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Abstract In traditional Chinese medicine (TCM) diagnosis, a patient may be associated with more than one

syndrome tags, and its computer-aided diagnosis is a typical application in the domain of multi-label learning

of high-dimensional data. It is common that a great deal of symptoms can occur in Traditional Chinese Medical

diagnosis, which affects the modeling of diagnostic algorithm. Feature selection entails choosing the smallest

feature subset of relevant symptoms, and maximizing the generalization performance of the model. At present

there are rare researches on feature selection on multi-label data. A hybrid optimization technique is introduced

to symptom selection for multi-label data in TCM diagnosis in this paper, and modeling is made by means of four

multi-label learning algorithms like k nearest neighbors, etc. We compare the performance of the algorithm with

the current popular dimension reduction algorithms like MEFS (Embedded Feature Selection for Multi-Label

Learning), MDDM (Multi-label Dimensionality reduction via Dependence Maximization) on the UCI Yeast gene

functional data set and an inquiry diagnosis dataset of coronary heart disease (CHD). Experimental results show

that the algorithm we present has significantly improved the performance. In particular, the improvement on

the average precision for the classifier is up to 10.62% and 14.54%. Syndrome inquiry modeling of CHD in TCM

is realized in this paper, providing effective reference for the diagnosis of CHD and analysis of other multi-label

data.
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1 Introduction

It is an effective way to promote TCM to information by applying the machine learning techniques to
extract information in clinical experience to achieve the summarization and heritage of famous doctor [1].
In TCM clinical data, a case has many symptoms and may be associated with more than one syndrome.
This is a typical analysis problem of high-dimensional multi-label data.

If a sample is associated with more than one class of labels, we call data like this multi-label data. Multi-
label learning tasks are omnipresent in real-world problems. For instance, in text categorization, each
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document may belong to several predefined topics, such as government and health; in scene classification
each image may belong to several semantic classes, such as beach and urban. In all these cases, each
instance is associated with a set of labels, and the task is to output a label set whose size is unknown
a priori for each unseen instance. The existing techniques can be divided into two categorizations [2]:
problem transformation methods and algorithm adaption methods. Problem transformation methods
transform the learning task into one or more single-label classification tasks and they are algorithm-
dependent. Some could be used for feature selection as well. Algorithm adaption methods extend specific
learning algorithms (like SVM, decision tree, and neural network) to handle multi-label data directly.

Multi-label learning is usually referred to high-dimensional data, but there are very few dimension
reduction methods and feature selection methods available for multi-label data due to the complexity of
multi-label learning. As to feature dimensionality reduction, the recently published MDDM (multi-label
dimensionality reduction via dependence maximization) [3] is a feature extraction method which uses
the HSIC as the performance criteria and attempts to project the original data into a lower-dimensional
feature space to maximize the dependence of the original feature description on the associated class labels.
Experiments show that MDDM is slightly superior to principal component analysis PCA and nonlinear
dimensionality reduction method LPP, and is significantly superior to the multi-label dimensionality
reduction method MLSI [4]. Linear dimensionality reduction [5] shows improved performance when the
least squares and other loss functions, including the hinge loss and the squared hinge loss, are used
in multi-label classification. One problem of MDDM and linear dimensionality reduction is that the
original low-dimensional features cannot be obtained, which poses an obstacle to scientific understanding
of scientific problems.

Feature selection attempts to remove irrelevant and redundant features and entails choosing the small-
est number of features to adequately represent the data and maximizing the prediction or classification
accuracy. Feature selection distinctly improves the comprehensibility of the classification model and
builds a model which can better predict the unknown samples. It has practical significance. For example,
extensive experiences are needed to grasp the main symptom in TCM differential treatment. The cur-
rent feature selection methods are divided into three broad categories: wrappers, filters, and embedded
methods [6]. Wrappers depend on the learning machine and utilize the learning machine of interest as a
black box to score feature subsets according to their predictive power. Although the wrapper methods
are comparatively time-consuming, they are widely used in scientific data analysis because the selected
feature subset is optimal to the specific learning machine due to its mechanism that the selection result is
based on the learning algorithms. In multi-label feature selection, MEFS (embedded feature selection for
multi-Label learning) [7] was proposed last year, in which sequential backward search algorithm is adopted
to search the feature subset, and the prediction risk criterion [8] is used to evaluate the performance of
the feature subset. In wrappers, a comparatively good result was achieved when the genetic algorithm
was introduced [9]. A hybrid optimization technique which combines several optimization techniques to
improve performance of multi-label learning is proposed in this paper, and compared with state-of-arts
multi-label dimensionality methods.

Coronary heart disease (CHD) is a common cardiovascular disease that is extremely harmful to hu-
mans, especially middle-aged and old people, with high mortality. Research on the standardization of
inquiry information and the design of inquiry model in the diagnosis of CHD will help to realize the stan-
dardization and objective of the inquiry information of CHD in TCM diagnosis, and provide methodology
reference to the establishment of quantitative diagnosis of CHD, which is of great significance to the pro-
motion of the TCM basis and clinical research of CHD. CHD belongs to the scope of chest heartache in
traditional Chinese medicine (TCM); there have been extensive experiences in the diagnosis and treat-
ment of CHD in TCM and the therapeutic effects are fairly satisfying. However, there are few systematic
studies of quantitative diagnosis for CHD, especially of the standardization study of inquiry diagnosis
for CHD. Some authors investigated the contribution of symptoms to syndromes diagnosis by focusing a
complex system on entropy and applying various techniques of multivariate statistics in the construction
of diagnostic models in TCM, such as discriminant analysis and regression analysis in the diagnosis of
blood stasis syndrome and stroke. Although multivariate statistics has some superiority in the solution of
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quantitative diagnosis in TCM, the problem on clinical data analysis with high nonlinearity could not be
solved by these techniques. Moreover, the complex interaction among different symptoms could not be
reflected clearly [10], and the diagnostic rules of TCM could not be revealed comprehensively and widely.

With the introduction of data mining techniques, research workers have applied several nonlinear
learning techniques to the research of diagnostic standardization and objectification in TCM, such as k

nearest neighbor (kNN), neural networks, Bayesian networks, structure equations, decision tree, genetic
algorithm, etc. Most of the algorithms are to solve problems of single syndrome diagnosis, i.e., single
label learning. However, in clinical practice, many symptoms are presenting various syndromes. Ref. [11]
shows that the main syndromes of CHD are deficiency accompanied with excess, e.g. deficiency of qi
syndrome and blood stasis syndrome, deficiency of qi syndrome and turbid phlegm syndrome, deficiency
of yang syndrome and turbid phlegm syndrome, blood stasis syndrome and Qi stagnation syndrome, as
the predominant combining forms of their syndromes. This is a multi-label learning problem.

Research on the standardization of inquiry information and the design of inquiry model in the diagnosis
of CHD will help to realize the standardization and objective of the inquiry information of CHD in TCM
diagnosis, and provide methodology reference to the establishment of quantitative diagnosis of CHD,
which is of great significance to the promotion of the TCM basis and clinical research of CHD. Some
work has been done that applies the multi-label learning to the computer-aided diagnosis of CHD in
TCM [12], few efforts tried to apply the multi-label feature selection to the modeling of CHD in TCM.

Based on the inquiry data of CHD in TCM, a hybrid optimization feature selection algorithm, HOML
(hybrid optimization based multi-label feature selection) is presented in this paper. HOML combines the
relatively strong global optimization ability of simulated annealing algorithm (SA) and genetic algorithm
(GA) and the strong local optimization capability of greedy algorithm, and adopts the multi-label classifier
to model CHD in TCM.

2 HOML: Hybrid optimization based multi-label feature selection

Genetic algorithm has been used to analyze feature selection for multi-label data [7], but the algorithms
only combine the MLNB algorithm, and the genetic algorithm has its limitation in optimization. The per-
formance of feature selection may be further improved if advantages of different optimization techniques
are combined together to search for an optimal subset of features. We propose to combine three search
algorithms in this paper: mutation-based simulated annealing, genetic algorithm and the greedy algo-
rithm hill-climbing. HOML combines the ability to avoid being trapped in a local minimum of simulated
annealing algorithm with a very high rate of convergence of the crossover operator of genetic algorithm
and the strong local search ability of the greedy algorithm to obtain the optimal feature subset. Some
work has shown that a hybrid technique generated better feature subsets than separate search algorithms
[13].

Selection is an important aspect of evolutionary computation. It dictates what members of the cur-
rent population affect the next generation. More fit individuals are generally given a higher chance to
participate in the recombination process. The primary concern of all selection schemes is what is known
as the loss of diversity. As a result, information encoded in the current population is not transferred into
the next generation in its entirety. Loss of diversity has been measured and analyzed for a number of
popular selection algorithms [14, 15]. For the problem of loss of diversity, unbiased tournament selection
[16] yields better results, and it is used in HOML.

In the feature selection process of HOML, experiment shows better result when using Average Precision
than using (hammingloss+rankingloss). And Average Precision is used as the fitness of feature subset.
That is to say, in the training process, we adopt the test result Average Precision, which is obtained by
modeling the validation set using multi-label learning techniques such as ML-KNN [17], BP-MLL [18],
Rank-SVM [19] and MLNB-BASIC [9], as the fitness function to evaluate the performance of feature
subset. More information about the criteria can be found in subsection 3.2.

Hill climbing is a recursive process, as shown in Figure 1. Figure 2 shows the algorithm flow of HOML,
which organizes a search in three stages.
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HC (FN)

Input:

FN: Feature subset

Output:

BF: The optimized feature subset

while (Th>0)

HC(BF) {
if (Th>0) then

[NF] = CreateNeighbours(BF); %Change one feature each time and get N neighbors of BF

[EM] = EvaluateFitness(NF); %Evaluate the new feature subset

[ACC] = Replace(FS, NF); %If EM(i)>E(i), replace FS[i] with NF[i]. ACC represents set

% which contains improved feature subset.

for i=1:Num(ACC) %Make hill-climbing on each improved feature subset

BF = HC(ACC(i));

end for;

UpdateTime (Th); %Update time available for HC.

end if;

end for;

Figure 1 Procedure of Hill climbing.

Stage 1, HOML employs a simulated annealing (SA) to guide the global search in a solution space.
As long as the temperature is very high, SA accepts every solution, thus yielding a near random search
through the search space. On the other hand, as the temperature becomes close to zero, only improve-
ments are accepted. The SA is run for approximately 50% of the total time available.

Stage 2: HOML employs a GA to perform optimization. The GA population is set at 100. The initial
population consists of the best solutions detected by SA. The crossover operator enables the good solutions
to exchange information, and the mutation operator in GA introduces new genes into the population and
retains genetic diversity. The GA runs for about 30% of total time spent by HOML to find the optimal
feature subset solution.

Stage 3: HOML applies a hill-climbing feature selection algorithm. The greedy algorithm performs a
local search on the k-best solutions on the k-best (k represents the dimensionality of feature) solutions
given by two global optimization algorithms (SA and GA) and selects the best neighbors. The hill-
climbing algorithm is run in the remaining execution time.

The HOML algorithm is implemented on the platform of MATLAB, which is downloaded at http://levis.
tongji.edu.cn/gzli/code/homl-code.zip.

3 Dataset and experimental settings

3.1 The used data sets

UCI yeast dataset: In order to further evaluate the introduced algorithm, a western biomedical yeast
dataset is used in this paper. The dataset contains 2417 genes each being represented by a 103-dimensional
feature vector. Of the 103 features there are no discrete attributes. There are 14 possible class labels. The
minimum number of labels for each instance is 0, and the maximum number of labels for each instance is
14. The average number of labels for each gene is 4.24±1.57. More detailed descriptions on this dataset
are available in [17].

TCM CHD dataset: The dataset of coronary heart disease are desribed and preprocessed in [12]. A
total of 555 cases were obtained, among which 265 patients were male, and 290 patients are female. There
are 125 symptoms and 15 syndromes in differentiation diagnosis, of which 6 commonly-used patterns are
selected in our study, including: z1 Deficiency of heart qi syndrome; z2 Deficiency of heart yang syndrome;
z3 Deficiency of heart yin syndrome; z4 Qi stagnation syndrome; z5 Turbid phlegm syndrome and z6
Blood stasis syndrome. Experimental results show that the predication accuracy was the highest on the
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HOML (X, Y, Tk, Tg, Th)

Input:

X: N × D feature matrix

Y: N × Q label matrix

Tk: Run time for Simulated Annealing (SA)

Tg: Run time for Genetic Algorithm (GA)

Th: Run time for Hill Climbing (HC)

Output:

BF: Optimal feature subset

Procedure: FS = InitIndividual(); %Initialize FS with 100 feature subsets

%Simulated annealing

E = EvaluateFitness(FS); % E(i)=Average Precision(FS(i))

Tc = UpdateTime(Tk); %Update the time available time for SA

while (Tc>0)

FM = Mutate(FS, Pm); %Mutate FS with probability Pm, Pm = 0.5−0.5exp(Tc/λ), λ=Tk/log2(0.5)

for i=1:100

if (Fitness(FM(i))>= E(i))

FS(i) = FM(i); %Replace FS(i) with FM(i)

else if (exp(−(E(i)−Fitness(FM(i))<rand) %Selectively accept the new feature subset

FS(i) = FM(i);

end if;

UpdateTime(Tc); %Update time available for SA.

end for;

end while;

%Genetic algorithm

while (Tg>0)

[FS,E] = Select(FS); %Select with unbiased tournament selection

[FS,E] = Crossover(FS, 0.65); % Cross with probability 0.65

[FS,E] = Mutation(FS,0.01); % Mutate with probability 0.01

[E] = EvaluateFitness(FS); % Evaluate the new solutions

UpdateTime(Tg); % Update time available for GA

%Hill climbing

while (Th> 0){
Order(FS); %Sort FS by fitness value descending.

for i=1:100

BF = FS(i);

BF = HC(BF);

End for;

End while.

Figure 2 PProcedure of HOML.

set of 52 symptoms [12]. We made experiments based on the set with 52 symptoms, 3 redundant features
like “edema” were manually removed before the experiments, and then we got a dataset with 49 symptoms,
which may be downloaded at http://levis.tongji.edu.cn/gzli/data/chd-data.zip. The minimum number
of labels for each instance is 0, and the maximum number of labels for each instance is 5. The average
number of labels of the sample is 2.58. The attributes of the sample are all discrete.

3.2 Experimental settings

In this paper, several state-of-the-art multi-label learning algorithms including ML-KNN [17], BP-MLL
[18], Rank-SVM [19] and MLNB-BASIC [9] are adopted by HOML as base classifiers and compared on
the dataset of CHD in TCM. We compare HOML with the following benchmark algorithms: simulated
annealing (SA) [20], genetic algorithm (GA) [21], sequential floating forward selection (SFFS) [22], se-
quential floating backward selection (SFBS) [22], multi-label dimensionality reduction via dependence
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maximization (MDDM) [3] and embedded feature selection for multi-label learning [7]. The target di-
mensionality d of MDDM is decided by thr= 99% [3]. The inner product of label matrix Y is set as the
kernel function [3].

Parameters of the multi-label classifiers are set as follows: 1) For ML-KNN, the best parameter k and
smoothing factor in [17] are used, which are 10 and 1. 2) For BP-MLL, the number of hidden neurons is
set to 8 after which its performance does not significantly change. 3) For Rank-SVM, the type is set to
linear SVM. 4) For MLNB-BASIC, the smoothing factor is set to 1.

10-fold cross-validation is carried out to compute the fitness value. In each fold, the time simulated
annealing (SA), genetic algorithm (GA) and hill-climbing are allocated 5, 3 and 2 h, respectively. SA
adopts the same mutation probability and selective acceptance strategy as in HOML when SA is used as
independent optimization techniques. GA adopts the same selection operator, crossover probability and
mutation probability as they are in HOML when it is used as independent optimization techniques. When
simulated annealing (SA) and genetic algorithm (GA) are used as independent optimization techniques,
in each fold, they are allocated 10 h, which is the same time duration for SFFS, SFBS, MDDM, and
MEFS. In the training process, 2/3 of the training data are taken as training set, 1/3 as validation.

We also made paired t test on the experimental result on the base classifiers to compare the performance
of the feature selection/feature reduction algorithms.

3.3 Evaluation metrics

The following multi-label evaluation metrics proposed in [13] are used in this paper: 1) Hamming loss
evaluates how many times an instance-label pair is misclassified. 2) One error evaluates how many times
the top-ranked label is not in the set of proper labels of the instance. 3) Coverage evaluates how far we
need, on the average, to go down the list of labels in order to cover all the proper labels of the instance.
4) Ranking loss evaluates the average fraction of label pairs that are reversely ordered for the instance.
5) Average precision evaluates the average fraction of labels ranked above a particular label y ∈ Y which
actually are in Y .

4 Experimental results and discussions

We compare our proposed algorithm (HOML) with SA [20], GA [21], SFFS [22], SFBS [22], MDDM [3]
and MEFS [7]. Those algorithms are evaluated with ML-KNN [17], BP-MLL [184], Rank-SVM [19], and
MLNB-BASIC [9] as base classifiers. Hamming lossone-errorcoverageranking loss and average precision
[17] are adopted as the evaluation criteria of multi-label learning model.

4.1 Experimental results on yeast dataset

4.1.1 Experimental results on accuracy of the features selection/reduction methods

Firstly we made experiment on the yeast dataset. Table 1 and Table 2 show statistical test results for
original results and the results after feature selection/reduction, where CRI means performance criteria,
FS means feature selection/reduction method, ORI represents original results of the four classifiers, and
Average stands for the average value of the four classifiers under the same condition. Best results on each
metric are also in bold.

Table 1 and Table 2 show that compared with the original classification results, predication accuracy
has been improved after being optimized by SA, GA, SFFS, SFBS, MEFS and HOML. But the predi-
cation accuracy of Hamming loss, one-error, coverage, average precision has been decreased after feature
reduction method MDDM, and that the corresponding feature selection/feature reduction methods of
the optimal value of the five evaluation criteria are all HOML. The optimal values of the five evaluation
criteria, which are the corresponding values of HOML, are as follows: hamming loss 0.2176, 0.0429 lower
than the original result 0.2605; one-error 0.2173, 0.1312 lower than the original result 0.3458; coverage
6.4748, 1.0900 lower than the original result 7.5648; ranking loss 0.1851, 0.0635 lower than the original
result 0.2486; average precision 75.06%, significantly increased by 10.62 than the original result 64.44%.
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Table 1 Comparison of HOML and other feature selection/reduction methods on the yeast dataset: Hamming loss,

One-errora)

FS

CRI

Hamming loss ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC Average

ORI 0.1981 0.2405 0.3103 0.2934 0.2605

SA 0.1841 0.2309 0.2448 0.2395 0.2248

GA 0.1978 0.2389 0.2499 0.2591 0.2364

SFFS 0.2161 0.2347 0.2485 0.2137 0.2282

SFBS 0.1924 0.2205 0.2698 0.2763 0.2397

MDDM 0.2479 0.3029 0.2536 0.3163 0.2802

MEFS 0.1978 0.2247 0.2502 0.2422 0.2287

HOML 0.1961 0.2159 0.2252 0.2332 0.2176

FS

CRI

One-error ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 0.2386 0.2686 0.5398 0.3473 0.3485

SA 0.2206 0.2625 0.3459 0.2747 0.2759

GA 0.2408 0.2697 0.4025 0.3223 0.3088

SFFS 0.2562 0.2521 0.2479 0.2355 0.2479

SFBS 0.2231 0.2479 0.3843 0.3099 0.2913

MDDM 0.2509 0.4373 0.2509 1 0.4847

MEFS 0.2521 0.2364 0.3103 0.2547 0.2633

HOML 0.1660 0.2066 0.2438 0.2531 0.2173

a) For each criteria, “↓” indicates “the smaller the better” while the “↑” indicates “the bigger the better”.

For the performance criteria hamming lossone-errorcoverageranking loss, HOML is lower than feature
selection methods SA, GA, SFFS, SFBS and feature reduction method MDDM. On the other hand,
HOML is higher than that of the compared feature selection/reduction method and has a significant
improvement.

4.1.2 Paired t test

During the 10-fold validation process of the experiment, we made paired t test on the test dataset of HOML
and its compared algorithms. The hamming loss is computed as eq. (1) when making paired t test. The
computations of one-error, coverage, ranking loss and average precision are similar to that of hamming
loss. The paired t test result is shown in Table 3. FS represents feature selection/reduction methods; C
represents performance criteria. If the value of “Better” is HOML, it means HOML has outperformed
its compared algorithm, while HOML has no significant difference from its compared algorithm if the
corresponding value of “Better” is NaN.

Table 3 shows that HOML outperforms all the other feature selection/reduction methods as for Ham-
ming loss, Coverage and Average precision; for One error, HOML is only frustrated by SFSFS; for Ranking
loss, HOML has not shown significant difference from SA and MDDM, but it is superior to GA, SFFS,
SFBS and MEFS.

4.1.3 Statistics of number of reserved features after feature selection/reduction methods

In order to further analyze the performance of the feature selection/reduction methods, we made statis-
tics on the average number of the reserved features after optimization as shown in Table 4. The number
of reserved features for SA is computed as eq. (2), which is computed similarly to other feature se-
lection/reduction methods. FS means feature selection/reduction methods, and NUM represents the
number of reserved features after optimization.
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Table 2 Comparison of HOML and other feature selection/reduction methods on the yeast dataset: Coverage, Ranking

loss and Average precisiona)

FS

CRI

Coverage ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 6.3598 7.5779 9.0274 7.2942 7.5648

SA 5.8432 6.8807 7.5472 7.0291 6.8250

GA 6.3938 6.9684 7.6721 7.2599 7.0735

SFFS 6.7810 7.2521 6.8802 6.8264 6.9349

SFBS 6.2893 8.9215 8.6363 7.4587 7.8264

MDDM 7.7791 9.6250 7.9800 10.8145 9.0496

MEFS 6.2893 7.2142 6.9433 7.3547 6.9503

HOML 5.8091 6.6120 6.7521 6.7261 6.4748

FS

CRI

Ranking loss ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 0.1701 0.2187 0.3584 0.2473 0.2486

SA 0.1446 0.2007 0.2332 0.2101 0.1971

GA 0.1748 0.2071 0.2440 0.2274 0.2133

SFFS 0.1985 0.2130 0.2140 0.1947 0.2050

SFBS 0.1738 0.2837 0.3121 0.2434 0.2532

MDDM 0.2467 0.3469 0.2574 0 0.2127

MEFS 0.1751 0.2247 0.2475 0.2208 0.2170

HOML 0.1385 0.1752 0.2032 0.2237 0.1851

FS

CRI

Average precision ↑
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 0.7417 0.6577 0.5559 0.6225 0.6444

SA 0.7609 0.7152 0.6849 0.7159 0.7192

GA 0.7548 0.7063 0.6679 0.6946 0.7059

SFFS 0.7503 0.7097 0.7065 0.7453 0.7279

SFBS 0.7719 0.6835 0.6062 0.6912 0.6882

MDDM 0.6760 0.5898 0.6794 0.4175 0.5906

MEFS 0.7644 0.6822 0.6743 0.6826 0.7008

HOML 0.7984 0.7471 0.7265 0.7307 0.7506

a) For each criteria, “↓” indicates “the smaller the better” while the “↑” indicates “the bigger the better”.

Table 3 Paired t test of HOML and its compared algorithms on yeast dataset

C

FS

Better

SA GA SFFS SFBS MDDM MEFS

Hamming loss HOML HOML HOML HOML HOML HOML

One error HOML HOML NaN HOML HOML HOML

Coverage HOML HOML HOML HOML HOML HOML

Ranking loss NaN HOML HOML HOML NaN HOML

Average precision HOML HOML HOML HOML HOML HOML

Table 4 shows that among the statistics of the numbers of reserved features after feature selec-
tion/reduction, the minimum number is obtained by SFFS, and SFBS has the maximum number. HOML
has a relative small number of reserved features, indicating HOML has efficiently improved the classifi-
cation accuracy with a relatively small subset of features.
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Table 4 The average number of reserved features after optimization on the yeast dataset

NUM
FS

SA GA SFFS SFBS MDDM MEFS HOML

Number 41 38 7 92 7 78 42

Table 5 Comparison of HOML and other feature selection/reduction methods on the TCM CHD dataset: Hamming

loss, One-error, and Coveragea)

FS

CRI

Hamming Loss ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC Average

ORI 0.3148 0.3733 0.3809 0.3118 0.3452

SA 0.3000 0.3492 0.3370 0.2870 0.3183

GA 0.3051 0.3468 0.3235 0.3124 0.3220

SFFS 0.2897 0.3690 0.3421 0.2942 0.3237

SFBS 0.2876 0.3263 0.3845 0.3214 0.3300

MDDM 0.3009 0.3569 0.3012 0.2899 0.3122

MEFS 0.3006 0.3422 0.3265 0.2912 0.3151

HOML 0.1964 0.2577 0.2411 0.2246 0.2295

FS

CRI

One-error ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 0.2536 0.2620 0.3559 0.3028 0.2936

SA 0.2391 0.2603 0.2885 0.2681 0.2640

GA 0.2410 0.3003 0.3609 0.3083 0.3026

SFFS 0.2356 0.2182 0.3746 0.2693 0.2744

SFBS 0.2458 0.2285 0.3638 0.2145 0.2631

MDDM 0.2111 0.2678 0.2111 0.2412 0.2328

MEFS 0.2464 0.2774 0.2484 0.2492 0.2553

HOML 0.2143 0.1200 0.1455 0.1986 0.1696

FS

CRI

Coverage ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 2.8491 3.1236 3.4000 3.6691 3.2604

SA 2.7669 2.8688 2.9745 2.6473 2.8143

GA 2.8284 2.9675 3.0902 2.9545 2.9601

SFFS 2.6334 3.9107 3.2929 2.8188 3.1639

SFBS 2.6537 2.9864 3.2105 3.1764 3.0067

MDDM 2.8556 3.0700 3.8667 3.3944 3.2967

MEFS 2.7190 2.9976 2.2863 2.4630 2.6164

HOML 2.3750 2.5214 2.5179 2.1421 2.3891

a) For each criteria, “↓” indicates “the smaller the better” while the “↑” indicates “the bigger the better”.

4.2 Experimental results on TCM CHD dataset

4.2.1 Experimental results on the accuracy of the features selection/reduction methods

After the TCM CHD dataset is preprocessed, we made experiment on it and the experimental results
are shown in Table 5 and Table 6. FS represents feature selection/reduction method, CRI represents
performance criteria, and ORI represents the original classification results. Average means the average
value of the four classifiers under the same condition.

Table 5 and Table 6 show that compared with the original classification results, predication accuracy
has been improved after feature selection/feature reduction for all the five evaluation criteria: hamming
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Table 6 Comparison of HOML and other feature selection/reduction methods on the TCM CHD dataset: Ranking loss

and Average precisiona)

FS

CRI

Ranking Loss ↓
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 0.2271 0.2728 0.3724 0.2209 0.2733

SA 0.2139 0.2365 0.2623 0.2072 0.2300

GA 0.2236 0.2627 0.3028 0.2399 0.2572

SFFS 0.1957 0.1786 0.3251 0.2294 0.2322

SFBS 0.1876 0.2402 0.3368 0.2018 0.2416

MDDM 0.2178 0.2566 0.2207 0.2124 0.2268

MEFS 0.2063 0.2397 0.3294 0.1875 0.2407

HOML 0.1193 0.1536 0.2672 0.1642 0.1760

FS

CRI

Average precision ↑
ML-KNN BP-MLL Rank-SVM MLNB-BASIC AVE

ORI 0.7754 0.7651 0.6985 0.5194 68.96%

SA 0.7940 0.7727 0.7583 0.7994 78.11%

GA 0.8055 0.7960 0.7289 0.7418 76.80%

SFFS 0.8027 0.7842 0.7254 0.7890 77.53%

SFBS 0.8146 0.7882 0.7235 0.7087 75.87%

MDDM 0.7856 0.7529 0.7842 0.7746 77.43%

MEFS 0.7933 0.7318 0.7456 0.8231 77.35%

HOML 0.8819 0.8533 0.8604 0.7443 83.50%

a) For each criteria, “↓” indicates “the smaller the better” while the “↑” indicates “the bigger the better”.

loss, one-error, coverage, ranking loss, average precision. On the other hand, we can see that the corre-
sponding feature selection/feature reduction methods of the optimal value of the five evaluation criteria
are all HOML. The optimal values of the five evaluation criteria, which are the corresponding values
of HOML, are as follows: hamming loss 0.2295, 0.1157 lower than the original result 0.3452; one-error
0.1696, 0.1240 lower than the original result 0.2936; coverage 2.3891, 0.8713 lower than the original re-
sult 3.2604; ranking loss 0.1760, 0.0913 lower than the original result 0.2733; average precision 83.50%,
significantly increased by 14.54% than the original result 68.96%.

HOML outperforms all the other six feature selection/feature reduction methods (SA, GA, SFFS,
SFBS, MDDM, and MEFS): HOML is significantly lower than the six feature selection/reduction methods
in terms of hamming loss, one-errorcoverage and ranking loss, and has significantly outperformed the six
methods in terms of average precision: SA by 5.44%, SFFS by 5.52%, SFBS by 7.63%, MDDM by 6.07%,
and MEFS by 6.15%

Excluding the average value, the separate corresponding classifiers of the optimal values of the five
evaluation criteria are as follows: the corresponding classifier of the optimal value of hamming loss
(0.1964) is ML-KNN; the corresponding classifier of the optimal value of one-error (0.1200) is ML-KNN;
the corresponding classifier of the optimal value of coverage (2.1421) is MLNB-BASIC; the corresponding
classifier of the optimal value of ranking loss (0.1193) is ML-KNN; the corresponding classifier of the
optimal value of average precision (88.19%) is ML-KNN.

4.2.2 Paired t test

We also made paired t test on HOML and its comparison algorithms on the experimental results on
the TCM CHD dataset. Table 7 shows the detailed information. The hamming loss is computed as
eq. (6) when making paired t test. The computations of one-error, coverage, ranking loss and average
precision are similar to hamming loss. FS represents feature selection/reduction methods; C represents
performance criteria. If the value of “Better” is HOML, it means HOML has outperformed its comparison
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Table 7 Paired t test of HOML and its compared algorithms on the TCM CHD dataset

C

FS

Better

SA GA SFFS SFBS MDDM MEFS

Hamming loss HOML HOML HOML HOML HOML HOML

One error HOML HOML HOML HOML NaN HOML

Coverage HOML HOML HOML HOML HOML NaN

Ranking loss HOML HOML HOML HOML NaN HOML

Average precision HOML HOML HOML HOML HOML HOML

Table 8 The average number of reserved features after optimization on the TCM CHD dataset

NUM
FS

SA GA SFFS SFBS MDDM MEFS HOML

Number 19 23 4 38 5 32 20

algorithm, while HOML has no significant difference with its comparison algorithm if the corresponding
value of “Better” is NaN.

Table 7 shows that HOML outperforms all its comparison feature selection/reduction methods for
performance criteria hamming loss and average precision. For one-error and ranking loss, HOML has not
shown obvious advantage over MDDM; for Coverage, HOML has not shown significant difference from
MEFS, but is superior to SA, GA, SFFS, SFBS and MDDM.

4.2.3 Statistics of number of reserved features after feature selection/reduction methods

In order to further analyze the performance of the feature selection/reduction methods, we also made
statistics on the average numbers of the reserved features on the TCM CHD dataset after optimization
(Table 8). The number of reserved features for SA is computed as eq. (7), which is computed similarly
to other feature selection/reduction methods. FS means feature selection/reduction methods, and NUM
represents the number of reserved features after optimization.

Table 8 shows that among the numbers of reserved features after using feature selection/reduction
methods, SFFS has the minimum reserved number (4), while the SFBS has the maximum reserved
number (38). HOML has a relative small number of reserved features, which indicates that HOML has
efficiently improved the classification accuracy with a relatively small subset of features.

4.2.4 Results on different syndromes

In order to further analyze the experiment results, the predication accuracies of six syndromes (z1: qi
deficiency syndrome; z2: yang deficiency syndrome; z3: yin deficiency syndrome; z4: qi depression; z5:
intermingled phlegm syndrome and z6: blood stasis syndrome) were separately tested on the optimal
feature subset selected by its corresponding feature selection method and classifier: HOML-ML-KNN.
Figure 3 shows predication accuracy of average precision of the six syndromes after feature selection
by HOML. X axis represents syndrome label, while the Y axis represents predication accuracy. ORI
represents the original classification results; R-FS represents results after feature selection by HOML.

Figure 3 displays that predication accuracy has been increased for each of the six syndromes. The
predication accuracy of z1 (qi deficiency syndrome), z2 (yang deficiency syndrome), z3 (yang deficiency
syndrome), z5 (intermingled phlegm syndrome) and z6(blood stasis syndrome) have been significantly
enhanced (respectively 14%, 9%, 10%, 8%, 8%). The predication accuracy is high before feature selection,
and has been slightly increased after feature selection (increased by 3%). We can see from predication
accuracy for separate syndrome that precision has been greatly improved by HOML.
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Figure 3 Prediction results of average precision of each syndrome on the optimal feature subset and the original dataset.

5 Conclusions

We have presented a hybrid optimization technique to select the optimal feature subsets in multi-label
data, and adopted ML-KNN, BP-MLL, Rank-SVM and MLNB as the multi-label learning classifiers. We
compare our algorithm against currently benchmark feature selection/feature reduction techniques on
the UCI yeast dataset and TCM CHD dataset, and experimental results suggest our algorithm performs
the best. HOML has effectively reduced the data dimension and greatly improved the classification
performance. The optimal feature subset of the inquiry symptoms of CHD will be used as a reference in
clinical practice.

Future work includes adopting other evaluation criteria or establishing new performance criteria as
the fitness function, and combining the feature reduction and feature selection to further improve the
performance of modeling.
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