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I. Symplectic Capacities

Denote by (V,w) a symplectic vectorspace, i.e. @ is a skewsymmetric and non-
degenerate bilinear form. We call a linear map Te L(V') symplectic if it preserves w,
that is

w(x,y)=o(Tx,Ty)

for every x, ye V. The set of all linear symplectic maps will be denoted by Sp(V).
We then have the notion of symplectic for a smooth nonlinear map simply by
looking at the derivative. A map f: U — V, where U = V is open, is called
symplectic if f'(x)eSp(V') for every xe U. With other words fis symplectic if it
preserves w,
ffo=o.

In the following we denote by D(¥) the group of symplectic diffeomorphisms of V.
By D.(V) we denote the subgroup of those having compact support, i.e. f(x) = x
outside a compact set.

We are interested in studying nonlinear symplectic maps. In the course of this
paper we provide answers to such questions as: given two sets S and T in V does
there exist a symplectic diffeomorphism of ¥ mapping S into T (mapping problem)?

* The results were obtained while the first author held a Distinguished Visiting Professorship at
Rutgers and the second author was a member of the Institute for Advanced Study

** Research partially supported by NSF Grant DMS-8603149, the Alfred Sloan Foundation, and a
Rutgers Trustees Research Fellowship grant
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What is the uniform limit of a sequence of symplectic maps (rigidity problem)? Is
there a notion of symplecticity for maps which are only C°?

Since f* w = w implies f* w" = " an injective symplectic map preserves the
measure associated to w”. So the measure is an interesting symplectic invariant.
The following discussion however shows that better invariants are needed.

Consider a connected compact smooth hypersurface 4 in V. We define the so-
called characteristic distribution ¥4 — 4 by

La=(TA) ={(x,8)eTA|E;T.A}.

Here £1 T, A means & is w-orthogonal to T, 4.

Clearly #,< T4 is a one dimensional and therefore integrable distribution and
in fact orientable since V' \ 4 has exactly two components by Alexander duality. We
denote the bounded component by B ,. Let H: ¥V — R be a smooth map having 4 as
a regular energy surface so that A=H (1), VH(x)+0 on xed, and
inf H(B,) < sup H(V'\ B,). Then the Hamiltonian vectorfield X, defined by

dH = o(Xy,*)

induces a nonzero section of ¥, — A giving %, a preferred orientation. A closed
integral curve for #, is called a closed characteristic or a periodic Hamiltonian
trajectory. Denote by [ 4] the set of all closed characteristics on 4. If Pe[4] we
have

TP = %,|P

giving P an induced orientation. Given fe D(V') we have the following formulas
(1) Ti(ZLy) =%
S({L4D=Lf(D]

Note that all orientations are preserved, for example f| P: P — f(P) is orienta-
tion preserving. Now let 4 be a 1-form on V such that dA = w. For Pe[4] we
define the action A(P) by

A(P)y=[AlP

Clearly the definition of 4 does not depend on the choice of 1 aslongasd i = w
on V. From (1) we derive the formula

2) A(f(P)) = A(P) for every Pe[A].
Here of course fe D(V). This gives the following.

Lemma 1. Denote by U,, U, open bounded subsets of V with smooth boundaries.
Denote for i = 1,2 by [0U,] the closed characteristics on the boundary components.
Then the following sets are equal

{A(P)IPe[0U,]1}={A(Q)IQe[aU,]}
provided f(U,) = U, for some fe D(V). O
As an example consider V' = C" with the symplectic form w =d4, where

A=Y pidqg, and z=q+ip,q,peR". Given a=(a,.:.,a,) with 0 <o, <

k=1
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o, < ... = a, we define an ellipsoid E(x) by
E(@)={zeC" Zaolz]|* < 1}.
Assuming that the numbers «, ! are linearly independent over Z we see that
[6E(@)]={Py,...,P,}
and P, = {z€0E(«)|z; = 0 for j + k}. Moreover

7
A(P)=—.
&
If now f(E(x)) = E(f) for some fe D(V), where again0 < f, <, = ... Z B,,
then the numbers B, ! are independent over Z because otherwise as one easily
verifies { 0E(f)] is an infinite set. By the previous discussion applying Lemma 1 we
see that o = 5. Note that the conservation of volume would only give a condition
like
a0y =Py ..h,
which is of course much weaker. So better invariants are needed. Symplectic
capacities are such invariants.
Denote by 2V the power set of ¥V, and by B>"(r) the euclidean ball of radius r in
C", ie.
B*"(r)= {zeC"||z| < r}.
Given symplectic vectorspaces (V, w,) and (W, w,,) the product is defined by
(V,w,) x (W,0,)=(V x W,w,® o,).

Definition 1. A symplectic capacity is a map ¢ which associates to a subset S of a
symplectic vectorspace ¥ a number ¢(S) = ¢, (S) so that the following axioms hold:

(A1) (Normalization) cex(B*'(1)) = ccn(B2 1) x C" " V) ==
(A2) Monotonicity) ScTc(V,w)=c,(S)=<cy(T)

(A3) (Conformality) If \/&feD(V, W) for some o > 0 then ac(f(S)) = c(S)
forall Sc V.

Here D(V, W) is the set of all symplectic diffeomorphisms f: V' — W.

Let us point out immediately that it is by no means clear that symplectic
capacities exist. Gromov, [12], was the first one to construct a symplectic capacity.
He calls it symplectic width and defines it for every symplectic manifold (¥, w) as the
lower bound of the numbers a > 0 such that for every almost complex structure J
on V tamed by w, and for every x € V, there exists a nonconstant properly mapped
J-holomorphic curve f: § - V (where S is a Riemannian surface) passing through
¥, such that the symplectic area of f satisfies

fffo<a

In the next section we will give an alternate construction in symplectic vector-
spaces V utilizing Hamiltonian systems. This allows to define a capacity for any
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subset S of V. In a forthcoming paper our approach also allows to define higher
order capacities, which provide us with a tool to prove some optimal embedding
theorems, for example for Lagrangian Tori into a ball.

Acknowledgement. We would like to thank Professor M. Gromov for very stimulating discussions.

II. Construction of a Symplectic Capacity

Drawing upon Lemma 1 and the subsequent example, we might be tempted to
construct a symplectic capacity in the following way. Given an open bounded
connected subset U of ¥ with smooth boundary dU, pick some P,e[dU] and set
c(U):= A(P,).

This fails dismally. First of all, there are no results which guarantee the
existence of closed characteristics under smoothness and compactness assumption
alone. Finally, even if [0U] would be nonempty, where should the monotonicity
come from?

The approach will be salvaged by exploiting an idea of Hofer and Zehnder,
[17]. Loosely speaking they associate with U a variational problem and construct
a critical value thereof, which we call ¢(U). It turns out that ¢(U) has the desired
properties, and that in the cases when [0 U] is known to be nonempty, there exists
always some Pe[dU] such that ¢(U)= A(Py) or perhaps kA(Py) for some
keN, k = 1. Let us give some precise statements. We need the following.

Definition 2. A compact smooth connected hypersurface 4 in V is said to be of
restricted contact type if there exists a 1-form A on V such that dA=w and
A(x, &) & 0 for every nonzero vector in .#,. We denote the collection of all those
hypersurfaces by R.

Note that A(x,£) > 0 for every nonzero vector in %, which is positive for the
orientation. It has been proved by C. Viterbo that [4] + ¢ for Ae R; see [17] and
[21]. Our main result in this section is the following.

Theorem 1. There exists a symplectic capacity ¢ such that
(1 c(d)=c(By) =k A(P,)

for every A€ R, where B ,is the bounded component of V\ A. Here k4 = 1 is a suitable
integer and P, a suitable element in [4].

The proof follows in the first part the pattern in [17].
We begin by introducing the Hilbert space E consisting of all functions
xe L*(0, 1; C") whose Fourier series

x(t)= Y xe™*,  x.eC”

. keZ
satisfies

Skl |x]? < 0.
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The inner product in E is defined by
(an) = <x09y0> + 2n2|k|<xk’ yk>

Here <&,)> = Re( 3 éjr_)j> and we put as usual

i=1

17 = (x,x)

llx
We denote by P7,P°% P* the orthogonal projections on the subspaces
E7:={x|x,=0  fork=0}
E%: = {x|x,=0 fork+0}=C"
E*:={x|x,=0  for k <0}.

For a smooth loop x: R/Z — C" we define by

a(x) = %i(—i}é,x}dt

the action of x. a extends to a continuous quadratic form on E which we denote
again by a. Then we have
2 a(x)= — [ P™x|* + 31 P x|

Next we introduce a subgroup I of the group of all homeomorphisms of E.

Definition 3. A homeomorphism h: E — E belongs to I' iff it can be written in the
form
h(x) =" " @PYx + POx+e" ®P™ x + k(x)

=:1u(x)x + k(x)

with u(x)=¢" " PP *x + P°x+ e " @WP x. Here y*, y : E > R are continuous
and map bounded sets into bounded sets, and k: E — E is continuous and maps
bounded sets into compact sets. In addition there exists a p > 0 such that

(3) a(x) 20 or |lx]| =p implies that
p*(x)=79"(x)=0 and k(x)=0.

We leave the easy verification that I' is a group to the reader.
Now we need an infinite dimensional intersection result. Introduce the unit-
sphere in E* by
S*T={xeE"||x| =1}

and the function ec E* defined by
e(t) = (e*",0,0,...,0eC".

Proposition 1. For he I we have

hHS*YN(E~ ® E°® Re) + ¢.



360 1. Ekeland and H. Hofer
Proof. We shall show that h(S*)N(E- @ E°@® [0, + «)e) + ¢. Since I is a
group this is equivalent to

STAKME  @E°@[0,+ oo)e) + ¢.
We embed # in a homotopy h,, te{0, 1], defined by

h(x)=e""OP*x 4+ pOx + e PP x 4 th(x)

so that hy = Id and h, = h. We claim
) STAh(ET@®E°®[0,+ 0)e) + ¢

forall te[0,1]. If xe E~ @ E° we have a(x) < 0 so that h,(x) = x by condition (3).
Hence

(5) h(E- ®EY) NSt = ¢Vte[0,1].

Now consider the vectorspace F = E~ @ E° @ Re and in that space the open
cylinder Q = Q, defined by ’

Q={xeF|lx=y+¢e,yeE” ®E°
Iyl <b,0,<&<b}.

Choose b > max {p, 10} where p is the number associated to k by condition (3).
If x = y + e Q2 where we take the boundary of Q in F, then either & = 0 so that
xeE~ @ E°, which gives h,(x)¢ 5™ by (5), or ¢ & 0 in which case ||x|| = b which
gives h,(x) = x by (3), so that h,(x)¢S* again. Hence

(6) h(0Q)NST =¢ for tef0,1].
We can restate problem (4) in the form
P+ e " @PYh(x)=0
1—[hx))=0
to be solved for xe 2. This is equivalent to

x+ T, (x)=0, xe@
with
T,(x) = t(P® + ™" WP )k(x) — (E+ 1 — [ h(x) | e

x=y+ ¢ yeE @ E°.
We have just seen that
@) x+T,(x)*£0 for all te[0,1] and xedQ.

For t =0, we have
x+ Toxy=x—(E+1—|x])e
=y—(1—=1x])e.

Since the map (,x) — 7,(x) is compact, we can apply Leray-Schauder-Degree
theory. Using (7) we see that

deg(I + T, Q,0) =deg(l + T,,£,0).
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On the other hand, I + T, is homotopic to the translation I — e through maps of
the form identity + compact having no zero on 4Q (just take a convex com-
bination of I — e and I + T). Since e 2 we infer

deg(l + Ty, 2,0) =deg(l —¢,2,0)
= deg(l,£,e)

=1,
This completes the proof. O

Now we set up the variational probiems. Denote by % the family of all smooth
maps H: C" — R such that

(B1) There exists a nonempty open set U of C" such that H=0 on U.
Moreover H(z) =z 0 for all ze C".

(B2) There exists p > 0 and a number d > n with d¢ N7 such that H(z)= d|z|?
for |z| = p.

To He % we associate &y e C*(E,R) defined by

1
(8) Pyu(x)=a(x) — | H(x(t))dr.
0
Proposition 2. Let He & and set
9) cg:=sup inf @y(h(x)).
hel xe§
Then

O<cey< 4+
and cy is a critical of Py, 1.e. there exists xy € E with
Py(xg)=0 and Pgu(xy)=cy.
Proof. Given ¢ > 0 and x, < E® we find heT such that
h(S*)=x,+eS™.

We may assume that H is zero in a neighborhood of x,. Since H(x,) =0, H'(x,)
=0 and H"(xq) = 0 we see that

Pu(xg) =0, Py(xo) =0 and Pf(xe)=—P + P*.
Hence, if ¢ > 0 is small enough
(10 inf @, (h(S™)) > 0.

From Propostion 1 we know that A(S*)n(E~ @ E° @ Re) + ¢ which implies
that
inf @, (h(S*)) < sup PH(E~ @ E° ® Re).

It follows from (B2) that the right-hand side is finite (@ > #). Summing up, we have
shown that
O<cy < + 0.

Arguing as in [17] or [10], we see that the Palais-Smale condition holds.
Assuming cy is not a critical level we shall derive a contradiction. Since we have the
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Palais-Smale condition we can find ¢,€(0, min {1,cg}) such that

(11) 1Py (x) — cul = 8o = [|Pu(xo) || 2 &.

Then we pick hyeI” with
ey S inf @y (o (ST)) + 38

Now introduce three locally Lipschitz continuous maps ¢,, ¢,  ¢3: E > [0,1]
such that

9,(x)=0 if @y(x)¢[cg—eg,cuteo]
px)=1 if Py(x)elcy —3eo+ 3601
1) P(x)=1 if [@y(x)] =1
P()=@H() |~ if |SE)] > 1
2 .
pa(x)=1 if x| < (sup]| ho(S+)||)+8—
0
P;(x)=0 if ||x{ is large

and consider the differential equation

% = @ (%) @;(x) @3 (x) Py(x).
Solutions are defined globally since the right-hand side is bounded in norm by one.
Denote by R x E — E: (t,x) — x*t the associated flow. If || x| is large or a(x) £ 0 we

1

have h(x) = x where h(x) = xx* o (In the first case ¢,(x) =0; in the second case
0

D (x) £0 < ¢y — g s0 that ¢, (x) =0.) Combining (11) and (12) gives, whenever

|®g(x)—chl < 380 and x| < supho(ST),

d
a‘pH(x*t) 2 &}

1 1
as long as | @y (x=t) — cyl < —¢, and te[O,—:|. Hence

2 €0

1 1
P — )z —&g-
H(x*80>_cﬂ+260

This implies the inequality
1
inf @g(hoho(ST)) 2 CH+§ £o-

If we can show that he I then we have obtained the contradiction ¢y > cy. This
would prove that cy is a critical level. We define a map d: R x E—> R by

d(t,x) = @y (x*t) 93 (x*1) @3 (x*1).



Symplectic Topology and Hamiltonian Dynamics 363

1
We put 1 =— and define
€o

(s, x) = jzd(o,x)da

57 (%)= | — d(0,x),do
and §

kix)= [[&760P* x + POx 4 & 9P~ Td(s,x) h(x*s)ds
0
1
where b is the gradient in E of x - | H(x)(¢)dt. Finally we define
v : .

P ) =77(0,%)

7" (X)=77(0,x).
This gives the desired decompositions of h. See for example [18] for more
details. O

Next we show that ¢y is a symplectic invariant.

Proposition 3. Let He % and let s — ¥ be a smooth homotopy of the identity in
D (C"). Define Hie F by H,= H ° ¥,. Then the map

5> cy,
is constant

Proof. The critical levels of &;:= & are independent of s, since Py, q,(cp‘l(x))
= @ (x) for ¢ exact symplectic and since @~ }(x) is a solution for the Hamiltonian
vectorfield associated to He ¢ iff x is a solution for the Hamiltonian vectorfield
associated to H. Further, there is an estimate of the form

|Hy(x) — H,(x)| £ d(]t — s])
for all xeC" with 4(¢) - 0 as ¢ —» 0. Hence
1R — 2091 < (e~ s]).
From the definition we obtain in obvious notation
les— el = 6(ls —t]).

From this estimate it follows that whenever cy, is an isolated critical level of &,
the map s — ¢, has to be constant. Since H(z) = d|z|? for [z] = p with ¢ == and
a¢ N, there can be no critical point with L®-norm exceeding p. Using standard
genericity results, as in [20], we can find a sequence (H,) = C*(C", R), H, - H,
coinciding with H for |z| = p so that H,e # and all positive critical levels are
isolated. So s — ¢y © ¥, is constant and passing to the limit n — o0 we obtain the
desired result. ’ O

That for example ¢y — ¢y is clear since [H,(x) — H(x)| < ¢, for every xe C" where
&,— 0. From this it follows immediately that |cy;_— cg| < &,
Next we need
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Proposition 4. Let He # and define for A > 0 the Hamiltonian H e % by

H,(z) = A"*H(Az).
Then we have the equality
Alc,=cy
for >0 where ¢;: =cy .

Proof. Since for large |z| we have H(z) = a|z|* we see that H,(z) = a|z|* for large |z],
too. Since 4 > = and a¢ n N again the Palais-Smale condition holds, [17]. If x is a
1-periodic solution of X = X z(x) then x, defined by

x, () = 472 x(t)
is a 1-periodic solution of y = Xy (y) and
cbH/l(x/x) =12 Py(x).

In other words if £ < R is the set of critical levels of @, then X ,:= 172X is the set
of critical levels of Py - Arguing as in Proposition 3 we see that the map 4 — A%c; is
continuous. If ¢y is an isolated critical level the map 1 — A%c; has to be constant.
Finally, using a genericity argument we conclude that in all cases

itc,=cy
proving the desired result. O]

Assume now S is a bounded subset of the symplectic vectorspace ( C”, ) w as
introduced before. Denote by £ (S) the collection of all Hamiltonians H in & such
that H vanishes on an open neighborhood U of cl(S). We define

(13) e(S) = inf{cy | He F (S)}.

Proposition 5. Given ¥ e Diff(C") such that for some 0. > 0 ¥*w = aw, we have
c(P(S)) = ac(S)

where S is a bounded subset.

Proof. Assume first o = 1. Then we find a smooth arc s » f’s in D,(C") such that
P (S) = ¥(S).

By Proposition 3 we obtain

CHoV'=cy for HeZ (S)

and therefore -
c(¥(S)) = c(¥(S)) = c(S).

Next assume o > 0 is different from one. Then a ¥ eD(C") and by the

previous step
cla P (S)) =c(S).

Next we employ Proposition 4 in order to obtain

c@ P (S)) = o L (P(S)).
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Summing up we find
c(P(S)) = ac(S)
as required. 0
Next we define for any subset S of C" a number ¢(S) < [0, + o] by
(14) ¢(S) =sup{c(T)| T is bounded, T = S}.

As a corollary of Proposition 5 we find

Corollary 1. For any subset S of C" and any diffeomorphism ¥ of C" such that ¥* w
= aw for some a >0 we have

(15) (P (S)) = ac(S).
Moreover, if S < T then c(S) < ¢(T).

Proof. The first part is evident by Proposition 5. For the second part we just note
that if S < T, then &F(T) = £ (S). O

In view of (15) we can now define for any subset S of a symplectic vectorspace
(V,w,) a number ¢,(S) by

(16) ¢,(8): = c(¥(S))

where ¥: (V,0,) - (C",w..) is a linear symplectic diffeomorphism. Clearly ¢, (S) is
well defined. We shall show that c is the desired capacity. From our definition it is
clear that we may assume in the following that {V,w,)=(C",w). From our
previous discussion we know that (A2) and (A3) hold. So it remains to prove (A1)
(Normalization). In fact, we shall show even more, namely the properties claimed in
Theorem 1.

Proposition 6. Given A€ R we have’
c(d) =c(By) = kAj’HPA
Jfor some positive integer k, and a suitable P e[ A4].

Proof. Following [10, 17, 21, 22] we can foliate a bounded neighborhood of 4 by
conformally symplectic images of 4. More precisely we pick a 1-form on C” such
di = and i(x,¢) + O for nonzero (x,{)e ¥, We define a vectorfield # on V by
A=w(,"), Then L, = w since dw = 0. Consequently » generates a symplectic
dilation; see [22]. We may also assume that n has linear growth as one easily
verifies. So n generates a global flow (¥,). We define 4,:= ¥ (A4). Note that # is
transversal to 4. Hence for ¢, > 0 small enough, to simplify notation say ¢, = 1, we
can write a small neighborhood of 4 in C" as the disjoint union of the 4,
for ee(—1,1). Clearly [4,]= ¥.([4]) and ¥?w=¢w. Define r,=diam

< U A£> and fix for keN,k 2 1,a number b > (k + 3)nr3. Pick a smooth
eel— 3,31
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map ¢: R — R such that

gls)=>b fors<r,
g(s)=(k + 3)ns? for s large
9(s)z (k + 3)ms’ forszr,

0<g'(s) < (2k + 1) s for s > ry.

Moreover, let ¢: R — R be a smooth map such that
o(s)=0 for s < B,

(17) @'(5)>0 for B, <s < p,
o(s)="> for f, <s

for suitable 0 < B, < f, < 1. Define a Hamiltonian H e % (B,) by

0 if ze B,
€ ifzed,
(18) He=| %9
b 1fzq§BAB,|z|§rO
gzly  iflzl > r,.

Arguing as in [17] we have the following fact:

If ¢4(x)>0 and @%(x)=0, then x([0,1]) = 4, for some ce(f;, f,). We
denote by Z the set {kA(P)|ke N,Pe[4]}. If Z, denotes the corresponding set for
A,, we see that we must have

2, =e2.

Let us first assume that X is a discrete set. Then the critical levels of &, are
discrete as one easily verifies. (Note that X~ < (y, + o0) for some y > 0 since 4eR.)
Moreover, the positive critical levels only depend on the choice of ¢ but not on the
choice of g (assuming g has the stated properties). In particular cg does not depend
on the choice of g, since we can homotope from one g to another so that the critical
levels would change continuously, whereas the critical level ¢ has to be a priori in
a discrete set. Define % (B,), , by
(19) HeZF (By.x ifHe#(B,) and H(z) <bforizl <r, and

H(z)=(k+ x|z} for |z| large.

Define
c(Bay,x =nf{ cy| HEF (B,)y 1 }-

Now we construct a particular sequence (H,,), where H, isasin (18) and ¢ = ¢,,
and g = g,,. For that we choose the ST and % in such a way that

(20) Pn)¢2;  if pu(s)e[BT,b— 7]

Now given any He % (B),  we can pick such an H, such that H, = H.
(Perhaps we have to modify the g,,, but positive critical levels do not depend on g,,,.)
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Hence
Cu,, C(BA)b, k-

Using the choice of 5 and the definition of H,, we can argue as in [17] to find
critical points x,, such that

Py, (xa) =0, cy, =Py, (x,)
Xu([0,1D= A,  en€(BT, 7).
Now using (20) we see that
Pm(em)€[0,B7] or @n(e,)elb—p7,b].
Since a(x,,) = ¢.,(¢,) as one easily verifies, we obtain
e, — alxn)| < B
or ley,, — a(x,) + b= B7.
Since 4 e R we have an estimate of the form

length(x,,) < ca(x,,).

1
In fact, a(x,,) = [A(x,), where A is a 1-form such that d A = w and | A(x, )| = 2¢| |
0

for (x,¢)e %, Since “restricted contact type” is a C!-open condition we see that
[A{x, &} =clo] for (x,{)egd8 and l¢] small. Since a(x,,) > 0 we infer that

AXn) Z clX,|

provided m is large enough, since ¢,, — 0. Consequently the length can be estimated
by the action.

As in [17] changing perhaps the parameterization of the x, we can use the
Ascoli-Arzela-Theorem to find l,eZ, I, = 1, and P,e[A4] such that

21 C(BA)b,k =1, A(P)
or c(Ba)p,k=1lpA(Py) —b.

The map b — ¢(By), , is nonincreasing. Hence the map b — I, A(P,) must be
nonincreasing in both cases in (21) since it takes values in a discrete set X. Since

c(Ba)y, ke Z c(By)
the second case in (21) is impossible for large b. This shows that
c(Ba)p,i = 1, A(Py).

Since c(B,),, ; — c(B4) as b,k - + co and since X is discrete, we find Pe[4] and
keN,k = 1, with
c(By) = kA(P}

as required. So far we assumed that X is discrete. If X is not discrete we take a
generic 4 being C*-close to A. This can be done due to results in [20]. Now being
of restricted contact type is a C'-open condition. So we can approximate 4 by
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A €R so that our arguments hold for A. We can pick ke N, k = 1,and Pe [A~] such
that .
c(Bz) = kA(P).

If A— 4 we find c(Bjz) — c(By). In fact, we have if 4 is close enough to A,
B, < Bjc< B,

(The convergence 4 — 4 is understood in the following sense: A is the graph of a
section of the normal bundle of 4 and the section converges in C* to the
zerosection.) (#) implies using the monotonicity of ¢,

e *c(B,) Sc(Bj) = e*c(By).

Moreover, since length (f’) <cA (13) if 4 4 for some constant ¢ > 0 (since
A€ R), we can use the Ascoli-Arzela-Theorem, as in [17] for a suitable parametri-
zation of the P to find keN, k = 1, and Pe[4] such that

c(B,) = kA(P).
By our definition of ¢(S) we immediately see that
c(d) = ¢(B,)

We like to show equality. In order to do so we go through our construction
which gives (18) again. Define y,: C" — R as follows. Pick for a > 1, 7,: R — R such
that

7,8 =a forss — -
a

1 1

T,(5)< 0 for ——<s< ——

a 2a
©=0 forsz -,
= §Z ——.
T4(s orsz—o

Now define y, by
a forzeBy _,
1
v.(2) =1 1,(¢) forzed,, - <eZ0

0 for z¢ B,.

Now consider for any Hamiltonian H e % (B,) the Hamiltonian H,e % (B,)
defined by
H,(z) = H(2) + 7,(2).

If x is a nonconstant 1-periodic solution of x = X _(x) and x(0)e B,, we see
that x(0)e 4, for some ¢e(— 1,0) and moreover

B, (x) = T(6) — Ta(e) < 0.
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Hence the positive critical levels of @, and @y are the same. By a genericity
argument the map (0, + o) = (0, + ). s > ¢y 4 ,,, has to be constant since

cH-i-sya = @H-f-sya (xH+sya) = d)H(XH +sya)

and the map s — ¢y ., has to be continuous. Since for every H e F (4) there exists
a He # (B ,) and a y, as just described so that

ﬁ§H+n

we infer
g CH+y, ™ CH 2 ¢(By).

This implies
c(4) 2 ¢(B,)

proving our desired result since we already know that ¢(4) < c(B,). O
Finally we have to show the normalization property
Lemma 2. Define for f€(0,1) the set By by
By ={zeC"| |z, >+ B(lz,)1* + ... + |z,]?) < 1}.

Then
Proof. Pick a smooth map ¢: R — R such that for given 6&(0,1)
o(s}=0 fors<1+496
@"(s)>0 fors>1+496
(22) @= 2n for a unique sqe(1 + 4, 1 + 26)
0
@' (8)< 3ns for all seR.

We find H e & (B,) such that H(z) = ¢(|z,|) where z = (z,, . . ., z,)e C". Using
the intersection result we estimate

inf 5 (h(S*))
(23) <sup®Py(E- @ E°® Re)
<supP,(E” @ E° @ Re)

1
where  @,(x)=a(x)— | o(Ix,(?))|)dt where x=(x;,...,x,)eE. The last
0
expression in (23) can be explicitly computed. One easily sees that there
exists xe(E~ @ E° @ Re) such that x = (x,,0,...,0) and
- AN
[x4]

X
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This implies immediately that
@' (Ix.(®))
X, (0]
which shows without loss of generality that we may assume that

x(1) = (sge2™,0,...,0)

=27 forall teR

= sqe(t).
Hence
P, (x) = 7§ — @(so)
< 7sg
<z(l+26)
Summing up this implies that
c(Bg) < cy < w(l +26)°.

Since 6 > 0 was arbitrary we obtain
(25) ¢(By) S m.
On the other hand, we have by monotonicity

(26) c(B*(1)) < c(B;) =m.

By Proposition 6 we infer that

27 c(B*(1)) = c(8?"(1)) = kn
for some positive integer k. Therefore combining (25)27) we find that
c(By)=m.
Now consider Z(r) = B*(r) x C"*~ . Since By < Z(1) we find that
c(Z1) 2z
Next assume S is a bounded set. For given 6€{0,1) we find fe(0,1) such that
08 < By.

Hence, using the already established properties of c,
5%¢(S) £ c(Bg) =,

which gives, since § €(0,1) was arbitrary:
For every bounded subset S of X (1) we have ¢(S) £ 7.
By definition

c(X(1)) = sup{c(S)|ScZ(1), § is bounded}

<7
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Since we know already that ¢(Z(1)) = = we must have
cB*()x C* Y =m. 0O

Remark. To give some more examples of capacities of certam sets consider a
bounded open set 2 and a linear subspace W of codimension 2, ‘then, as proved in
Lemma 3,

c@R+W)=+w fWcW

Q@+ W)< +o0 if W& W.

For example, if W = {zeC"|p, =p, =0}, then W < W, if W= {zeC"z, =0},
then W® & W.

II1. Applications to Embedding Results

Assume ¥: B**(1)  C" is symplectic embedding. Recall the folklore “extension
after restriction principle” which says that for given é €(0, 1) there exists a f;e D(C”")
(one can take even f;e D (C") such that

¥ B>"(6) = f;| B*"(9).
This result is not difficult to prove. We may assume that ¥(0) = 0. Then define
1 . . . .
Y. (z)= . ¥ (tz) for te(0,1} and Po(z) = ¥ (0)z. Then t - P, is a continuous arc in

the space of symplectic embeddings of B(1) into C". We can smoothen the arc and
take a Hamiltonian H: U — R, where U = [0,1] x C"is openin [0, 1] x C", which
generates the smoothened arc. Then we restrict H to a suitable smaller set and
extend the restriction smoothly to a Hamiltonian of compact support. If f is the
time 1-map for the associated Hamiltonian system then f= fo ¥, is the desired
global symplectic diffeomorphism. Using this simple remark we can use the
capacity ¢ to prove a celebrated result of Gromov [12].

Theorem 2. Assume ¥:B*"(r) s 2Z(r'): = B2(r') x C"~ ! is a symplectic embedding.
Thenr <7,

Remark. Note that the cylinder Z(r)= {zeC"|p? + p} <2} has an infinite
capacity for every r > 0 as a consequence of the remark before Section III. For
o > 0 sufficiently small consider the symplectic linear map defined by

1 . 1 ,
Tszyy...52,)=| =q1 +i0p1,=q, +i0p3,23, .. .,2, }.
I} )

Then T;(B(r') < £(r)) provided § > 0 is small enough.
Proof. Let 6€(0,1) be given and let P;e D(C”") such that

¥, |B(6r) = ¥|B(or).
Hence
Y, (B(dr) = (')
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which implies
82nr? = 6*r*c(B(1)) = c(6B(r)) £ c(Z(r")) = =n(r')?.
Hence for every 6€(0,1) we find 6%r* < (')? proving that
r<r. t

This result is remarkable since 2 (r') has infinite volume and yet, for r < #’, does
not have leave room enough to fit a symplectic copy of B(r) which has finite
volume. One can also use Theorem 2 as a starting point for constructing symplectic
capacities.

For F — C" define

1) &(F)=inf{m?|3¥eD(C")  with ¥ (F) c Z(r)}
c(F)=sup{nr*|3¥eD(C") with ¥(B(r) = F}.

Here re[0,00) U {+ oo }. From the definition of ¢ and ¢ it is clear that

Proposition 7. ¢ and ¢ are symplectic capacities. Every symplectic capacity satisfies

¢(F) S c(F) s ¢(F)
for all F < C".

This raises several questions:

(a) For what sets F do we have ¢(F) = c(F)?
(b) For what sets F is the infimum or the supremum attained in formula (1)?

IV. Rigidity Problems

First we study linear maps which preserve a capacity ¢. We will then deduce that
nonlinear C!-maps which preserve a symplectic capacity are either symplectic or
antisymplectic. C°-rigidity will be an easy consequence. Define aset E = C"tobea
bounded ellipsoid if there is a positive definite quadratic form g such that

E={zeC"|q(z) < 1}.

In the following we shall consider C" exclusively as a 2n-dimensional real vector-
space. If we speak about a linear subspace of C" we mean a linear subspace of the
R-vectorspace C". Similarly for linear maps.

Theorem 3. Assume ¥:C" — C" is a linear map such that for every bounded ellipsoid

E we have
¢(E) = c(¥(E)).

Then ¥ is symplectic or antisymplectic:
Y*o=w or ¥*w=-on

The proof depends on a simple lemma. We have to fix some notation. A 2-
dimensional subspace W of C" is said to be null iff w|W =0. This is clearly
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equivalent to W = W, where W® = {zeC"|z ; W} is called the w-orthogonal of
W. Here z5 W means w(z,w) = 0 for every we W. The w-orthogonal is of course
defined for every subspace of C".

Lemma 3. Let Q be a bounded open subset of C" and W a linear subspace of
codimension 2. Consider the cylinder Q + W. Then

c(Q+ W)=+ oo if W is null
0<c(Q+ W)< + oo if W* is not null.

Proof. We assume without loss of generality that Q contains the origin. Using a
linear symplectic change of coordinates we can bring ourselves to the situation
where:

W =[zeC"|Re(z,) = Re(z,) = 0} in the first case

W= {zeC"|z; =0} in the second case.
In the first case we take ¢ > 0 so small that
(Re(z;))* + (Re(z,))* S 2 =zeQ + W.
Now observe that for any N > 0 the ellipsoid

! 1 1 1
{ZI; Re(z,)* + ﬁ;lm(zl)2 + EiRe(zz)2 + FIm(zz)2

+ i‘_‘aﬁlzkl2 < 1}
is contained in Q + W. This ellipsoid, say Ey, is symplectically equivalent to the
ellipsoid Fy = {ze@"l%(lzl 2+ 12,1%) + *]\}—2k23|zk]2 < 1}
If N is large enough then
c(Ey) = c(EN) =meN.
Hence for every N large
c(2+ W)z mneN,

which proves our first assertion. For the second statement we take N so large so

that
zeQ+ W=|z,|* < N2

Hence for every ze Q + W we have
ze X(N)
which prove
c(Q+W)<ce(Z(N)=nN? < w. O
Given a linear map ¥: C*" —» C" we denote by ¥* the w-transpose defined by

o(Px,y)=w(xP*y).
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For any linear subspace W of C" we have the duality formula
(1 PWe)=((P*)" 1 (W))°

Proof of Theorem 3. First assume ¥(C") #+ C". Then ¥Y(C") is contained in a
hyperplane through zero. Composing if necessary ¥ with a symplectic map we may
assume

P(C") < {zeC"|Re(z,) =0} =: V.

Ifnow S is a bounded ellipsoid, then ¥ (S) is a bounded subset of V. It is now easy to
construct bounded ellipsoid with arbitrarily small capacity containing ¥(S). This
would lead to the contradiction

0<cS)=c(¥(5)=0.
Hence ¥ is invertible. To complete the proof we proceed in two steps.

Step 1. Let W < C*" be of co-dimension two. If W* is null so is (W )*. Assume W
is null and Q is a bounded open nonempty subset of C". By Lemma 3 we have
c(Q+ W)= + co. We can exhaust Q + W by bounded ellipsoids with arbitrarily
high capacity. Hence ¢(¥(22) + W (W)= + oo as well. By Lemma 3 again ¥ (W)®
must be null.

Using the duality formula we compute for a null 2-plane W in view of step 1

(P*)" N (W) =(P(We))®
c Y(We)
=((¥*)" (W)~
Hence we have proved
(2) (¥*)~! maps null 2-planes to null 2-planes.
Step 2. The linear map & =(¥*)~! is symplectic or antisymplectic. Let

e, ..., e,eR" = C" be the standard basis of R". Then e, . . ., ¢,,ie,,...,le,isa
symplectic basis for C". Using (2) we have

o(Pe), Ple)) =0 if wle,e)=0
where ¢, . ,:=1ie, for k=1,...,n Hence
(3) w(Pe,),(Per,,)) =:d;, k=1,...,n

is nonzero, since w is nondegenerate, @ is onto and w(P(e,), Ple;)) =0 for
j¥Fk+n Since wle,—eje ., +e€4,)=0 for 1<j<k<n we sce that
o(P(e) — Ple;), Plexs,) + Ple;1,)) = 0 which implies that d, = d;. So we denote

~ 1
the constant d, defined by (3) simply by d. If d > 0 we define ® = — P and ifd < 0

Nz

~ 1 .
we define @ = —2 I'o ¢, where I': (C", ) — (C", — w) is a symplectic isomorph-

ism. It is immediate that & is symplectic. For a symplectic map we have the identity
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(%)~ ! = &. Hence
® = . /d ¥ in the first case
&=1—_/—d TI'>¥ in the second case.

Observing that I' is capacity preserving we find for every bounded ellipsoid S
c(8) = c(P(8)) = d|c(¥(S))
= |d|c(S).

Hence d=1 or d=—1. So ¥ is either symplectic or antisymplectic
as required. |

Here is an interesting consequence of the proof.

Corollary 2. If ¥:C" - C"is a linear map and there exists an open nonempty subset
S such that ¢(¥(S)) > 0, then ¥ is invertible. O

Next we go over to the nonlinear case

Theorem 4. Let ¥: C" — C" be a C'-map such that for every bounded ellipsoid S we

have
c(P(S)) = c(8).
Then @ is symplectic or antisymplectic. Moreover if in addition 1d x &:C"*!

— C"*1 s c-preserving on ellipsoids then @ is symplectic.

This result is remarkable because it allows us to extend the notion of symplectic
to the C°-category. We define a C%-map @ to be symplectic if ¢ and Id; x @ both
preserve capacity. In view of Theorem 4 this coincides in the C'-case with the
standard definition. Theorem 4 is a consequence of

Theorem 5. Let (®,) be a sequence of continuous maps of the open unit ball B(1) into
C" converging uniformly to &. Assume all the &, preserve the capacity of bounded
ellipsoids

c(D,(8)) = c(S) VkeN

for all bounded ellipsoid S = B(1). If & is differentiable at Oe B(1) then @'(0) is
symplectic or antisympletic.

Proof. Let § be a bounded ellipsoid so that ¢/(S) < B(1). Using the definition of the
maximal capacity ¢ we find for a given ¢ > 0 a bounded ellipsoid S and a ¥ e D(C")
such that

A(®(S)) = ¥(S)
e(¥(8))=c(S)< &+ &(P(S)).
For k large enough we must have

@,(S) = ¥(S)
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which gives
¢(8) =c(S)
= c(P(S))
= ¢(D(8))
<P ()
=&(8)
< e+ c(P(S)).
Since ¢ > 0 was arbitrary we infer that
@ c(S) = c(@(9))

for every bounded ellipsoid S with closure in B(1). Hence for t(0,1)

1
©) ) = 720S) < 7 E(B(1S)

:5(%45@5)).

1
If now ¢ |0, ;‘D(t') converges uniformly to @'(0) and we conclude by the same

argument as above

lim E(%@(tS)) < c(@'(0)8).

t, 0
Consequently
(6) c(8) = c(2'(0)S).

for every bounded ellipsoid S with closure in B(1). From Corollary 2 we see that
@’(0) is invertible. Next we have to show the reversed inequality in (6). Since h is
differentiable at 0 we find a continuous increasing map &: (0, 1) - (0, oo} such that
£(s) = 0 as s - 0 and assuming ¢(0) =0

[(x) — &'(0)x] < &(lx]) x].
Given 6€(0, 1) we find k(5) such that for k = k(9)
[P (x) — @' (0)x| < e(|x]) x| + 6.

Pick a linear ellipsoid S with closure in B(1) and let t (0, 1). Pick y > 0; then, if 7 is
small enough (1 + y)t < 1. Consider the equation

(7) tP (1 +p)tx)+ (1 —1t)@"(0)(1 + y)rx) = &' (0)(12)

for given ze S and solvable for some 7€[0,1] and xedS. Pick a constant d > 0
such that
|9 (0)x| = d|x]|.
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Rearranging (7) we estimate using x0S and ze S for k large (k depending on 7)
2e((T+y))1 +y)7
2 |9'(0)(zz — (1 +y)7x|
=dltz— (1 +y)x|
=drd,(S)

where d,(S) > 0 is some “shape constant” depending on S and y only. Since
e((1 + 7)1} — Oas r — 0 we see that this inequality cannot hold for a solution x € S
of (7} (for arbitrary t€[0,1] provided 7 is small and k large. This implies via
Brouwer-degree that for t small and k large

O.((1+7v)r8) > @' (18S).

This gives
c(@'(0)(zS))
=c(®'(0)(x$))
= (P (( +y)78))
Sc((T+y)S).
Hence
(7 c(@'(0)S) = (1 +y)*e(S)

for every bounded ellipsoid and every y > 0. Combining (6) and (7) yields therefore
c(P'(0)S) = ¢(S).
From Theorem 3 the derived result follows. |

A simple corollary of Theorem 5 is

Theorem 6. Assume ®,: B(1) — C" is a sequence of symplectic embeddings converging
unifrmly to a continuous map ®: B(1) — C", which is differentiable at 0 with derivative
@’(0). Then ®'(0)eSp(C").

Proof. Given a subset S of B(1) with cl(S) < B(1) we must have ¢{®,(S)) = ¢(S) for
any capacity as the consequence of the extension after restriction principle. From
Theorem 5 we conclude that ¢'(0) is symplectic or antisymplectic. If n is odd a
antisymplectic is orientation reversing. Since @, preserves the orientation the same
has to be true for @'(0). Hence if n is odd @'(0) can be only symplectic. So assume n
is even. Then Id x @, — Id; x @ uniformly on B> * 1 (8) for some small 6 (0, 1).
Since Id¢ x @, is symplectic we conclude from the previous argument that
Id¢ x @7(0) is symplectic which implies that ¢’ (0) is symplectic. O

Finally we obtain as a simple corollary of Theorem 6 a celebrated result by
Eliashberg and Gromov.
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Theorem 7. Diff(M, w) is closed for the compact open C° -topology in Dift(M), where
(M, ) is a symplectic manifold.

Proof. Using Darboux-charts we can localize and apply Theorem 5. O
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