2~(r)= { z ~ C " J p ~ + p ~  < r  2} has an infinite 
capacity for every r > 0 as a consequence of the remark before Section III. For  
cS > 0 sufficiently small consider the symplectic linear map defined by 

T~(Zl . . . . .  zn)= ~ ql + iSPl  ,-~ qz + i~P2,Z3, . . . , z .  . 

Then T~(B(r')  c Z(r)) provided 5 > 0 is small enough. 

Proof. Let 6e(0, 1) be given and let 7"~eD(C ") such that 

7"olB(6r) = 7"lB(6r). 
Hence '. 

7"o(B(6r) c Z(r ' )  
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which implies 
g)Z ~r2 = 52 r2 c(B(1) ) = c ( 3 B(r) ) < e( S (r') ) = 7r(r') 2. 

Hence for every 6e(0 ,1)  we find 62r z < (r') 2 proving that  

r ' ( r ' .  [] 

This result is remarkable  since Z(r ' )  has infinite volume and yet, for r < r', does 
not have leave room enough to fit a symplectic copy of B(r) which has finite 
volume. One can also use Theorem 2 as a start ing point  for construct ing symplectic 
capacities. 

Fo r  F c C" define 

(1) 5(F) = inf{Trr2[ 3 T e D ( C " )  with T (F) c S(r.) } 

c ( F ) =  sup {ztrZl 3 T e D ( C " )  with T(B(r) c F} .  

Here r E [0, or) w { + ~ }. F r o m  the definition of c and ? it is clear that  

Proposition 7. c and 5 are symplectic capacities. Every symplectic capacity satisfies 

c(F) =< c(F) <= ~(F) 
for all F c C". 

This raises several questions: 

(a) For  what  sets F do we have c(F)  = 6(F)? 

(b) For  what  sets F is the infimum or the supremum at tained in formula  (1)? 

IV. Rigidity Problems 

First we study linear maps  which preserve a capaci ty c. We will then deduce that  
nonlinear  C l - m a p s  which preserve a symplectic capaci ty are either symplectic or 
antisymplectic.  C~ will be an easy consequence. Define a set E c C" to be a 
bounded  ellipsoid if there is a positive definite quadrat ic  form q such that  

E = { z e C " j q ( z )  < 1}. 

In the following we shall consider C" exclusively as a 2n-dimensional real vector- 
space. If we speak abou t  a linear subspace of C" we mean a linear subspace of the 
~-vectorspace  C". Similarly for linear maps.  

Theorem 3. Assume T: C" -~ C" is a linear map such that for every bounded ellipsoid 
E we have 

c(E) = e(T(E)) .  

Then T is symplectic or antisymplectic: 

T*~o = ( o  or T * ~  = - c o .  

The p roof  depends on a simple lemma. We have to fix some notation.  A 2- 
dimensional  subspace W of C" is said to be null iff oJI W =  0. This is clearly 
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equivalent to W c W% where W '~ = {zeC" lz  ~ W} is called the ~o-orthogonal of 
W. Here z~ • W means co(z, w) = 0 for every w e W. The co-orthogonal is of course 
defined for every subspace of C". 

Lemma 3. Let  ~2 be a bounded open subset o f  C" and W a linear subspace of  
codimension 2. Consider the cylinder (2 + W. Then 

c ( ~ + W ) =  + ~ i f  W '~  

0 < c(Q + W ) <  + ~ if W ~ is not null. 

Proof  We assume without loss of generality that ~2 contains the origin. Using a 
linear symplectic change of coordinates we can bring ourselves to the situation 
where: 

W =  [zeC" jRe(z l )  = Re(z2) = 0} in the first case 

W =  {zeC" lz  1 = 0} in the second case. 

In the first case we take e > 0 so small that 

(Re(z1))2 + (Re(z2))2 <= ~2 =~ ze~2 + W. 

Now observe that for any N > 0 the ellipsoid 

{ z l ~ R e ( z a ) Z + - ~ s I m ( z l ) 2 + ~ R e ( z 2 ) Z + ~ I m ( z 2 )  2 

1 62 } + ~ ~ l z k  < 1  
k=3 

is contained in ~2 + W. This ellipsoid, say EN, is symplectically equivalent to the 

( c n l  [2 2 1 ]2 t ellipsoid/~N= ze ]~(]Z a +1221 ) + ~ -  ~ [Z k <1 
k=3 

If N is large enough then 

c(EN) = c(EN) = zr e N. 

Hence for every N large 

c(~  + W) > ~ e N ,  

which proves our first assertion. For the second statement we take N so large so 
that 

Z f Q +  W=~Izl l2 < N  2. 

Hence for every z e f2 + W we have 

z �9 Z(N) 

which prove 

c(s + W )  <= c(E(N))  = I~N 2 < oo. [] 

Given a linear map ~P: C" ~ C" we denote by ~P* the ~o-transpose defined by 

o2(IP x, y) = ~(x ,  7S 'y) .  
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For  any linear subspace W of C" we have the duality formula 

(1) T( W ~) = ((~e*) -1 (W))  ~ 

P r o o f  o f  T h e o r e m  3. First assume T ( C " ) : #  C". Then T(C") is contained in a 
hyperplane through zero. Composing  if necessary T with a symplectic map we may 
assume 

T(C") c { z e C " l R e ( z l )  = 0 }  = :  g. 

If  now S is a bounded  ellipsoid, then T(S) is a bounded  subset of V. It is now easy to 
construct  bounded  ellipsoid with arbitrarily small capacity containing T(S). This 
would lead to the contradict ion 

o < c(S)  = c ( ~ e ( s ) )  = o. 

Hence T is invertible. To complete the proof  we proceed in two steps. 

S t e p  1. Let W c C" be of co-dimension two. If W '~ is null so is T ( W )  ~'. Assume W '~ 
is null and f2 is a bounded  open nonempty  subset of C". By Lemma 3 we have 
c(f2 + W) = + oo. We can exhaust f2 + W by bounded  ellipsoids with arbitrarily 
high capacity. Hence c (T(O)  + T ( W )  = + oo as well. By Lemma 3 again T ( W )  '~ 
must be null. 

Using the duality formula we compute  for a null 2-plane W in view of step 1 

(~e*)- 1 (W) = (~e(W~')F 

~ u ( w  ~) 

= ( ( ~ * ) -  1 ( W ) ) C ~  ' 

Hence we have proved 

(2) (T* ) -~  maps null 2-planes to null 2-planes. 

S t e p  2. The linear map c b = ( T * )  -~ is symplectic or antisymplectic. Let 
e I . . . . .  e,e R" c C" be the s tandard basis of N". Then e I . . . . .  e,, i e l ,  . . . , ie,  is a 
symplectic basis for C". Using (2) we have 

co(r r ) = 0 if 

w h e r e e  k + . : = i e k  for k = l  . . . . .  n. Hence 

(3) co(q~ek),( r  +,)  ) = :  dg, 

is nonzero,  since co is nondegenerate,  ~b is 
j ~ k + n. Since co(e k - ej ,  ek+,, + ej+,,)  = 0 

cO(ek, el) = 0 

k =  1, . . . .  n 

onto and o)(q~(e,), 4~(ej))= 0 for 
for l _ _ < j < k = < n  we see that 

co(q~(ek) - q)(ej), ~b(ek+,) + (b(ej+,)) = 0 which implies that dk = dj. So we denote 

the constant  dk defined by (3) simply by d. I fd  > 0 we define ~ = ~ 4~ and ifd < 0 

we define ~ _ _ _ 1  F o q~, where F:  (C", co) ~ (C", - co) is a symplectic isomorph-  , /w 
ism. It is immediate that ~ is symplectic. For  a symplectic map we have the identity 
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( (~ , ) -1  = ~. Hence 

= x / d  T in the first case 

= 1 - x ~  F o 71 in the second case. 

Observing  that  F is capaci ty preserving we find for every bounded  ellipsoid S 

c(S) = c(~(S))  = Idlc(~(S))  

= [dic(S). 

Hence d =  1 or d = -  1. So 7/ is either symplectic or antisymplectic 
as required. [] 

Here  is an interesting consequence of the proof. 

Corol lary 2. I f  T:  C ~ -~ C" is a linear map and there exists an open nonempty subset 
S such that c(TJ(S)) > O, then 7 t is invertible. [] 

Next  we go over  to the nonlinear  case 

Theorem 4. Let  7~: C" ~ C" be a C 1 -map such that for  every bounded ellipsoid S we 

have 
c ( ~ ( s ) )  = c(S).  

Then q) is symplectic or antisymplectic. Moreover if in addition Id  x ~ : C  "+ 1 
C" + 1 is c-preserving on ellipsoids then dp is symplectic. 

This result is r emarkab le  because it allows us to extend the not ion of symplectic 
to the C~ We define a C ~  r to be symplectic if �9 and Id c x r both  
preserve capacity.  In view of Theo rem 4 this coincides in the Cl-case  with the 
s tandard  definition. Theo rem 4 is a consequence of 

Theorem 5. Let  (t])k) be a sequence o f  continuous maps of  the open unit ball B(1) into 
C n converging uniformly to ~. Assume all the t~ k preserve the capacity o f  bounded 
ellipsoids 

c ( ~ k ( s ) )  = e(S) V k  ~ 

for  all bounded ellipsoid S c B(1). I f  q~ is differentiable at 0eB(1)  then tP'(0) is 
symplectic or antisympletic. 

Proof  Let S be a bounded  elIipsoid so that  cI(S) ~ B(1). Using the definition of the 
maximal  capaci ty  ~ we find for a given e > 0 a bounded  ellipsoid S and a ~ ~ D(C n) 
such that  

cl (~(S))  ~ ~'(g) 

~(~'(g))  = ~(~)__< ~ + ~(~(s) ) .  

F o r  k large enough we must  have 
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Consequent ly  

(6) ~(s) < ~(~ ' (0)s ) .  

for every bounded  ellipsoid S with closure in B(1). F r o m  Corol lary  2 we see that  
q~'(0) is invertible. Next  we have to show the reversed inequality in (6). Since h is 
differentiable at 0 we find a cont inuous increasing m a p  s: (0, 1) -* (0, oo ) such that  
s(s) --* 0 as s -* 0 and assuming 4(0) = 0 

I f ( x ) -  ~'(O)xl < e(Ixl) Ix l .  

Given 5e(0,  1) we find k(6) such that  for k > k(5) 

I ,P~(x)- 4~'(O)xl < ~(Ixl)Ixl + ~. 

Pick a linear ellipsoid S with closure in B(1) and let te(0,1).  Pick 7 > 0; then, if z is 
small enough (1 + 7)z < 1. Consider  the equat ion 

(7) t q)k((1 + 7)ZX) + (1 -- t )~ ' (0 ) (1  + ?)ZX) = eb'(O)(zZ) 

for given z ~ S and solvable for some z e [0, 1] and x e OS. Pick a constant  d > 0 
such that  

I'~'(O)xl-->_ dl xl. 

~(s)  = c(S) 

: c ( ~ ( s ) )  

__< e ( ~ ( s ) )  

= e(g) 

< ~ + ~(~(s)). 

Since e > 0 was arbi t rary  we infer that  

(4) ~(S) < ~(~(S))  

for every bounded  ellipsoid S with closure in B(1). Hence for t e (0,1) 

= 

If now t+0,  ~cb(t.)  converges uniformly to ~b'(0) and we conclude by the same 

a rgument  as above  

lim 6 ( ~ ( t S ) )  ~ ~(~' o 
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Rearranging (7) we estimate using x s O S  and z e S  for k large (k depending on r) 

2 e((1 + ?)r)(1 + y)z 

->_ I 4,'(0)(~z - ( 1  + ~)rxl 

>= d l r z  - (1 + ~)rxl 

> dr d 1 (S) 

where d l ( S )>  0 is some "shape constant" depending on S and 7 only. Since 
e((1 + ~)r) --* 0 as r ~ 0 we see that this inequality cannot hold for a solution x e (?S 
of (7) (for arbitrary re [0 ,1 ]  provided r is small and k large. This implies via 
Brouwer-degree that for r small and k large 

4)k((1 + y ) rS )  = cb'(rS). 

This gives 
~(r  

= c(~ ' (o)( rs ) )  

= (r + ?)~s)) 

-5 ~((1 + ~)r s). 

Hence 

(7) ~(~'(0)S) __< (1 + ~)2 ~(S) 

for every bounded ellipsoid and every ? > 0. Combining (6) and (7) yields therefore 

~(~' (O)S) = ~(S). 

From Theorem 3 the derived result follows. 

A simple corollary of Theorem 5 is 

Theorem 6. Assume q)k: B(1) --* C" is a sequence of  symplectic embeddings converging 
unifrmly to a continuous map q): B(1) --* C", which is differentiable at 0 with derivative 
cP' (O). Then q)'(0)sSp(C"). 

Proof  Given a subset S of B(1) with el(S) ~ B(1) we must have C(~k(S)) = c(S) for 
any capacity as the consequence of the extension after restriction principle. From 
Theorem 5 we conclude that q~'(0) is symplectic or antisymplectic. If n is odd a 
antisymplectic is orientation reversing. Since q~k preserves the orientation the same 
has to be true for q)'(0). Hence ifn is odd q~'(0) can be only symplectic. So assume n 
is even. Then Id c x I~ k --1. Id c x q~ uniformly on B 2(n+ 1)(3) for some small fie(0, 1). 
Since Idc x 4~ k is symplectic we conclude from the previous argument that 
Idc x (b'(0) is symplectic which implies that ~'(0) is symplectic. 

Finally we obtain as a simple corollary of Theorem 6 a celebrated result by 
Eliashberg and Gromov. 
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Theorem 7. Di f f (M,  co) is closed for the compact open C o -topology in Diff (M),  where 
(M, co) is a symplectic manifold. 

Proof U s i n g  D a r b o u x - c h a r t s  we can  local ize  and  app ly  T h e o r e m  5. [] 
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