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Abstract

Question Generation (QG) is fundamentally

a simple syntactic transformation; however,

many aspects of semantics influence what

questions are good to form. We implement

this observation by developing Syn-QG, a set

of transparent syntactic rules leveraging uni-

versal dependencies, shallow semantic pars-

ing, lexical resources, and custom rules which

transform declarative sentences into question-

answer pairs. We utilize PropBank argument

descriptions and VerbNet state predicates to

incorporate shallow semantic content, which

helps generate questions of a descriptive na-

ture and produce inferential and semantically

richer questions than existing systems. In or-

der to improve syntactic fluency and eliminate

grammatically incorrect questions, we employ

back-translation over the output of these syn-

tactic rules. A set of crowd-sourced eval-

uations shows that our system can generate

a larger number of highly grammatical and

relevant questions than previous QG systems

and that back-translation drastically improves

grammaticality at a slight cost of generating ir-

relevant questions.

1 Introduction

Automatic Question Generation (QG) is the task

of generating question-answer pairs from a declar-

ative sentence. It has direct use in education and

generating engagement, where a system automati-

cally generates questions about passages that some-

one has read. A more recent secondary use is for

automatic generation of questions as a data augmen-

tation approach for training Question Answering

(QA) systems. QG was initially approached by syn-

tactic rules for question-generation, followed by

some form of statistical ranking of goodness, e.g.,

(Heilman and Smith, 2009, 2010). In recent years,

as in most areas of NLP, the dominant approach has

been neural network generation (Du et al., 2017),

Figure 1: The SRL structure is leveraged to invoke a

template, and a simple rearrangement of the modifying

arguments is performed.

in particular using a sequence-to-sequence architec-

ture, which exploits the data in the rapidly growing

number of large QA data sets.

Previous rule-based approaches suffer from a

significant lack of variety in the questions they gen-

erate, sticking to a few simple and reliable syntactic

transformation patterns. Neural architectures pro-

vide a pathway to solving this limitation since they

can exploit QA datasets to learn the broad array of

human question types, providing the usual neural

network advantages of a data-exploiting, end-to-

end trainable architecture. Nevertheless, we ob-

serve that the quality of current neural QG systems

is still lacking: The generated questions lack syn-

tactic fluency, and the models lack transparency

and an easy way to improve them.

We argue that in essence QG can be governed

by simple syntactic “question transformations” –

while the implementation details vary, this is in

accord with all major linguistic viewpoints, such

as Construction Grammar and Chomskyan Genera-

tive Grammar, which emphasize grammatical rules

and the existence of finite ways to create novel

utterances. However, successful, fluent question

generation requires more than just understanding

syntactic question transformations, since felicitous

questions must also observe various semantic and
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pragmatic constraints. We approach these by mak-

ing use of semantic role labelers (SRL), previously

unexploited linguistic semantic resources like Verb-

Net’s predicates (Figure 2) and PropBank’s rolesets

and custom rules like implications, allowing us to

generate a broader range of questions of a descrip-

tive and inferential nature. A simple transformation

commonly used in rule-based QG is also displayed

in Figure 1.

Figure 2: VerbNet Predicate Question Generation. De-

tailed intermediate steps are described in Figure 3.

We evaluate our QG framework, Syn-QG against

three QG systems on a mixture of Wikipedia and

commercial text sentences outperforming exist-

ing approaches in grammaticality and relevance

in a crowd-sourced human evaluation while si-

multaneously generating more types of questions.

We also notice that back-translated questions are

grammatically superior but are sometimes slightly

irrelevant as compared to their original counter-

parts. The Java code is publicly available at

https://bitbucket.org/kaustubhdhole/syn-qg/.

2 Related Work

With the advent of large-scale QA datasets (Ra-

jpurkar et al., 2016; Nguyen et al., 2016), recent

work in QG (Du et al., 2017; Zhou et al., 2017)

has primarily focused on training sequence-to-

sequence and attention-based architectures. Dong

et al. (2019) fine-tuned the question generation task

by taking advantage of a large pre-trained language

model. Success in reinforcement learning has in-

spired teacher-student frameworks (Wang et al.,

2017; Tang et al., 2017) treating QA and QG as

complementary tasks and performing joint train-

ing by using results from QA as rewards for the

QG task. Yuan et al. (2017); Hosking and Riedel

(2019); Zhang and Bansal (2019) used evaluation

metrics like BLEU, sentence perplexity, and QA

probability as rewards for dealing with exposure

bias.

Chen et al. (2019) trained a reinforcement learn-

ing based graph-to-sequence architecture by em-

bedding the passage via a novel gated bi-directional

graph neural network and generating the question

via a recurrent neural network. To estimate the posi-

tions of copied words, Liu et al. (2019) used a graph

convolution network and convolved over the nodes

of the dependency parse of the passage. Li et al.

(2019) jointly modeled OpenIE relations along with

the passage using a gated-attention mechanism and

a dual copy mechanism.

Traditionally, question generation has been tack-

led by numerous rule-based approaches (Heilman

and Smith, 2009; Mostow and Chen, 2009; Yao

and Zhang, 2010; Lindberg et al., 2013; Labutov

et al., 2015). Heilman and Smith (2009, 2010) in-

troduced an overgenerate-and-rank approach that

generated multiple questions via rule-based tree

transformations of the constituency parse of a

declarative sentence and then ranked them using a

logistic-regression ranker with manually designed

features. Yao and Zhang (2010) described transfor-

mations of Minimal Recursion Semantics represen-

tations guaranteeing grammaticality. Other trans-

formations have been in the past defined in terms of

templates (Mazidi and Nielsen, 2014, 2015; Mazidi

and Tarau, 2016; Flor and Riordan, 2018), or ex-

plicitly performed (Heilman and Smith, 2009) by

searching tree patterns via Tregex, followed by

their manipulation using Tsurgeon (Levy and An-

drew, 2006). Kurdi et al. (2020) provide a compre-

hensive summary of QG, analysing and comparing

approaches before and after 2014.

Vis-à-vis current neural question generators,

rule-based architectures are highly transparent, eas-

ily extensible, and generate well-formed questions

since they perform clearly defined syntactic trans-

formations like subject-auxiliary inversion and WH-

movement over parse structures whilst leveraging

fundamental NLP annotations like named entities,

co-reference, temporal entities, etc.

However, most of the existing rule-based sys-

tems have lacked diversity, being mostly focused

on generating What-type and boolean questions

and have mainly exploited parse structures which

are not semantically informed. Mazidi and Tarau

(2016); Flor and Riordan (2018) use Dependency,

SRL, and NER templates but do not handle modal-

ities and negation in a robust manner. Moreover,

there is plenty of availability of core linguistic re-

sources like VerbNet and PropBank, which provide
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further unique ways to look at sentences and ask

questions differently besides the generally well-

established dependency and SRL parses.

3 Syn-QG

Syn-QG is a rule-based framework which generates

questions by identifying potential short answers

in 1) the nodes of crucial dependency relations 2)

the modifying arguments of each predicate in the

form of semantic roles 3) named entities and other

generic entities 4) the states of VerbNet’s thematic

roles in the form of semantic predicates and 5) Prop-

Bank roleset specific natural language descriptions.

Each of the five heuristics works independently,

generating a combined set of question-answer pairs,

which are eventually back-translated. We describe

each of these five sources.

3.1 Dependency Heuristics

Dependency trees are syntactic tree structures,

wherein syntactic units in the form of words are

connected via directed links. The finite verb is

considered as the structural root of the tree, and all

other syntactic units are either directly (nsubj, dobj,,

etc.) or indirectly (xcomp, iobj, etc.) dependent on

this finite verb.

We present rules over such dependency trees an-

notated according to the Universal Dependencies

(UD) format (de Marneffe et al., 2014). To extract

dependency structures, we use the parser of Gard-

ner et al. (2018).

We make use of PropBank's predicate-argument

structure (SRL) for clausal extraction of the verb

headed by a select few dependency nodes which

can serve as answers. These rules treat the clause as

a combination of a subject, an object, the head verb

and other non-core arguments. The clause is further

refined with modals, auxiliaries and negations if

found around the verb. Finally, we make use of a

set of predefined handwritten templates, a few of

which are described in Table 1.

In each of the templates, we convert What to

Who/Whom, When or Where depending on the

named entity of the potential answer and do to

does or did according to the tense and number of

the subject to ensure subject-verb agreement. The

pseudo code is described in Algorithm 2 of the

Appendix.

3.2 SRL Heuristics

While dependency representations are perhaps the

most popular syntactic method for automatically

extracting relationships between words, they lack

sufficient semantic detail. Being able to answer

“Who did what to whom and how, why, when and

where” has been a central focus in understanding

language. In recent decades, shallow semantic pars-

ing has been a prominent choice in understanding

these relationships and has been extensively used

in question generation (Mazidi and Tarau, 2016;

Flor and Riordan, 2018).

PropBank-style frames provide semantically mo-

tivated roles that arguments around a verb play.

Moreover, highly accurate semantic role labeling

models are being developed owing to corpora like

PropBank and FrameNet. We take advantage of the

SRL model of Gardner et al. (2018) for extracting

the roles of each verb in the sentence.

Algorithm 1 SRL Heuristics

{SRL1 . . . SRLs} ← SRL(w0 . . . wn)
loop j = 0, until j = s:

if SRLj contains A0 or A1 and at least 1Am

then

{A0 . . . ACAU , ATMP } ← SRLj

loop Ax ∈ SRLj if Ax = modifier:

subj ← A0

A−

x ←
∑

(A3, A4, ...ATMP −Ax)
verb← {Av,modals, negation}
template← modifiertype ← Ax

QA← template(subj, Ax, verb, A
−

x )
close;

We succinctly describe the steps taken in Algo-

rithm 1. We first filter out all the predicates which

have an Agent or a Patient and at least one other

modifier like Extent, Manner, Direction, etc. These

modifiers would serve as our short answers. We

make use of a set of predefined handwritten tem-

plates described in Table 2, which rearrange the

arguments within the fact to convert it into an inter-

rogative statement depending on the modifier.

In Figure 1, the predicate “won” is modified

by a Patient “New Mexico”, an Agent “Obama”,

an Extent modifier “by a margin of 5%” and a

Temporal modifier “in 2008”. For Extent as a short

answer, we fill a pre-defined template “By how

much mainAux nsubj otherAux verb obj modifiers

?” to get the above question-answer pair. We keep

the order of arguments as they appear in the original
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Potential
Short Answer
(Dependencies)

Question Template Sample Fact Generated Question

subject (nsubj)
Wh mainAux otherAux

verb obj modifiers?
Ricky Ponting accepted captaincy

during Australia’s golden era.
Who accepted captaincy during

Australia’s golden era?

direct
object(dobj)

Wh mainAux nsubj

otherAux verb

modifiers?

In monsoon, India receives large

amounts of rain that can cause flooding.

What does India receive in

monsoon?

open clausal
complement

(xcomp)

Wh mainAux nsubj verb

modifiers?
The Sheriff did not try to eat the apples

while the outlaws were fasting.
What did the Sheriff not try

while the outlaws were fasting?

copula (cop)
How would you
describe nsubj?

Comets are leftovers from the creation

of our solar system about 4.5 billion

years ago.

How would you describe
comets ?

Table 1: A few templates to describe the construction of questions. Different word units are shown in unique colors

to describe the filling of the template. All the short answers are highlighted in blue.

sentence. The templates are described in Table 2.

3.3 Named Entities, Custom Entities, and

Hypernyms

We create separate templates when any numbered

SRL argument contains common named entities

like Person, Location, Organization etc. Like Flor

and Riordan (2018), we add specific rules in the

form of regexes to address special cases to dif-

ferentiate between phrases like For how long and

Till when instead of a generic When question type.

Some of the templates are described in Table 7 in

the Appendix. The approach is described in Algo-

rithm 3 in the Appendix.

We also use WordNet (Miller, 1998) hypernyms

of all potential short answers and replace What

with the bigram Which hypernym. So, for a

sentence like “Hermione plays badminton at the

venue”, we generate a question “Which sport does

Hermione play at the venue?”. For computing the

hypernym, we use the sense disambiguation imple-

mentation of Tan (2014). While supersenses do

display a richer lexical variety, sense definitions

don’t always fit well.

3.4 Handling modals and auxilliaries

During explicit inversion of the verb and arguments

around it via our templates, we tried to ensure that

the positions of auxiliaries are set, and negations

are correctly treated. We define a few simple rules

to ensure that.

• When there are multiple auxiliaries, we only

invert the first auxiliary while the second and

further auxiliaries remain as they are just be-

fore the main verb.

• We make the question auxiliary finite and

agree with the subject.

• We ensure that the object is kept immediately

after the verb.

• For passive cases, subj-verb-obj is changed to

obj-verb-by-subj.

3.5 Handling Factualness via Implicature

Previous rule-based approaches (Mazidi and Tarau,

2016; Flor and Riordan, 2018) have used the NEG

dependency label to identify polarity. But such an

approach would suffer whenever polarities would

be hierarchically entailed from their parent clauses

in cases like “Picard did not fail to X” where the en-

tailed polarity of “X” is, in fact, positive. Moreover,

in one-way implications like “Bojack hesitated to

X”, it would be best not to generate a question for

unsure cases since it is open-ended if Bojack did

or did not X. A similar example is displayed in

Figure 5. For each verb representing a subordi-

nate clause, we compute its entailed truth or falsity

from its parent clause using the set of one-way and

two-way implicative verbs, and verb-noun colloca-

tions provided by Karttunen (2012). For example,

the two-way implicative construction “forget to

X” entails that “X” did not happen, so it would

be wrong to ask questions about “X”. Karttunen

(2012) provides simple implications in the form of

92 verbs and phrasal implications in the form of

9 sets of verbs and 8 sets of nouns making 1002

verb-noun collocations. The entailed polarity of a
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Potential Short
Answer
(Verb

Arguments)

Question Template Sample Fact Generated Question

Locative (LOC)

Where mainAux nsubj

otherAux verb obj

modifiers ?

Americans eat about 100 acres of pizza
each day, with about 3 billion pizzas

sold annually in the USA.

Where do about 3 billion

pizzas sell annually ?

Manner (MNR)

How mainAux nsubj

otherAux verb obj

modifiers ?

Young Sheldon was caught unaware as
the liquid was oozing out of the
chamber in a zig-zag fashion.

How was the liquid oozing out

of the chamber?

Purpose (PNC

and PRP)

For what purpose
mainAux nsubj

otherAux verb obj

modifiers ?

Collectively, South African women and
children walk a daily distance

equivalent to 16 trips to the moon and
back to fetch water.

For what purpose do South

African women and children

walk a daily distance equivalent

to 16 trips to the moon and back

collectively ?

Cause (CAU)

Why mainAux nsubj

otherAux verb obj

modifiers ?

Since the average faucet releases 2

gallons of water per minute, you can
save up to four gallons of water every
morning by turning off the tap while

you brush your teeth.

Why can you save up to four

gallons of water by turning off

the tap while you brush your

teeth every morning ?

Temporal (TMP)

When mainAux nsubj

otherAux verb obj

modifiers ?

Till when mainAux

nsubj otherAux verb

obj modifiers?

Stephen Hawking once on June 28,

2009 threw a party for time-travelers

but he announced the party the next day.

Princess Sita travelled the whole town
until the end of summer.

When did Stephen Hawking

throw a party for time -

travelers ?

When did Stephen Hawking

announce the party ?

Till when did Princess Sita

travel the whole town?

Extent (EXT)

By how much
mainAux nsubj

otherAux verb obj

modifiers ?

New Mexico was won by Obama by a

margin of 5% in 2008.

By how much was New

Mexico won by Obama in

2008?

Table 2: The templates of temporal, direction, extent, etc. are leveraged to ask questions about different modifiers.

Answer fragments are highlighted in blue. In passive cases like the last example, we change the template order

from subj-verb-obj to obj-verb-by-subj.

clause can be either TRUE, FALSE, or UNSURE1.

For FALSE clauses, we only generate a boolean

question with a NO answer. For UNSURE clauses,

we do not generate any question. For TRUE clauses

and verbs and collocations not present in the above

set, we rely on the NEG label.

3.6 VerbNet Predicate Templates

While SRL’s event-based representations have per-

mitted us to generate questions that talk about the

roles participants of an event play, we exploit Verb-

Net’s sub-event representation to ask questions on

1Unsure clauses appear in one-way implicatives when it’s
unclear if the clause is true or false under either an affirmative
or a negative parent clause.

how participants’ states change across the time

frame of the event. In Figure 2, the event mur-

der (VerbNet class murder-42.1) results in a final

state in which the participant Julius Caesar is in a

not-alive state.

Each class in VerbNet (Schuler, 2005; Brown

et al., 2019) includes a set of member verbs,

the thematic roles used in the predicate-argument

structure, accompanied with flat syntactic patterns

and their corresponding semantic predicates rep-

resented in neo-Davidsonian first-order-logic for-

mulation. These semantic predicates bring forth a

temporal sequencing of sub-events tracking how

participants’ states change over the course of the

event. The advantage is to be able to ask questions
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Figure 3: VerbNet Predicate Question Generation.

All the predicates of the two sub-events e4 and e5
(HAS POSSESSION) would be considered since e3
possesses a process-oriented predicate TRANSFER.

COST is the predicate of the main event E.

bearing a surface form different from the source

sentence but which are driven by reasoning rather

than just being paraphrastic. For example, in the

sentence, “Brutus murdered Julius Caesar”, the

event murder-42.1 entails a final state of “death” or

the Patient participant not being alive at the end of

the event. So, we construct a template “mainAux

the Patient otherAux not alive?”. Similarly, the

event pay-68-1 results in a final state in which the

Recipient “Perry” has possession of “$100” and the

Agent “John” has possession of “the car”, against

which we define the templates as shown in Figure 3.

We formulate two sets of questions:

boolean type and which-type questions ask-

ing specifically about these states. We

create templates for VerbNet’s stateful pred-

icates like has location, has possession,

has information, seem, has state, cost, de-

sire, harmed, has organization role, together,

social interaction, authority relationship, etc.

which are present in 64.4% of the member verbs

in VerbNet2. We outline a few of the templates in

Table 3.

During inference time, we first compute the Verb-

Net sense, the associated thematic role mapping,

2Out of 4854 member verbs, there are 3128 members
whose syntactic frame contains at least one of these predi-
cates.

and syntactic frame (along with the predicates) with

the help of Brown et al. (2019)’s parser. VerbNet’s

predicates are governed by the sub-events in which

they occur. Although VerbNet’s representation lays

out a sequence of sub-events, no sub-event is ex-

plicitly mentioned as the final one3. We choose all

the predicates of those sub-events which are pre-

ceded by other sub-events which possess at least

one process-oriented predicate.4

3.7 PropBank Argument Descriptions

PropBank rolesets’ course-grained annotation

of verb-specific argument definitions (“killer”,

“payer”, etc.) to represent semantic roles offers

robustly specific natural language descriptions to

ask questions about the exact roles participants play.

Nonetheless, not all descriptions are suitable to be

utilized directly in rigid templates. So, we incor-

porate back-translation to 1) get rid of grammati-

cal errors propagated from incorrect parsing and

template restrictions, and 2) eliminate rarely used

Prop-Bank descriptions and generate highly proba-

ble questions.

While previous work in rule-based QG has used

SRL templates and WordNet senses to describe

the roles arguments around a verb play, previous

SRL templates have always been verb-agnostic,

and we believe there is a great deal of potential in

PropBank descriptions. Moreover, WordNet super-

senses do not always give rise to acceptable ques-

tions. On manual evaluation, question relevance

decreased after incorporating templates with Word-

Net supersenses. Instead, we make use of Prop-

Bank’s verb-specific natural language argument

descriptions to create an additional set of templates.

VerbNet senses have a one-to-one mapping with

PropBank rolesets via the SemLink project (Palmer,

2009). We hence make use of Brown et al. (2019)’s

parser to find the appropriate PropBank roleset for

a sentence.

However, we observed that a lot of PropBank

descriptions were noisy and made use of phrases

which would be unarguably rare in ordinary par-

lance like “breather” or “truster”. To eliminate

such descriptions, we computed the mean Google

N-gram probabilities (Lin et al., 2012) of all the

PropBank phrases in the timespan of the last 100

3or a sub-event, which is an outcome of a process
4Out of 174 VerbNet predicates, we manually categorize

84 predicates like HAS LOCATION, HAS POSSESSION as
stateful predicates and the remaining ones like DESCRIBE,
TRANSFER, etc. as process-oriented predicates.
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Triggering Predicate
and Thematic

Arguments
Question Template Sample Fact & VerbNet Predicate Generated Question

HAS POSSESSION
(Asset,Recipient)

Who has Asset ?
Recipient

Robert paid $100 to Mary for the cycle.

HAS POSSESSION(Mary,$100)
Who has $100 ? Mary

HARMED
(Patient)

What is harmed ?
Patient

The terrorists bombed the building.

HARMED(the building)

What is harmed ? the

building

NOT ALIVE
(Patient)

Is Patient alive ? No.

According to epics, Vishnu killed the

demon Kaitabh.

NOT ALIVE (the demon Kaitabh)

Is the demon Kaitabh
alive ? No.

Table 3: VerbNet predicate templates (simplified) along with sample questions with the thematic roles highlighted.

A question is created from the concept of “being alive” which is not synonymous with but is an outcome of

“killing”.

Figure 4: Here, “killer” is the natural language descrip-

tion of “Brutus” in the MURDER.01 roleset.

years and kept only those phrases which ranked in

the top 50%.

3.8 Back-Translation

Back-translation has been used quite often in gram-

matical error correction (Xie et al., 2018) and

is well known to translate noisy and ungram-

matical sentences to their cleaner high proba-

bility counterparts. We exploit this observation

to clean questions with noisy and inconsistent

PropBank descriptions like “wanter” (Figure 5).

We use two state-of-the-art (SOTA) pre-trained

transformer models transformer.wmt19.en-de

and transformer.wmt19.de-en from Ott et al.

(2019) trained on the English-German and German-

English translation tasks of WMT 2019.

Figure 6 in the Appendix shows the output of all

the five sets of templates applied together over one

Figure 5: Back-translation and Implicature. Since the

entailed polarity of “murder” is unsure, no questions

are generated.

sentence (along-with implicature).

4 Evaluation and Results

Most of the prior QG studies have evaluated the

performance of the generated questions using au-

tomatic evaluation metrics used in the machine

translation literature. We use the traditional BLEU

scores (Papineni et al., 2002) and compare the per-

formance of Syn-QG on the SQuAD (Rajpurkar

et al., 2016) test split created by Zhou et al. (2017).

BLEU measures the average n-gram precision on a

set of reference sentences. A question lexically and

syntactically similar to a human question would

score high on such n-gram metrics. Despite not

utilizing any training data, Syn-QG performs better

than the previous SOTA on two evaluation met-

rics BLEU-3 and BLEU-4 and close to SOTA on

BLEU-1 and BLEU-2 (Table 4) at the time of sub-

mission. The high scores obtained without conduct-

ing any training arguably shed a little light on the

predictable nature of the SQuAD dataset too.

Besides SRL, Dependency, and NER templates,

R
E
T
R
A
C
T
E
D

https://aclanthology.org/2020.acl-main.69


This paper was retracted. For more information, see https://aclanthology.org/2020.acl-main.69.

759

Architecture BLEU-1 BLEU-2 BLEU-3 BLEU-4

PCFG-Trans (Heilman and Smith, 2010) 28.77 17.81 12.64 9.47
SeqCopyNet (Zhou et al., 2018) 13.02

NQG++ (Zhou et al., 2017) 42.36 26.33 18.46 13.51
MPQG (Song et al., 2017) 13.91

Answer-focused Position-aware model (Sun et al., 2018) 43.02 28.14 20.51 15.64
To the Point Context (Li et al., 2019) 44.40 29.48 21.54 16.37

s2sa-at-mp-gsa (Zhao et al., 2018) 44.51 29.07 21.06 15.82
ASs2s (Kim et al., 2019) 16.17

CGC-QG (Liu et al., 2019) 46.58 30.9 22.82 17.55
Capturing Greater Context (Tuan et al., 2019) 46.60 31.94 23.44 17.76

Natural QG with RL based Graph-to-Sequence (Chen et al., 2019) - - - 17.94
RefineNet (Nema et al., 2019) 47.27 31.88 23.65 18.16

QPP&QAP (Zhang and Bansal, 2019) - - - 18.37

ACS-QG∗ (Liu et al., 2020) 52.30∗ 36.70∗ 28.00∗ 22.05
UNILM∗ (Wang et al., 2020) - - - 24.32

ERNIE-GEN∗ (Xiao et al., 2020) - - - 25.57
UNILMv2∗ (Bao et al., 2020) - - - 26.30
ProphetNet∗ (Yan et al., 2020) - - - 26.72∗

Syn-QG 45.55 30.24 23.84 18.72

Table 4: Automatic Evaluation Results on SQuAD of different QG models. PCFG-TRANS and Syn-QG are two

rule-based models. *Work contemporaneous with or subsequent to the submission of this paper.

System #Questions Generated Avg. #Questions Per Sentence Grammaticality Relevance

H&S 381 3.81 3.49 4.23
NQG 100 1 3.48 3.28

QPP&QAP — — 3.9 4.03
Syn-QG 654 6.54 3.93 4.34

Table 5: Comparison of human evaluation with H&S (Heilman and Smith, 2009), NQG (Du et al., 2017) and

QPP&QAP (Zhang and Bansal, 2019)

System Avg. novel unigrams Avg. novel bigrams Avg. novel trigrams

H&S 23.6 40.64 52.22
Syn-QG (w/o BT) 26.8 43.93 53.4

Syn-QG 39.34 64.08 76.24
SQUAD 42.86 74.2 86.35

Syn-QG (BT vs w/o-BT) 28.78 55.18 67.81

Table 6: The percentage of n-grams of the generated questions which are not present in the source sentence. The

last row indicates the percentage of n-grams not present in the non-backtranslated questions.

Syn-QG’s questions also arise from VerbNet’s pred-

icates and PropBank’s descriptions, which indeed

by nature describe events not mentioned explicitly

within the fact. Like in Figure 3, the sentence with

the event “paid” results in a question with a state-

ful event of “cost”. Deducible questions like these

have a good chance of having a distribution of n-

grams quite different from the source sentences,

possibly exposing the weakness of traditional n-

gram metrics and rendering them less useful for a

task like QG.

In order to have a complete and more reliable

evaluation to gauge the system, we also carry out a

human evaluation using two of the metrics used in

QG-STEC Task B (Rus et al., 2012), namely gram-

maticality, and relevance which we define below.

We compared the questions generated from our sys-

tem against the constituency-based H&S (Heilman

and Smith, 2009), a neural system NQG (Du et al.,

2017) which does not depend on a separate an-

swer extractor and QPP&QAP5 (Zhang and Bansal,

2019) which has outperformed existing methods.

We fed a total of 100 facts randomly picked from

Wikipedia and 5 commercial domains (IT, Health-

care, Sports, Banking and Politics) combined, to

each of the four systems. We then conducted a

crowd-sourced evaluation over Amazon Mechani-

cal Turk for the generated questions.

• Grammatical Correctness: Raters had to

rate a question on how grammatically correct

5Since the QPP&QAP model does not have a separate
answer extractor, we use the answer spans computed from
Syn-QG (412 in total after discarding overlaps).
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it is or how syntactically fluent it is, disregard-

ing its underlying meaning.

• Relevance Score: Raters had to give a score

on how relevant the generated question is to

the given fact. The relevance score helps us

gauge whether the question should have been

generated or not irrespective of its grammati-

cality.6

Each question was evaluated by three people scor-

ing grammaticality and relevance on a 5 point Lik-

ert scale. The inter-rater agreement (Krippendorff’s

co-efficient) among human evaluations was 0.72.

The instructions given to the Mturk raters are pro-

vided in the Appendix Figure 7. The results of the

evaluation are shown in Table 5. Syn-QG gener-

ates a larger number of questions than H&S and

performs strongly on grammaticality ratings. Syn-

QG is also able to generate highly relevant ques-

tions without the use of a ranker. Also, rule-based

approaches seem to be much better at generating

relevant questions than neural ones.

QG-STEC also used variety and question types

as their evaluation criteria and rewarded systems

to generate questions meeting a range of specific

question types. Syn-QG’s questions cover each of

those question types.

Since many times, despite the ability to para-

phrase (Table 6), back-translated outputs tend to

change the meaning of the original sentence, we

also measured back-translation’s impact on the

above QG metrics. We considered questions gen-

erated from 50 facts of Wikipedia measuring the

grammaticality and relevance before and after back-

translation. While grammaticality increased from

3.54 to 4.11, question relevance fell a bit from 3.96

to 3.88. This observation, along with the perfor-

mance of QPP&QAP shown in Table 4, accentu-

ates that while neural models are learning syntactic

structures well, there is still some progress to be

made to generate relevant questions.

5 Discussion

We introduced Syn-QG, a set of broad coverage

rules leveraging event-based and sub-event based

sentence views along with verb-specific argument

descriptions. Automatic and manual evaluations

6In cases when the grammaticality is extremely low like 1
or 2, the relevance score will also tend to be low. Otherwise,
we assume that minor grammatical variations can be ignored
while gauging relevance.

show that Syn-QG is able to generate a large num-

ber of diverse and highly relevant questions with

better fluency. Verb-focused rules help approach

long-distance dependencies and reduce the need

for explicit sentence simplification by breaking

down a sentence into clauses while custom rules

like implications serve a purpose similar to a re-

ranker to discard irrelevant questions but with in-

creased determinism. While our work focuses on

sentence-level QG, it would be interesting to see

how questions generated from VerbNet predicates

would have an impact on multi-sentence or passage

level QG, where the verb-agnostic states of the par-

ticipants would change as a function of multiple

verbs. The larger goal of QG is currently far from

being solved. Understanding abstract representa-

tions, leveraging world knowledge, and reasoning

about them is crucial. However, we believe that

with an extensible and transparent architecture, it is

very much possible to keep improving the system

continuously in order to achieve this larger goal.
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A Appendices

Algorithm 2 Dependency Heuristics

{d0 . . . dn} ← dependency(w0 . . . wn)
loop i = 0, until i = n:

if parent(di)! = null then

dv ← parent(di)
{A0 . . . ACAU} ← SRL(dv)
subj ← A0

if di ∈ A1 then

obj ← A1

else

obj ← A2

Ax ←
∑

(A3, A4, ...ATMP )
verb← {dv,modals, negation}
template← deptype ← di
QA← template(subj, obj, verb, Ax)
close;

Algorithm 3 Named Entity Heuristics

{SRL1 . . . SRLs} ← SRL(w0 . . . wn)
loop j = 0, until j = s:

if SRLj contains A0 or A1 and at least 1Am

then

{A0 . . . ACAU , ATMP } ← SRLj

loop Ax ∈ SRLj if Ax contains a NE:

subj ← A0

A−

x ←
∑

(A3, A4, ...ATMP −Ax)
verb← {Av,modals, negation}
template← NEtype ← Ax

QA← template(subj, Ax, verb, A
−

x )
close;
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Potential
Short Answer

(Named
Entities)

Question Template Sample Fact Generated Question

Location

Where mainAux subj
otherAux verb obj

modifiers ? The event was organized at Times Square.
Where was the event

organized?

Person

Who mainAux subj
otherAux verb obj
modifiers ? Whom

mainAux obj otherAux
verb modifiers

WestWorld brought back the life of the

roboticist Craig Smith.

Whom did WestWorld bring

back the life of?

Date

When mainAux subj
otherAux verb obj

modifiers ?
Donald Trump won the elections in the year

2016

When did Donald Trump

win the elections?

Number

How many mainAux
subj otherAux verb obj

modifiers? A thousand will not be enough for the event.
How many will not be

enough for the event?

Phone Number

At what number
mainAux subj otherAux

verb obj modifiers ?

The pizza guy can be reached at

+91-748-728-781

At what phone number
can the pizza guy be

reached?

Duration

For how long mainAux
subj otherAux verb obj

modifiers?

Lauren would be staying in the hut for around

10 minutes.

For how long would Lauren

be staying at the hut?

Organization

Which organization
mainAux subj otherAux

verb obj modifiers?

Deepak joined the big firm, the United

Nations.

Which organization did

Deepak join?

Table 7: SRL arguments which contain a named entity are fully considered as a short answer “for around 10

minutes” rather than only the named entity span “10 minutes”. SRL arguments are highlighted in blue.

Figure 6: Questions generated by each set of heuristics for one sentence which are further sent for back-translation.
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Figure 7: The MTURK template used for collecting responses for measuring question relevance and grammatical-

ity.
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