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Spiking neural networks are well-suited for spatiotemporal feature detection and learning,

and naturally involve dynamic delay mechanisms in the synapses, dendrites, and

axons. Dedicated delay neurons and axonal delay circuits have been considered when

implementing such pattern recognition networks in dynamic neuromorphic processors.

Inspired by an auditory feature detection circuit in crickets, featuring a delayed

excitation by post-inhibitory rebound, we investigate disynaptic delay elements formed

by inhibitory–excitatory pairs of dynamic synapses. We configured such disynaptic delay

elements in the DYNAP-SE neuromorphic processor and characterized the distribution

of delayed excitations resulting from device mismatch. Interestingly, we found that the

disynaptic delay elements can be configured such that the timing and magnitude of

the delayed excitation depend mainly on the efficacy of the inhibitory and excitatory

synapses, respectively, and that a neuron with multiple delay elements can be tuned

to respond selectively to a specific pattern. Furthermore, we present a network with one

disynaptic delay element that mimics the auditory feature detection circuit of crickets, and

we demonstrate how varying synaptic weights, input noise and processor temperature

affect the circuit. Dynamic delay elements of this kind open up for synapse level temporal

feature tuning with configurable delays of up to 100 ms.

Keywords: pattern recognition, spiking neural network (SNN), neuromorphic, delay line, embedded intelligence,

DYNAP, insect-inspired computing

1. INTRODUCTION

Processing of temporal patterns in signals is a central task in perception, learning, and control
of behavior in both biological and technological systems (Indiveri and Sandamirskaya, 2019).
Unlike digital circuits, which are designed to perform precise logic and arithmetic operations,
neurons are unreliable, stochastic and slow information processing entities which form networks
that function reliably through distributed information processing and adaptation. Neural circuits
are therefore interesting models for development of mixed signal analog–digital processing and
perception systems implemented in resource efficient nano-electronic substrates that are subject
to device mismatch and failure (Strukov et al., 2019). In particular, energy-efficient neuromorphic
processors and sensor systems have been developed by matching the device dynamics to neural
dynamics, for example in the form of CMOS analog circuits operating in the subthreshold regime
where semiconductor electron diffusion mimics ion diffusion in biological ion channels (Mead,
1990; Indiveri et al., 2011; Schuman et al., 2017). The dynamic nature and spatial structure of
biological neurons (synapses, dendrites, axons, etc.) implies that neurons are inherently capable of
temporal pattern recognition (Mauk and Buonomano, 2004) and pattern generation, also without
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recurrent connections. Furthermore, the event-driven neurons
in Spiking Neural Networks (SNNs) are typically sparsely
activated and offer an efficient way of doing inference (Rueckauer
et al., 2017). SNNs with biologically plausible dynamics thus
offer an interesting alternative model for temporal and spatial
(spatiotemporal) pattern recognition (Pfeiffer and Pfeil, 2018),
which can be further developed with guidance from biology.
However, it is an open problem how such neuromorphic pattern
recognition solutions can be engineered in practical applications
such that the dynamic nature of the hardware is efficiently
exploited.

Delays are essential for neuromorphic processing of temporal
patterns in spike trains (Sheik et al., 2013) and have been
studied since the early 90s, see for example the work by Van
der Spiegel et al. (1994). Temporal delays have for example
been implemented in neuromorphic processors in the form
of multicompartment models (Hussain et al., 2015; Schemmel
et al., 2017) and dedicated, specifically tuned delay neurons in
the network architecture (Sheik et al., 2012a,b; Coath et al.,
2014). In the latter case the resulting SNN is similar to a
model of the auditory thalamocortical system described by
Coath et al. (2011). Nielsen et al. (2017) present a low-power
pulse delay and extension circuit for neuromorphic processors,
which implements programmable axonal delays ranging from
fractions of microseconds up to tens of milliseconds. In
polychronous (Izhikevich, 2006) architectures, asynchronously
firing neurons project to a common target along delay lines
so that spikes arrive at the target neuron simultaneously, thus
causing it to fire. A polychronous SNN with delay adaptation
for spatiotemporal pattern recognition has been implemented
in a Field-Programmable Gate Array (FPGA) and in a custom
mixed-signal neuromorphic processor (Wang et al., 2013, 2014).

The typical signal propagation delays in axons (Swadlow,
1985) and dendrites (Agmon-Snir and Segev, 1993) of cortical
neurons range up to tens of milliseconds. Furthermore, the
dynamics of synapses also play an important role for the
processing of temporal and spatiotemporal patterns (Mauk and
Buonomano, 2004) and offer efficient dynamic mechanisms for
sequence detection and learning (Buonomano, 2000). Synaptic
dynamics enable pattern recognition architectures with high
fan-in, which is beneficial in neuromorphic systems where
multicompartmentmodeling, axon/neuron reservation and spike
transmission is costly. Rost et al. (2013) present an SNN
architecture with spike frequency adaptation and synaptic short-
term plasticity that models auditory pattern recognition in
cricket phonotaxis. There, synaptic short-term depression and
potentiation is implemented to make neurons act as high-
pass and low-pass filters, respectively. The resulting signals
are combined in a neuron that acts as a band-pass filter and
thereby responds to a frequency band that is matched to the
particular sound pulse period of the crickets. Insects offer
interesting opportunities to develop neuromorphic systems by
modeling and finding guidance from their neural circuits, where
the relatively low complexity allows neuromorphic engineers to
transfer the principles of neural computation to applications
(Dalgaty et al., 2018).

Our present investigation is inspired by a more recent
description of the cricket auditory system (Schöneich et al.,

2015) and preliminary work (Nilsson, 2018) indicating that
dynamic synapses in a neuromorphic processor can be used to
imitate the post-inhibitory rebound of the non-spiking delay
neuron in the auditory circuit of the cricket. We configured
disynaptic delay elements composed of inhibitory and excitatory
dynamic synapses in the low-power Dynamic Neuromorphic
Asynchronous Processor (DYNAP) model SE from aiCTX
(Moradi et al., 2018). DYNAP-SE features reconfigurable
mixed-mode analog/digital neuron and synapse circuits with
biologically faithful dynamics. We investigated the properties
and parameter dependence of the disynaptic delay elements
in a population of neuromorphic neurons and found that
delayed excitations of up to 100 ms can be achieved, and
that the parameters can be selected so that the delay and
delayed excitation amplitude depends mainly on the synaptic
efficacies. Furthermore, we imitated the post-inhibitory rebound
of the non-spiking neuron in the auditory circuit of the cricket
(Schöneich et al., 2015) with one disynaptic element and
investigated a circuit with three spiking neurons that reliably
detects the species-specific sound-pulse interval of 20 ms. Since
delays of tens of milliseconds are useful for implementing
different kinds of neural circuits, cortical circuits in particular,
the easily configurable properties of the disynaptic delay elements
described and characterized in the following open up for
further implementations and studies of SNN architectures in
neuromorphic processors.

2. MATERIALS AND METHODS

2.1. The DYNAP-SE Neuromorphic
Processor
The DYNAP-SE neuromorphic processor uses a combination
of low-power, inhomogeneous sub-threshold analog circuits
and fast, programmable digital circuits for the emulation of
SNN architectures with bio-physically realistic neuronal and
synaptic behaviors (Moradi et al., 2018), making it a platform
for spike-based neural processing with co-localized memory
and computation (Indiveri and Liu, 2015). Specifically, the
DYNAP-SE comprises four-core neuromorphic chips, each
with 1k analog silicon neuron circuits. Each neuron has
a Content-Addressable Memory (CAM) block containing 64
addresses representing the presynaptic neurons that the neuron
is connected to. Information about spike-activity is transmitted
between neurons in an Address-Event Representation (AER)
digital routing scheme. Four different types of synaptic behavior
are available for each connection: Fast excitatory, slow excitatory,
subtractive inhibitory, and shunting inhibitory. The dynamic
behaviors of the neuronal and synaptic circuits of the DYNAP-
SE are governed by analog circuit parameters which are
set by programmable on-chip temperature compensated bias-
generators (Delbruck et al., 2010).

The inhomogeneity of the analog low-power circuits that
constitute the neurons and synapses of the DYNAP-SE
neuromorphic processor is due to devicemismatch, and gives rise
to variations in the dynamic behaviors of the silicon neurons and
synapses that the analog circuits constitute. These variations are
analogous to differences in values of the parameters governing
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the differential equations that model the neuronal and synaptic
dynamics implemented in the chips. Consequently, one set
value of a neuronal or synaptic bias parameter, in one core of
the DYNAP-SE, results in a distribution of the corresponding
parameter values in the population of neurons and synapses of
that core.

2.1.1. Spiking Neuron Model
In the DYNAP-SE, neurons are implemented according to the
Adaptive Exponential Integrate-and-Fire (AdEx) spiking neuron
model (Brette and Gerstner, 2005). The model describes the
neuron membrane potential, V , and the adaptation variable, w,
with two coupled non-linear differential equations,

C
dV

dt
= −gL(V − EL)+ gL1Te

(V−VT )/1T − w+ I, (1a)

τw
dw

dt
= a (V − EL) − w, (1b)

where C is the membrane capacitance, gL the leak conductance,
EL the leak reversal potential, VT the spike threshold, 1T the
slope factor, I the (postsynaptic) input current, τw the adaptation
time constant, and a the subthreshold adaptation. Themembrane
potential increases rapidly for V > VT due to the non-linear
exponential term, which leads to rapid depolarization and spike
generation at time t = tspike, where the membrane potential and
adaptation variable are updated according to

V → Vr , (2a)

w → w+ b, (2b)

where Vr is the reset potential and b is the spike-
triggered adaptation.

2.1.2. Dynamic Synapse Model
In the DYNAP-SE, synapses are implemented with sub-threshold
Differential Pair Integrator (DPI) log-domain filters proposed by
Bartolozzi and Indiveri (2007) and further described by Chicca
et al. (2014). The response of the DPI for an input current Iin can
be approximated with a first-order linear differential equation,

τ
d

dt
Iout + Iout =

Ith

Iτ
Iin, (3)

where Iout is the (postsynaptic) output current, τ and Iτ are
time constant parameters, and Ith is an additional control
parameter that can be used to change the gain of the filter. This
approximation is valid in the domain where Iin≫Iτ and Iout≫IIth .
The AdEx neuron model and the synapse equation are used in
the following to describe the disynaptic delay elements that we
configure in the DYNAP-SE in order to approximate the cricket
auditory feature detection circuit.

2.2. Cricket Auditory Feature Detection
Circuit
We consider the auditory feature detection circuit for sound
pattern recognition in the brain of female field crickets, described
by Schöneich et al. (2015), which is used for the recognition of

the sound pulse pattern of the male calling song. The circuit,
consisting of five neurons, responds selectively to a species-
specific sound-pulse interval of roughly 20 ms, by using a
detection mechanism that relies on the coincidence of a direct
neural response and a delayed response to the received sound
pulses. In this circuit, a coincidence detecting neuron, LN3,
receives excitatory projections along two separate pathways; one
directly from the ascending neuron AN1, and the other via the
inhibitory neuron LN2 followed by a non-spiking delay neuron
LN5, which we approximate here with a delay element formed by
an inhibitory–excitatory synapse pair, see Figure 1 (adapted from
Nilsson 2018).

The non-spiking inhibitory neuron, LN5, in the cricket
projects to LN3 and provides a delayed excitation of LN3 due to
Postinhibitory Rebound (PIR). The duration of the delaymatches
that of the species-specific sound Interpulse Interval (IPI) of
roughly 20 ms that the circuit is specialized for detecting, so
that the delayed excitation arrives at the coincidence detecting
neuron, LN3, simultaneously with the excitation caused by the
subsequent sound pulse. The coincident excitations of LN3
enables it to fire and excite the feature detecting neuron, LN4,
which, in turn, signals the feature detection by firing.

2.3. Disynaptic Delay Elements
The PIR of the non-spiking neuron LN5 in the cricket auditory
feature detection circuit provides the delayed excitation of LN3
required for feature detection. For a general discussion of such
delays, see Buonomano (2000) and Mauk and Buonomano
(2004). Spike-based dynamic neuromorphic processors, such as
the DYNAP-SE, cannot directly implement non-spiking neurons,
such as the LN5 neuron in the cricket circuit, and flexible routing
of such analog signals is problematic. Therefore, we approximate
LN5 and PIR with an inhibitory–excitatory pair of dynamic
synapses with different time constants, so that the sum of the
two postsynaptic currents initially is inhibitory and subsequently
becomes excitatory some time after presynaptic stimulation. For
the inhibitory effect, a synapse of the subtractive type is used in
the DYNAP-SE. As its name implies, the subtractive inhibitory
synapse type allows for combining excitation and inhibition
dynamics by summing inhibitory and excitatory postsynaptic
currents, as opposed to the shunting synapse type which inhibits
the neuron using a different mechanism. This summation of
postsynaptic currents is the central mechanism of the proposed
disynaptic delay element. For the excitatory part, the slow
synapse type is used, leaving the fast synapse type available for
bias configuration and use for stimulation of the postsynaptic
neuron; in this case, for the projection from AN1 to LN3.

The proposed disynaptic delay element can be modeled
with Equation (3), and the membrane potential resulting
from presynaptic stimulation can be illustrated by solving
Equation (1). Figure 2 shows a numerical simulation of
the disynaptic delay element model for a 20 ms constant
input current that represents the presynaptic stimulation, as
in Figure 1.

Since the simulated neuron is in the subthreshold regime
(V ≪ VT), Equation (1) is simplified by setting the exponential
term to zero and omitting the adaption variable. The neuron and
synapse parameters are selected so that the membrane potential
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FIGURE 1 | Neuromorphic feature detection circuit inspired by an auditory feature detection circuit in field crickets. (A) SNN architecture comprising four spiking

neurons, on which open circles and solid disks denote, respectively, excitatory and inhibitory synapses. The disynaptic delay element imitates the dynamics of the

non-spiking delay neuron, LN5, in the feature detection circuit of the cricket (Schöneich et al., 2015). (B) Measured neuron membrane potentials in the DYNAP-SE,

following a 20-ms pulse stimulus. (C) Similarly, membrane potentials resulting from a pair of 20-ms stimulus pulses with a 20-ms interval, which causes the feature

detecting neuron, LN4, to fire. By overcoming its inhibition and spiking, LN4 signals the feature detection.

FIGURE 2 | Simulation of the disynaptic delay element model. (A) Sum of inhibitory and excitatory postsynaptic currents from the delay element. (B) Resulting

postsynaptic neuron membrane potential.

is comparable to the potential measured in the hardware, and
should thus not be directly compared with biological potentials
and threshold values.

Dynamic disynaptic elements of this type are expected to
provide a delayed excitation that qualitatively matches the effect

of PIR in the output of non-spiking delay neurons like the
LN5. Furthermore, we expect that the time delay and relative
amplitude of inhibition and excitation can be configured, for
example by modifying the synapse time constants and efficacies.
The experimental results presented below demonstrate that this
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is indeed feasible, and that for some bias settings it is possible to
control the time delay and delayed excitation amplitude with the
synaptic efficacies only.

2.3.1. Neuromorphic Implementation
The disynaptic delay elements were configured in the DYNAP-
SE in two different ways. First, we aimed to mimic the post-
inhibitory rebound in the cricket auditory circuit with a delay
of about 20 ms. The delay elements were stimulated with four
spikes equally spaced over the ∼ 20-ms stimulus-response of
LN2 for a 20-ms sound pulse, which represents the projection
from LN2 to LN5 in the cricket circuit. The time constant of
the inhibitory synapse of the delay element was set so that
the resulting inhibition of LN3 corresponded to the inhibition
caused by LN5 in the cricket; that is, a couple of ms longer
than the 20-ms sound-pulse duration. The excitatory synapse
was tuned so that the LN3 excitation lasts somewhat longer than
that of the initial inhibition, approximately to the end of the
corresponding PIR excitation of LN5 in the cricket. The weight of
the inhibitory synapse was set higher than that of the excitatory
synapse, such that the sum of inhibition and excitation turned
out negative, thus inhibiting the neuron for the duration of the
delay. For the excitatory synapse, the weight was set to yield
a substantial excitation of the postsynaptic neuron following
the inhibition, while not generating spikes without additional
synaptic stimulation. In this manner, the effect of the non-spiking
LN5 on LN3 is imitated with the summation of an inhibitory
postsynaptic current and an excitatory postsynaptic current
produced by two synapses on LN3. The resulting DYNAP-SE bias
values are found in Table 1.

TABLE 1 | Bias parameter values used for the characterization of individual

disynaptic delay elements in the DYNAP-SE.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Neuronal IF_AHTAU_N 7 35 L

IF_AHTHR_N 7 1 H

IF_AHW_P 7 1 H

IF_BUF_P 3 80 H

IF_CASC_N 7 1 H

IF_DC_P 0 40 H

IF_NMDA_N 1 213 H

IF_RFR_N 4 40 H

IF_TAU1_N 5 39 L

IF_TAU2_N 0 15 H

IF_THR_N 6 4 H

Synaptic NPDPIE_TAU_S_P 6 120 H

NPDPIE_THR_S_P 1 30 H

NPDPII_TAU_F_P 5 100 H

NPDPII_THR_F_P 3 60 H

PS_WEIGHT_EXC_S_N 1 110 H

PS_WEIGHT_INH_F_N 1 130 H

PULSE_PWLK_P 5 40 H

R2R_P 4 85 H

Given the large parameter space of a dynamic neuromorphic
processor like the DYNAP-SE, we then explored different ways
to simplify the configuration of the disynaptic delay elements
for delays up to about 100 ms. One identified possibility is to
lower the constant injection current of the neurons receiving
the delayed signal, to such an extent that the inhibition by the
delay elements make the neuron reach its minimum membrane
potential. This results in delay elements for which the duration
of inhibition, τinh, can be controlled with the inhibitory weight of
the delay element, winh. Furthermore, the amplitude of the post-
inhibitory excitation, Vmax, is then controlled by the excitatory
weight of the delay element, wexc, as well as by varying the
number of presynaptic spikes stimulating the delay element.
The DYNAP-SE bias values for this configuration of the delay
elements are found in Table 2.

2.3.2. Characterization
For the purpose of characterization, the proposed disynaptic
delay elements were implemented, in parallel, in one core of
a DYNAP-SE neuromorphic processor; one delay element on
each of the 256 neurons in the core. All of these neurons
were then stimulated as described in section 2.3.1, and their
membrane potentials were measured with an oscilloscope.
To avoid oscilloscope and DYNAP-SE time synchronization
issues, we analyzed the membrane potential measurements
without reference to the precise timing of the presynaptic
stimulation. The full duration at half minimum of the inhibition
and the full duration at half maximum of the subsequent
excitation, see Figure 2, can be determined from membrane
potential measurements without reference to the timing of
presynaptic spikes. Thus, we define the timescales of inhibition
and delayed excitation in terms of the Full Duration at
Half Maximum/Minimum (FDHM). We characterized the
disynaptic delay elements with the distributions of the following
five quantities: the minimum membrane potential, Vmin, the
maximum membrane potential, Vmax, the FDHM of inhibition,
τinh, the FDHM of excitation, τexc, and the time duration from
the FDHM onset of the inhibition to the FDHM onset of the
excitation, τdelay. These quantities are illustrated in Figure 3, and
allowed us to investigate the effect of different bias parameter
settings on the disynaptic delay elements in a population of
neurons in the DYNAP-SE. This way the bias parameter values
of the delay elements could for example be tuned to imitate the
behavior of the delay neuron LN5 in the cricket. Further details
on the experimental settings are described in section 2.5.

2.4. Neuromorphic Feature Detection
Circuits
2.4.1. Cricket Circuit
For the implementation of the cricket auditory feature
detection circuit, as described in section 2.2, in the DYNAP-SE
neuromorphic processor, stimuli representing the projections
from AN1 upon auditory stimulation were generated in the form
of 11 spikes evenly distributed over the pulse duration of 20 ms
(in the noise-free case), yielding 10 Interspike Intervals (ISIs)
of 2 ms each. Each of the remaining three neurons of the
circuit, see Figure 1, were modeled on separate cores in one
chip of the DYNAP-SE. The DYNAP-SE bias parameter values
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FIGURE 3 | Characteristics of disynaptic delay elements configured in the DYNAP-SE neuromorphic processor. (A) Postsynaptic membrane potential vs. time,

illustrating the delayed excitation resulting from a presynaptic pulse. (B) Distribution of the maximum measured membrane potential, Vmax , resulting from a presynaptic

pulse. (C) Similarly, the distribution of the minimum measured membrane potential, Vmin. (D) Distribution of the inhibitory timescale, τinh, defined as the full width at half

minimum. (E) Distribution of the excitatory timescale, τexc, defined as the full width at half maximum. (F) Distribution of the delay time, τdelay , defined as the duration

from the onset of τinh to the offset of τexc. The distributions in panels (B–F) were obtained via characterization of one DYNAP-SE core, comprising, in parallel, one

disynaptic delay element on each of the 256 neurons, with biases configured according to Table 1.

TABLE 2 | Bias parameter values used for configuration of the disynaptic delay

elements in the DYNAP-SE.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Neuronal IF_DC_P 1 30 H

Synaptic NPDPIE_TAU_S_P 7 210 H

NPDPIE_THR_S_P 1 30 H

NPDPII_TAU_F_P 6 80 H

NPDPII_THR_F_P 3 60 H

PS_WEIGHT_EXC_S_N 0 8–80 H

PS_WEIGHT_INH_F_N 0 1–150 H

PULSE_PWLK_P 5 40 H

R2R_P 4 85 H

Neuronal parameters not defined in this table were set according to Table 1.

for the neurons LN2, LN3, and LN4 are found in Tables 3–5,
respectively, and the neuromorphic implementations of these
neurons are described in the following.

For the implementation of the inhibitory neuron, LN2, a
single neuron on a reserved core was used. This neuron was

TABLE 3 | Bias parameter values used for the inhibitory neuron, LN2, in the

DYNAP-SE implementation of the cricket feature detection network.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Neuronal IF_AHTAU_N 7 35 L

IF_AHTHR_N 7 1 H

IF_AHW_P 7 1 H

IF_BUF_P 3 80 H

IF_CASC_N 7 1 H

IF_DC_P 7 2 H

IF_NMDA_N 7 1 H

IF_RFR_N 4 208 H

IF_TAU1_N 6 21 L

IF_TAU2_N 5 15 H

IF_THR_N 3 20 H

Synaptic NPDPIE_TAU_F_P 5 165 H

NPDPIE_THR_F_P 1 100 H

PS_WEIGHT_EXC_F_N 0 190 H

PULSE_PWLK_P 0 43 H

R2R_P 4 85 H
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TABLE 4 | Bias parameter values used for the coincidence detecting neuron,

LN3, in the DYNAP-SE implementation of the cricket feature detection network.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Synaptic NPDPIE_TAU_F_P 5 200 H

NPDPIE_TAU_S_P 6 120 H

NPDPIE_THR_F_P 1 30 H

NPDPIE_THR_S_P 1 30 H

NPDPII_TAU_F_P 5 100 H

NPDPII_THR_F_P 3 60 H

PS_WEIGHT_EXC_F_N 1 144–161 H

PS_WEIGHT_EXC_S_N 1 110 H

PS_WEIGHT_INH_F_N 1 130 H

PULSE_PWLK_P 5 40 H

R2R_P 4 85 H

Neuronal parameters set according to Table 1.

TABLE 5 | Bias parameter values used for the feature detecting neuron, LN4, in

the DYNAP-SE implementation of the cricket feature detection network.

Parameter type Parameter name Coarse

value

Fine

value

Current

level

Synaptic NPDPIE_TAU_F_P 5 80 H

NPDPIE_THR_F_P 1 140 H

NPDPII_TAU_F_P 6 180 H

NPDPII_THR_F_P 3 140 H

PS_WEIGHT_EXC_F_N 0 71–82 H

PS_WEIGHT_INH_F_N 0 60 H

PULSE_PWLK_P 0 43 H

R2R_P 4 85 H

Neuronal parameters set according to Table 3.

set to receive the generated stimulation representing AN1 by
assigning a synaptic connection of the fast excitatory type. The
bias parameter values from section 5.7.3 in the DYNAP-SE user
guide 1 were used as reference. The parameter values of the fast
excitatory synapse were then adjusted in order to model the
behavior of LN2 as observed in the cricket. The synaptic time
constant, NPDPIE_TAU_F_P, was adjusted to match that of
the cricket, and the synaptic weight, PS_WEIGHT_EXC_F_N,
and threshold parameter, NPDPIE_THR_F_P, were adjusted for
LN2 to respond with the right amount of four to five spikes for
each input pulse.

For the coincidence detecting neuron, LN3, the proposed
delay elements were implemented according to the earlier
description. An excitatory connection of the fast type was added
for LN3 to receive the projection from AN1.

For the excitatory connection from LN3 to the feature
detecting neuron LN4, a synapse of the fast type was used,
and, for the inhibitory connection from LN2 to LN4, a synapse
of the subtractive type was used. Bias parameter values from

1https://aictx.ai/technology/

section 5.7.3 in the DYNAP-SE user guide were used for neuronal
parameters, and as reference values for the fast excitatory
synapses. For the fast inhibitory synapse, bias values from
section 5.7.5 in the user guide were used as reference. The
bias parameters, time constant, threshold and weight, for both
synapse types, were then hand-tuned in order to approximate the
behavior of LN4 in one DYNAP-SE neuron, so as to make LN4
spike, thus signaling feature detection, for stimuli with IPIs of 20
ms, but not for IPIs of 0, 10, 30, 40, and 50 ms.

2.4.2. Single-Neuron Feature Detector
We further investigated the possibility that a single neuron in the
DYNAP-SE with multiple disynaptic delay elements can respond
selectively to spatiotemporal spike patterns, which match the
difference in the delay times resulting from device mismatch.
Specifically, we configured a neuron with two inputs via two
different disynaptic delay elements. The input patterns consist
of spike pairs, one spike for each delay element, with a variable
spike-time interval. Patterns with spike-time intervals that match
the delay-time difference between the two delay elements should
generate postsynaptic currents with coincident maxima, thus
resulting in maximum excitation of the neuron.

The neuron and delay elements were configured as described
in section 2.3.1 with bias parameter values according to Table 2,
with a few modifications: The threshold, IF_THR_N = (6, 135),
and excitatory synaptic efficacy was modified so that the
neuron generates output spikes for two input spikes, and the
inhibitory weight of the delay elements wasmodified accordingly.
Furthermore, the time-constant of the excitatory synapse was
lowered to compensate for the strong excitation required,
NPDPIE_TAU_S_P = (5, 70) and NPDPIE_THR_S_P =

(0, 210). The numbers in parentheses denote coarse and fine
parameter values of the DYNAP-SE, respectively.

The synapses were selected with an off-line Hebbian-like
learning rule such that, for the spike patterns considered,
the neuron responded selectively to spike patterns with
intermediately long intervals, but not to spike patterns with
shorter or longer intervals. Spike patterns were generated as
described in the next section, and the neuron was stimulated one
hundred times with each pattern. Based on these experiments the
average probability of the neuron to spike for each type of pattern
was determined.

2.5. Experiments
In all of the experiments conducted in this work, the DYNAP-
SE neuromorphic processor was controlled using the cAER
event-based processing framework for neuromorphic devices.
More specifically, a custom module making use of the tools for
configuration andmonitoring provided by cAERwas created and
added to the framework. All stimuli were synthetically generated
using the built-in spike generator in the FPGA of the DYNAP-
SE, which generates spike-events according to assigned ISIs and
virtual source-neuron addresses.

The DYNAP-SE features analog ports for monitoring of
neuron membrane potentials. For measurements of these
potentials, the 8-bit USB oscilloscope SmartScope by LabNation
was used. Since these measurements only capture the neuron
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FIGURE 4 | Examples of four different membrane potentials measured in the characterization of the delay elements summarized in Figure 3. These variations were

observed in one core with 256 neurons, with biases configured according to Table 1.

FIGURE 5 | Response of LN4 for double-pulse stimuli with IPIs of 0, 10, 20, 30, 40, and 50 ms, respectively. (A) Noiseless case. (B) Example for 20% noise, with a

false positive for the 10-ms IPI.
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membrane potential, there is no information about the precise
relative timing of spike-events in the resulting data. Because
of this, the durations of inhibition and excitation of the
delay elements were defined in terms of the FDHM as
described above.

For the extraction of the delay parameters defined in section
2.3.1, the stimulus was repeatedly broadcast to all neurons
in the core, and for each stimulation cycle one neuron was
monitored with the oscilloscope using the programmable analog
outputs of the DYNAP-SE. The stimulation cycle was given
a duration of 0.5 s, in order for the neurons to relax to
a resting state before and after stimulation. At the initial
state of rest, the resting potential was automatically estimated
for each neuron. The resting potential was subsequently
subtracted from the measurement data, such that the resulting
resting potentials are zero. This was done to make the
parameter values of the different neurons comparable with
each other.

3. RESULTS

3.1. Characteristics of Delay Elements
Results from the characterization of the disynaptic delay
elements, implemented in parallel on each of the 256 neurons

in one core of the DYNAP-SE neuromorphic processor, are
presented in Figure 3.

The figure shows the pulse-response of one typical delay
element from the resulting population, along with histograms
of the distributions of parameters that characterize each delay
element. The resulting values of Vmax range from 3 to 143 mV
and center around 105 mV. Vmin has a thicker tail of the
distribution and range from −310 to −20 mV, with most values
between −100 and −50 mV. The time constant distributions
have relatively thin tails. τinh has values between 6 and 47ms with
probability peaking between 26 and 28 ms. τexc ranges from 0 to
38 ms with probability peaking between 18 and 20 ms, and τdelay
spans between 22 and 51 ms with probability peaking between 28
and 29 ms.

The pulse-responses of four different delay elements are
presented in Figure 4, which illustrates the variety of delay
dynamics obtained thanks to devicemismatch. Here, the variance
of the minimum voltage, Vmin, is especially evident, but variation
in other parameters can also be observed, such as Vmax, in the
case of the virtually non-existing excitation in Figure 4B.

3.2. Cricket Feature Detection
The function of the neuromorphic implementation of the feature
detection SNN was investigated by stimulating it with double

FIGURE 6 | Boundary of correct stimulus classification in synaptic parameter space. Outside the enclosed region, false positives and/or false negatives occur with

varying probability. The horizontal and vertical axes indicate the fine integer bias-values of the excitatory synaptic weight for the neurons LN3 and LN4, respectively.

Multiple line types indicate experiments performed under different environmental conditions. (A) Movement of the classification boundary observed after several hours

of continuous operation from cold startup. The temperature change is likely caused by the FPGA that is enclosed in the system. (B) Shrinkage of the classification

boundary in presence of 10% spike-timing noise in the stimulus (bold line). Boundary points are temperature dependent.
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pulses of 20 ms duration each, while increasing the IPI from 0,
10, 20, 30, 40, to 50 ms. Furthermore, in order to investigate the
effect of noise in the stimuli, as is likely to be present in real-
world environments, different levels of spike-timing noise was
introduced in the generated stimuli by randomly perturbing the
value of the ISIs with values drawn from a continuous uniform
distribution. Figure 5 shows the membrane potential of LN4
during correct classification of noiseless double pulses of all of
the IPIs mentioned above, as well as the result in the presence of
20% spike-timing noise, where some false positives are observed
for the 10 ms IPI.

By varying the weights of the excitatory projection from
AN1 to LN3 and the excitatory synaptic weight of LN4,
respectively, a boundary of correct classification of stimuli could
be identified in the space spanned by these two parameters.
Outside the boundary, false positives and/or false negatives occur
with varying probability. The boundary was observed to move
substantially in the parameter space as time progressed after
cold startup of the DYNAP-SE and this is likely due to heating
by the FPGA that is enclosed in the DYNAP-SE system. This
change was observed over multiple runs of the experiment and
appears to be qualitatively consistent. Furthermore, the shift
of the boundary in the presence of spike-timing noise in the
stimuli was investigated. Figure 6 shows the boundary of correct
classification, as measured at three separate points in time after

device initialization, spanning from minutes to several hours of
run-time. The figure also shows the shrinkage of the classification
boundary in the presence of 10% spike-timing noise in the
stimuli, in relation to the steady-state of the boundary after
several hours of system run-time.

A quantitative investigation of the IPI dependence of the
feature detection circuit was made by repeatedly stimulating the
network with double pulses of different IPIs as described earlier,
while observing the response in LN3 and LN4 by recording and
counting the spikes of both neurons. For each IPI, the network
was presented with the corresponding double-pulse stimulus 50
times. Figure 7 shows, in the case of noiseless stimuli, the average
number of spikes from LN3 and LN4, respectively, centrally
within the synaptic boundary of correct classification, as well
as at the boundary. Centrally within the boundary of correct
classification, LN4 responded exclusively to the 20 ms pulse
interval, with no false positives or negatives. On the boundary
of the parameter space, LN4 began to exhibit false positives for
the 10 ms IPI, with 0.32± 0.47 spikes per double-pulse stimulus.

Similarly, Figure 8 shows the results for the best synaptic
configuration used in the previous experiment, centrally located
within the boundary of correct classification, but for different
levels of spike-timing noise. As expected the network performed
correct classification in the noiseless case. The introduction of
noise caused LN4 to exhibit false positives, in particular for the

FIGURE 7 | Average number of spikes from LN3 and LN4 per double-pulse stimulus for varying IPIs and two different bias configurations: one central to, and one on

the boundary of, the region illustrated in Figure 6. For each IPI, the data-points are graphically separated by 4/3 ms to improve clarity of the visualization. Error bars

denote ±1 standard deviation. (A) Feature detecting neuron, LN4. (B) Coincidence detecting neuron, LN3.
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FIGURE 8 | Average number of spikes from LN3 and LN4 per double-pulse stimulus for varying IPIs and different levels of spike-timing noise in the stimuli. For each

IPI, the data-points are graphically separated by 4/3 ms to improve the clarity of the visualization. Error bars denote ±1 standard deviation. (A) Feature detecting

neuron, LN4. (B) Coincidence detecting neuron, LN3.

10 ms IPI. At higher levels of noise also false negatives were
observed. In the case of 50% noise the response of LN4 was 0.18
± 0.48 spikes per double-pulse for the 10 ms IPI, and 0.48± 0.54
spikes for the 20 ms IPI.

3.3. Reconfigurability of Delay Elements
Given the large parameter space of a dynamic neuromorphic
processor, such as the DYNAP-SE, we explored different ways to
simplify the configuration of the disynaptic delay elements for
delays up to about 100 ms. Figure 9A shows four configurations
of one delay element, with the maximum membrane potential of
the post-inhibitory excitation ranging between 20 and 110 mV,
and the durations of inhibition ranging between 50 and 90 ms,
according to the FDHM definition.

A table with delay element weight values and resulting values
of τinh and Vmax, from a total of 12 such variations, is presented
in Figure 9B; the data-points corresponding to the membrane
potentials in Figure 9A are marked with filled disks.

3.4. Feature Detection With Multiple Delay
Elements
Disynaptic delay elements produce variable delayed excitations
when stimulated with presynaptic spikes, as demonstrated in
Figure 9. Furthermore, the delayed excitations are subject to

device mismatch variability, as demonstrated in Figure 3. Thus,
as described in section 2.4.2 we investigated the possibility that
a single neuron with multiple disynaptic delay elements can
respond selectively to spatiotemporal patterns that match the
different delay times. We find that this is possible, and one
example is illustrated in Figure 10, which shows the results for
one neuron in DYNAP-SE with two delay elements (DE1 and
DE2) stimulated with eleven different spatiotemporal patterns.

The experiment with each pattern is repeated one hundred
times. The neuron fires selectively when the time interval
between presynaptic spikes, tDE2 − tDE1, is 3 to 4 ms, while the
probability of firing is low for shorter and longer presynaptic
spike intervals. The neuron does not fire when tDE2 − tDE1 < 0.

4. DISCUSSION

SNN architectures for temporal pattern recognition require
delays, and the dynamics of synapses, dendrites and axons of
cortical neurons correspond to a spectrum of signal propagation
delays ranging up to about 100 ms. In this work, we investigate
delays produced by inhibitory–excitatory pairs of conventional
conductance-based dynamic synapses implemented in the
DYNAP-SE neuromorphic processor. Ourmain results presented
in Figures 3, 9, 10 demonstrates that configurable delayed
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FIGURE 9 | Configuration of disynaptic delay elements. (A) Postsynaptic

membrane potential vs. time, resulting from a presynaptic pulse. The delay is

controlled mainly by the inhibitory synaptic efficacy, winh. The amplitude of the

delayed excitation is controlled mainly by the excitatory synaptic efficacy, wexc,

and by the number of presynaptic spikes. Note that the membrane potential

reaches its minimum possible value during inhibition, and that the difference

between this value and the resting potential is controlled with the constant

injection current of the neuron, controlled by the bias parameter IF_DC_P. (B)

Maximum membrane potential, Vmax , vs. duration of inhibition, τinh, for different

values of (winh,wexc ). Each point is denoted with the corresponding fine integer

bias values of the inhibitory and excitatory synaptic weights, respectively.

excitations of up to about 100 ms can be implemented in
this way, and that a single neuron with multiple disynaptic
delay elements can respond selectively to spatiotemporal input
patterns. Figure 3 illustrates that for one particular configuration
of the disynaptic elements, which is selected to mimic the
PIR of a particular non-spiking delay neuron in crickets, a
distribution of delays are realized in one neuromorphic core
thanks to device mismatch. Furthermore, Figure 9B illustrates
a subset of the possible disynaptic configurations resulting in
different delays (τinh = 30, 50, 70, 90 ms) and delayed excitation
amplitudes. Thus, by configuring the two synaptic parameters of

the disynaptic elements, variable excitation strengths and delays
of up to about τdelay ≃ 100 ms are achieved, which is similar
to the range of dendritic and axonal signal propagation delays in
cortical circuits (Dayan and Abbott, 2005).

At the quantitative level, we observe some differences between
the feature detection results presented in section 3.2 and the
behavior of the cricket circuit described by Schöneich et al.
(2015). In the crickets, the response of the coincidence detector
neuron LN3 for different IPIs varies so that the distribution of
the number of spikes of LN3 increases as the interval gets closer
to the species-specific IPI of 20 ms. This is not the case in the
results presented here, and further optimization of the neuron
and synapse parameters are required if this behavior is to be
imitated. As illustrated in Figure 7B, our LN3 reliably produces
the same number (but different timings) of spikes for all of the
different IPIs, with the exception of the 0ms IPI. Amore plausible
trend is observed in the case of 50% input noise, but in that
case the classification results are weaker. Hence, the classification
mechanism relies on the timing of spikes and the balance of
inhibition and excitation.

Temporal feature detection and pattern recognition are
central tasks in advanced sensor and perception systems. Thus,
low-power SNN processors enabling learning and recognition of
complex spatiotemporal patterns (Indiveri and Sandamirskaya,
2019; Strukov et al., 2019) have many potential applications,
for example for always-on machine monitoring (Martin del
Campo et al., 2013; Martin del Campo and Sandin, 2017), where
the system needs to operate autonomously and wirelessly with
limited resources over the expected lifetime of the monitored
machine component (Martin del Campo, 2017; Häggström,
2018). Although we sidestep Dale’s principle, the dynamic
disynaptic delay elements investigated here have the desirable
property that each neuron can be configured with multiple
disynaptic elements, as illustrated in Figure 10. By combining
multiple disynaptic delay elements, for example in line with
the idea of polychronous networks (Izhikevich, 2006), more
complex spatiotemporal patterns can be detected in principle.
Since the disynaptic delay elements are realized with ordinary
dynamic synapses, the approach is not limited to this particular
neuromorphic processor, although the distribution of delays
obtained is processor and device-mismatch dependent.

Further work is required to investigate how the repertoire of
synaptic delays can be exploited and configured/learned to solve
practical pattern recognition tasks, and to further develop the
understanding of how device mismatch, noise and temperature
variations affect different network architectures. With dynamic
synapses featuring short- and long-term plasticity, additional
mechanisms for sequence detection and learning can also be
realized (Buonomano, 2000) and investigated. Furthermore,
SNNs can faithfully reproduce dynamics of brain networks,
which appear to self-organize near a critical point where no
privileged spatial or temporal scale exist, which has interesting
consequences for information processes (Cocchi et al., 2017).
Thus, Neuromorphic Engineering (Indiveri and Horiuchi, 2011;
Strukov et al., 2019) and dynamic neuromorphic processors
opens the way to new interesting architectures for pattern
recognition and generation in machine perception and control.
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FIGURE 10 | Feature detection by a single neuron in the DYNAP-SE. (A) Neuron with one output (Out) and two inputs with disynaptic delay elements (DE1 and DE2).

(B) Probability that the neuron spikes vs. the presynaptic spike interval, which denotes the time between two presynaptic spikes at DE1 and DE2, respectively. This

neuron spikes with maximum probability when a spike arrives to DE2 about 3 ms later than to DE1. The neuron does not spike for presynaptic spike intervals below

about 2 ms and above about 6 ms. (C) Examples of spike times for presynaptic spike intervals of 3 ms (bold lines) and 0 ms (thin lines). In the latter case no

postsynaptic spike is generated. (D) Examples of membrane potentials measured for 3 ms (bold line) and 0 ms (thin line) presynaptic spike intervals. No spike is

generated when the two presynaptic spikes arrive simultaneously. With a presynaptic spike interval of 3 ms the neuron spikes reliably.
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