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Abstract

Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude

of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically

review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of

July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in

brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis

conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus

(effect size: −0.65, p < 0.01), frontal (effect size: −0.36, p= 0.04), and cingulate cortices (effect size: −0.54, p= 0.02), but

no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP,

and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and

synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25,

PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of

moderate–large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in

other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in

schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is

not uniform in nature or extent.

Introduction

Schizophrenia is a chronic mental illness, affecting ~1% of

the population [1, 2]. Imaging studies have demonstrated

that schizophrenia is associated with ventricular enlarge-

ment [3, 4], a whole brain volume reduction of around 3%,

and regional volume reductions of 6–10% in grey matter

areas such as the frontal cortex [5, 6] and hippocampus [7–

10], as well as alterations in astroglial markers [11, 12].

However, histopathological work has failed to find clear

evidence of gliosis or other degenerative changes in schi-

zophrenia, and, while there is cortical volume loss, this

occurs in the absence of neuronal cell loss [13–18]. Instead,

it has been suggested that lower grey matter volumes are

due to a reduction in synaptic levels, which would be

compatible with the neurodevelopmental hypothesis of

schizophrenia [2, 19–22].

A number of proteins expressed in presynaptic terminals

and the postsynaptic density (Fig. 1) are used as markers of

synaptic density [23–26]. Synaptophysin is the most studied

presynaptic protein, and an accurate index of neuronal synaptic
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density [27] because it is limited to neuronal synapses [24].

This protein interacts with synaptobrevin, thus participating in

synaptic vesicle exocytosis [28]. It is specifically enriched in

presynaptic nerve terminals, and is integral to the synaptic

vesicle membrane [29, 30]. Consequently, it has been widely

used in the quantification of synapses in human postmortem

cortical samples [24, 25]. Other synaptic markers include the

SNap Receptor (SNARE) complex proteins, comprising

SNAP-25 (Synaptosomal-associated protein 25), syntaxin and

vesicle-associated membrane protein (VAMP), also known as

Synaptobrevin. The SNARE complex is crucial for calcium-

dependent exocytosis at chemical synapses and is required for

dopaminergic, serotonergic [31] and glutamatergic function

[32]. Given the potential role of these systems in schizophrenia

[33, 34], this makes the SNARE complex of particular interest.

Synaptophysin and SNARE complex proteins are depleted in

conditions associated with synaptic loss, such as Alzheimer’s

disease, other dementias and epilepsy [35–37]. Complexins are

presynaptic membrane proteins that bind syntaxin, and are

thought to be SNARE modulators. Complexin I is enriched in

inhibitory neurons, while Complexin II is more commonly

found in excitatory neurons [38, 39]. Synapsin I and II are

proteins involved in neurite elongation and synapse formation

and maintenance [40]; synapsin III is also a modulator of

plasticity processes and of dopaminergic function [41]. Rab3A

(Ras-related protein Rab-3A) and synaptotagmin are both

involved in regulating synaptic vesicle exocytosis [42, 43].

PSD-95 (postsynaptic density protein 95) is abundant in the

brain and concentrated in the postsynaptic density (PSD). It has

been implicated in forming and maintaining excitatory synap-

ses [44, 45], and in regulating synaptic strength and plasticity

by interacting with other synaptic proteins, including glutamate

receptors [46].

To our knowledge, there has not been a previous meta-

analysis of synaptic protein levels in schizophrenia. We

therefore aimed to synthesise the postmortem findings in

patients with schizophrenia and healthy controls, and then

discuss the implications of these findings in relation to the

pathophysiology of the disorder.

Methods and materials

Data extraction

The main outcome measure was the difference in synaptic

protein and mRNA levels between patients with schizo-

phrenia and healthy controls. In addition, we extracted the

following variables: sample size, methods of quantification,

inclusion criteria, mean age, patients’ medication, post-

mortem interval (PMI), cause of death, percentage of sui-

cides, and whether the analysis was blind to group status.

Statistical analysis

We performed a meta-analysis when there were at least 5

independent data sets in each specific brain region, as

recommended for meta-analyses using random-effects

approaches [47].

The main outcome measure was the effect size (ES)

(Hedges’ g) of synaptic protein/mRNA change in patients

with schizophrenia and healthy controls for each reported

region or sub-region of interest. See Supplementary Infor-

mation for further methodological details.

Results

The literature search yielded 281 results, from which we

identified 60 relevant papers (see Supplementary Figure 1

for the PRISMA diagram of the literature search). 36 of the

60 studies met criteria for inclusion in the quantitative

synthesis. We were able to perform a meta-analysis of

synaptophysin protein levels for hippocampus, frontal cor-

tex, cingulate cortex (CC), temporal cortex and occipital

cortex. In the frontal cortex, it was possible to perform a

meta-analysis of the following synaptic proteins: synapto-

physin, SNAP-25, PSD-95, VAMP, and syntaxin. All stu-

dies included in the meta-analyses-matched cases and

controls for age at death except for one [48], and post-

mortem interval (PMI) was matched in 31 out of 36 studies.

19 out of the 36 studies (52.8%) reported that the experi-

menter was blind to diagnosis while conducting their ana-

lyses. See supplementary Tables 1–9 for these and further

details of the studies [48–107].

There were insufficient data for meta-analysis of mRNA

data in any brain region. Instead the results from the indi-

vidual studies of mRNA and protein levels, where there

were insufficient studies for meta-analysis are summarised

below and in Supplementary Tables 1–9.

Fig. 1 Showing the location of synaptic proteins in the synapses. Rab3

Ras-related protein, VAMP vesicle-associated membrane protein, also

known as synaptobrevin, SNAP-25 synaptosomal-associated protein

25, PSD-95 postsynaptic density protein 95, SNARE SNap REceptor

complex
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Synaptophysin levels in the hippocampus

Eight studies (111 patients with schizophrenia and 106

healthy controls) measured synaptophysin levels in the

hippocampus (CA1–4 and Dentate Gyrus). Synaptophysin

was significantly reduced in patients with schizophrenia

with an ES of −0.65 (Fig. 2; z=−2.91; 95% confidence

interval (CI)=−1.08, −0.21; p= 0.0036). The I2 statistic

revealed low heterogeneity (I2= 0%; 95% CI= 0, 70.5;

Cochrane’s Q= 5.7; p= 0.57). The funnel plot appeared

symmetrical, and a regression test for funnel plot asym-

metry was non-significant (z=−0.54; p= 0.59), suggest-

ing there is no evidence of publication bias (Supplementary

Figure 2). The studies were well matched for PMI and the

meta-regression for the proportion of suicides was not sig-

nificant (p= 0.83, for the studies where suicide data were

available), suggesting this was not a major bias. Of the two

mRNA studies of synaptophysin in the hippocampus, one

showed significantly decreased synaptophysin mRNA

levels in schizophrenia, the other a non-significant reduction

[59, 106] (see Supplementary Table 1).

Summary of findings with other synaptic proteins
and mRNAs

In the hippocampus, three studies examined SNAP-25

protein levels, two of which found a significant reduction in

schizophrenia. Three studies measured PSD-95 protein

levels, one of which found a significant reduction, the other

found a trend reduction in schizophrenia. For the com-

plexins, two studies measured protein levels and found no

change, and two studies measured mRNA levels separately

for complexin I (which was only reduced in some subfields)

and complexin II (which was significantly reduced overall

in one study, and in some subfields in the other). Four

studies measured synapsin protein levels, three of which

found a significant reduction in schizophrenia. Rab3A

protein levels were studied twice and both times were found

significantly reduced in schizophrenia.

Synaptic proteins and mRNA levels in frontal cortex

Synaptophysin

Thirteen studies comprising 170 patients with schizophrenia

and 169 healthy controls measured synaptophysin levels in

frontal cortical regions (approximating Brodmann Areas 9, 10,

46, 47) (Fig. 3). The majority of studies of the frontal cortex

examined the dorso-lateral pre-frontal cortex (DLPFC;

approximating BAs 9 and 46) [57, 60, 69, 70, 73, 74, 76, 89,

95], while three studies examined BAs 10 and 45 [79, 83, 92].

Synaptophysin was significantly reduced in patients with

schizophrenia with an ES of −0.36 (z=−2.05; 95% CI=

−0.70, −0.02; p= 0.04). The I2 statistic revealed low hetero-

geneity (I2= 0%; 95% CI= 0–50.1%; Cochrane’s Q= 8.1; p

= 0.78). Inspection of the funnel plot did not reveal asymmetry

(Supplementary Figure 3), and the regression test for funnel

plot asymmetry was non-significant (z=−1.15; p= 0.25). A

sub-analysis only including studies relating to the DLPFC was

non-significant (ES=−0.23; z=−1.14; p= 0.25), while the

number of studies investigating other frontal areas was not

sufficient for a separate sub-analysis. An exploratory meta-

regression of the effect of the percentage of suicides on the ES

for the studies where this information was available showed no

significant effect (p= 0.98). PMI was significantly different

between cases and controls in one study [69]. In case this was

biasing the results, we excluded this study and re-ran the meta-

analysis, finding the reduction in synaptophysin levels

Fig. 2 Forest plot showing the effect sizes for studies of synaptophysin in hippocampus in schizophrenia patients as compared to controls. There

was a significant reduction in schizophrenia (effect size=−0.65, p= 0.0036)

Synaptic density in schizophrenia



remained significant (ES=−0.37; z=−2.03; p= 0.04). With

regards to mRNA data for synaptophysin in the frontal cortex,

one study reports a significant reduction in schizophrenia, while

one reports a significant reduction in BAs 17 and 22 and a non-

significant reduction in BAs 9 and 46, and two studies suggest

no change in frontal cortex (Supplementary Table 1).

SNAP-25

Nine studies comprising 139 patients with schizophrenia and

138 controls measured SNAP-25 levels in frontal cortex

(approximating BAs 9, 10, 46, 47) (Fig. 4). The overall results

indicate no significant change in SNAP-25 in frontal cortex in

schizophrenia (ES: −0.18; z=−0.90; 95% CI=−0.58, 0.21;

p= 0.37). The I2 statistic revealed low heterogeneity (I2= 0%;

95% CI= 0–81%; Cochrane’s Q= 9.5; p= 0.30). The three

mRNA studies of SNAP-25 in the frontal cortex showed non-

significant reductions or no changes in mRNA levels in schi-

zophrenia (Supplementary Table 2).

PSD-95, VAMP, and syntaxin

PSD-95 (6 studies, ES=−0.34, p= 0.14), VAMP (6 stu-

dies, ES=−0.26, p= 0.27), and syntaxin (6 studies, ES=

0.16, p= 0.52) protein levels did not differ in frontal cortex

between schizophrenia patients and controls (Supplemen-

tary Figures 4–6). Of the four mRNA studies of PSD-95 in

the frontal cortex, two showed no change, one a non-

significant reduction and one non-significant increase in

mRNA levels in schizophrenia (Supplementary Table 3).

One study measured VAMP mRNA levels and found no

difference in frontal cortex (Supplementary Table 5). Our

search did not identify any studies of syntaxin mRNA in

frontal cortex.

Summary of findings with other synaptic proteins
and mRNAs

For frontal cortex, four studies measured levels of the

complexins: one of the two studies looking at protein levels

found a significant reduction in complexin I in schizo-

phrenia, and one of the studies looking at mRNA levels

found a reduction in complexin II. Three studies measured

synapsin protein levels, and one found a significant reduc-

tion in synapsin III, while of the two studies quantifying

mRNA, one found a significant reduction in synapsin II in

schizophrenia. Both studies of Rab3A found a significant

reduction in protein levels in frontal cortex. No change was

Fig. 3 Forest plot showing the effect sizes for studies of synaptophysin in frontal cortex in schizophrenia patients as compared to controls. There

was a significant reduction in schizophrenia (effect size=−0.36, p= 0.04)

E. F. Osimo et al.



found in protein levels in schizophrenia in two studies for

synaptotagmin in this region.

Synaptophysin levels in cingulate cortex

Seven studies (comprising 115 patients with schizophrenia

and 105 healthy controls) measured synaptophysin in the

CC (approximating BAs 24, 32, 33). Synaptophysin was

significantly reduced in the CC of patients with schizo-

phrenia with an ES of −0.54 (Fig. 5; z=−2.35; 95% CI

=−0.99, −0.09; p= 0.02). The I2 statistic revealed low

heterogeneity (I2= 0%; CI= 0, 80.4; Cochrane’s Q= 6.0;

p= 0.42). Inspection of the funnel plot suggested a degree

of asymmetry, however, the regression test for funnel plot

asymmetry was non-significant (z=−1.78; p= 0.07)

(Supplementary Figure 7), and the trim and fill analysis

did not reveal any missing studies. There was insufficient

information to test the effect of suicide as a meta-

regressor. While the majority of studies reported samples

coming from the anterior CC (ACC), Honer et al. [80]

describe their sample as from the CC without specifying a

particular sub-region. A sub-analysis removing this study

shows that there still is a significant reduction in synap-

tophysin levels in the ACC in schizophrenia relative to

controls (ES=−0.61; z=−2.27; 95% CI=−1.14,

−0.08; p= 0.02). In further sensitivity analyses, removing

the study by Landén et al. [86], which shows a significant

difference in PMI between cases and controls, affects the

overall significance (ES=−0.42; z=−1.73; CI=−0.90,

0.06; p= 0.08). Our search did not find a study of

synaptophysin mRNA in this region.

Summary of findings with other synaptic proteins
and mRNAs in cingulate cortex

Two studies measured SNAP-25 protein levels in the CC,

and found no significant change. With regards to PSD-95,

three studies measured protein levels in CC: two found a

significant reduction, the other no change in schizophrenia,

while one study found a significant increase in PSD-95

mRNA in this area. One study measured the complexins in

this area and found no change. Both studies of Rab3A

found a significant reduction in protein levels in CC in

schizophrenia.

Synaptophysin levels in temporal cortex

Six series in five studies (60 patients and 57 controls)

measured synaptophysin protein levels in the temporal

cortex. There were no significant differences in synapto-

physin levels in schizophrenia patients when compared to

healthy controls in the temporal cortex (ES=−0.31; z=

−1.12; 95% CI=−0.85, 0.23; p= 0.26—Supplementary

Figure 8). Synaptophysin mRNA were found significantly

decreased in two of three studies of this molecule in tem-

poral cortex.

Fig. 4 Forest plot showing the effect sizes for studies of SNAP-25 in frontal cortex in schizophrenia patients as compared to controls. There was no

significant reduction in schizophrenia (effect size=−0.18, p= 0.37)

Synaptic density in schizophrenia



Summary of findings with other synaptic proteins
and mRNA levels in temporal cortex

SNAP-25 protein levels were found significantly decreased

in one of two studies, while mRNA levels were unchanged

in one study in schizophrenia. Syntaxin, VAMP, synapsin,

Rab3A, and synaptotagmin mRNA levels were not sig-

nificantly altered in one study each. Rab3A protein levels

were unchanged in two studies in temporal cortex. For the

complexins, one study analysed protein levels and found a

reduction in complexin II only. For complexin mRNAs,

three studies reported reductions in complexin II, while no

study found significant reductions in complexin I.

Synaptophysin and other protein and mRNA levels
in occipital cortex

Five series in four studies (51 patients and 48 controls) measured

synaptophysin protein levels in the occipital cortex. There were

no significant differences in synaptophysin levels in schizo-

phrenia patients when compared to healthy controls in the

occipital cortex (ES=−0.16; z=−0.45; 95% CI=−0.84,

0.52; p= 0.65—Supplementary Figure 9). One study measured

synaptophysin mRNA levels in the occipital cortex, and found a

significant reduction. Two studies measured PSD-95 in occipital

cortex in schizophrenia: one found a significant increase in its

mRNA, and one found no change in PSD-95 protein levels.

There were insufficient studies for meta-analysis of other

synaptic protein or mRNA levels in this region.

Discussion

Our main findings are that protein levels of the synaptic

marker synaptophysin are significantly decreased in

schizophrenia in the hippocampus and cingulate cortex.

We also found a decreased level of synaptophysin mRNA

levels in the hippocampus [59, 106] (see Supplementary

Table 1).

The frontal cortex also shows a significant reduction in

synaptophysin protein levels. However, the ES is numeri-

cally smaller than for hippocampus and CC. Moreover, the

sub-analysis restricted to the DLPFC was not significant,

and the mRNA data for synaptophysin in the frontal cortex

are inconsistent, with two studies suggesting a reduction,

and two studies suggesting no change (Supplementary

Table 1). Furthermore, the other protein levels in frontal

cortex that we meta-analysed (SNAP-25, PSD-95, VAMP,

and syntaxin) are not significantly reduced. Taken together,

this suggests findings are less consistent in the frontal cortex

than the findings in the hippocampus and CC. Among the

potential contributors to these inconsistencies are age [108]

and mode of death [109, 110]. However, all of our studies

matched the subjects for age at death, and our meta-

regressions for suicide as manner of death were all not

significant, suggesting this is unlikely to be a major con-

tributor to inconsistency. Other potential explanations for

these inconsistencies could be differences in protein quan-

tification methodology, variations in dissection protocols,

and differences in the biological substrate due to the het-

erogeneity of the illness being studied, in addition to sub-

regional variability (as suggested by lack of difference in

the DLPFC); we discuss each of these sources of variation

in the methodological section below; see also the review by

McCullumsmith and colleagues for a further discussion of

the factors that may influence postmortem findings [109].

We found no evidence of synaptic protein change in the

temporal and occipital cortex. Our meta-analytic findings

are summarised in Table 1.

Fig. 5 Forest plot showing the effect sizes for synaptophysin levels in the cingulate cortex in schizophrenia patients as compared to controls. There

was a significant reduction in schizophrenia (effect size=−0.54, p= 0.02)

E. F. Osimo et al.



Interpretation of findings

Our findings of reductions in synaptophysin levels extend

postmortem microscopy studies in schizophrenia that have

found synaptic loss in the hippocampus [111, 112] and

ACC [113] by providing meta-analytic evidence consistent

with loss of synapses between neurons. They also extend a

meta-analysis of genetic expression studies that found that

genes in the presynaptic secretory function category

(including synaptophysin) were significantly altered in

schizophrenia [114], by providing evidence that this trans-

lates into alterations in protein levels of synaptophysin.

Interestingly, the brain areas we found to have lower

synaptophysin levels are among the regions that show the

most volume loss in schizophrenia [115–120]. There is

evidence that this cortical loss is at least partially due to

reduced neuropil, including reduced synaptic compart-

ments, rather than neuronal loss [121]. It is therefore pos-

sible that the reductions in the synaptic marker observed in

our meta-analysis indicate that loss of synapses contributes

to the brain volume loss seen in imaging and postmortem

studies. Consistent with this, volume loss in hippocampus in

schizophrenia is present from the onset of symptoms, pre-

dates antipsychotic exposure, and does not appear to be

secondary to neuron loss [7, 18, 122–124], occurring in the

absence of a change in total neuron numbers [15, 18].

However, it should be recognised that there is considerable

debate about the cellular changes that underlie brain volume

alterations in schizophrenia, and other cellular changes,

including alterations in axonal density, glial cells and neu-

ronal size could also contribute to loss of neuropil [121].

The role of synaptic alterations and contribution of these

other factors to volume loss needs further testing. Post-

mortem studies of the CC in schizophrenia have also found

structural alterations, including synaptic loss [113, 125].

We found no significant changes in synaptic density in

some of the brain areas studied in this meta-analysis, such

as temporal and occipital cortices. Taken with our findings

of significant reductions in hippocampus, cingulate and

frontal cortex, this could suggest that synaptic loss shows

regional specificity, affecting some areas more than others,

which is similar to the pattern of regional volume changes

in schizophrenia [10, 120]. This is consistent with models of

schizophrenia that implicate the hippocampus and frontal

cortex as central to the pathophysiology of the disorder [5,

7, 118, 123, 125–130]. However, while the lack of sig-

nificant differences in the temporal and occipital cortex

raises the question of what underlies the grey matter volume

reductions commonly reported in these regions [120, 131],

we caution about over-interpretation of regional differences

as there is a risk of a type II error. Recent work has also

suggested a temporal specificity of synaptic change in

schizophrenia, with synaptogenesis predominating earlier in

the disease, and synaptic loss in chronic phases [132].

Ultimately, further studies are needed to compare sub-

regions and timing with regards to disease onset.

Although there is some evidence that synaptophysin

might be more abundant in glutamatergic than in

GABAergic vesicles [133], it should be noted that it is not

specific enough to particular synapses to draw firm con-

clusions. Thus, the reductions may reflect a global loss of

synapses or be specific to particular neuronal populations.

Our findings of a significant reduction in frontal cortex in

synaptophysin but not other synaptic markers is intriguing.

Synaptophysin is specific to presynaptic nerve terminals

[29, 30]. It binds cholesterol, which is required for the

genesis of synaptic vesicles [134]. This could indicate

dysfunction in vesicle formation. Synaptophysin is con-

sidered one of the best proxies for synaptic density [27], and

may be more sensitive to detecting synaptic reductions than

the other markers, so the lack of reductions in the other

markers could be a type II error. Ultimately, large studies

comparing multiple synaptic marker levels across brain

regions are required to definitively test whether there is

greater reduction in some regions, such as the hippocampus,

and proteins relative to other regions and proteins.

Methodological considerations

A potential limitation of this meta-analysis is that studies

used different methods of protein quantification (24 studies

used western blotting (WB), 7 immunohistochemistry and 5

Table 1 Summary of our meta-analytic results

Protein: area: synaptophysin SNAP-25 PSD-95 VAMP syntaxin

Hippocampus ↓ −0.65 N/A N/A N/A N/A

Cingulate cortex ↓ −0.54 N/A N/A N/A N/A

Frontal cortex ↓ −0.36 ↔−0.18 ↔−0.34 ↔−0.26 ↔ 0.16

Temporal cortex ↔−0.31 N/A N/A N/A N/A

Occipital cortex ↔−0.16 N/A N/A N/A N/A

The number is the effect size (Hedges’ g) and “↓” indicates a significant reduction in schizophrenia, while “↔“ indicates no significant difference

N/A not available

Synaptic density in schizophrenia



using ELISA—see Supplementary Information). However,

a study comparing the different techniques for assessing

synaptophysin levels in brain tissue found that WB and

immunohistochemistry methods give similar results [27].

Another study compared WB and ELISA for synaptophysin

quantification found that ELISA might be more robust at

synaptophysin quantitation [135]. However, combining

different methods with different levels of precision and

sensitivity in the same meta-analysis should not account for

our findings of reductions in schizophrenia, as the degree of

precision is taken into account by the measure of dispersion,

and variability in this would reduce the sensitivity to detect

differences between groups, if it had any effect. Further-

more, we have used a random-effects model approach,

which takes into account inter-study variability. However,

we cannot exclude that our findings of no significant dif-

ferences in the other regions examined could be a type II

error due to variability in the sensitivity of methods used,

and the smaller number of studies that assessed these areas,

meaning that our meta-analysis may have been under-

powered to detect small effects. Further studies are needed

in these regions to rule this possibility out.

A potential confounder in the studies included is the use of

antipsychotic medication in samples. There is evidence to

suggest that antipsychotics may cause brain structural

abnormalities, such as striatal [136] or brain volumetric

changes [137]. However, studies have shown no difference in

synaptophysin levels in the hippocampus of rats after anti-

psychotic exposure [59]; it should be noted that the animals

used in these experiments were healthy animals, and could

therefore not fully reflect results in schizophrenia. Similar

studies on the frontal cortex and striatum have shown either

no change or an increase in synaptophysin following anti-

psychotic treatment [138–140]. In addition, non-human pri-

mate studies have shown that synaptophysin levels are not

affected following the continuous administration of haloper-

idol for several weeks [141, 142]. Thus, we find that anti-

psychotic treatment is unlikely to account for the reductions in

synaptophysin, but studies in antipsychotic-naïve patients are

required to definitively rule an effect out. Studying lifetime

antipsychotic dose as a meta-regressor was not possible in the

present study as this information was not present in the

majority of studies. Unfortunately, it was also impossible to

study illness duration as a meta-regressor as this information

was not present in the majority of the included studies.

PMI was significantly different between groups in 5 out

of 36 studies. When the one non-matched PMI study was

removed from the analysis of synaptophysin in the frontal

cortex, it did not affect the overall significance. However, in

the analysis of synaptophysin in CC, after removing the

study that did not match groups for PMI [86], the overall

effect was no longer significant, suggesting that differences

in PMI may contribute to differences in this region.

We were able to explore the potential effect of suicide on

our findings because it was widely reported, but this was not

possible for other potential contributors to inconsistency

because they were not consistently reported. This should not

be taken as indicating they are not important, and it is

recommended that future studies report these in more detail

to facilitate comparisons.

Other potential sources of variability are the differences in

laterality [143, 144], dissection protocols and tissue proces-

sing. However, few studies reported data by hemisphere,

precluding analysis of potential differences. Tissues sources

are summarised in the Supplementary Tables; unfortunately,

few papers mention the dissection protocol that was used,

therefore it was impossible for us to take this factor into

account. In addition to this, the brains came from different

sources: some samples came from brain banks, which collect

samples from different consortia, each with different dissec-

tion protocols; some papers sourced their own samples

without specifying the dissection technique they used, and for

17 samples the source was not mentioned.

There is evidence that there may be variability in gene

expression depending on the specific dissection boundaries

[145]. Some of the studies we included used immunohis-

tochemistry to quantify synaptic proteins, and reported

protein and mRNA levels for different tissue layers and/or

very specific sub-regions within the same region, thus, also

confirming that molecular profiles within brain regions vary

on a gradient [39, 56, 64, 65, 69, 73, 93, 97, 103]. Other

studies used tissue homogenates, therefore, in our meta-

analysis, we combined the data from different sub-regions

within a given region, which could obscure sub-regional

differences, as suggested by analyses of grey matter

alterations [144].

Future directions

Our findings raise a number of questions. In particular,

whether the reduction in synaptophysin is developmental or

develops later in life; whether it is primary or secondary to

other factors and changes, such as oxidative stress [146]

or inflammation [147, 148]; whether it indicates a loss of

synapses or the loss of synaptophysin specifically, and how

it relates to grey matter changes and symptoms. Further

studies are needed to tackle these questions. The recent

development of PET tracers that index synaptic proteins

provides a means of addressing some of them. Longitudinal

in-vivo imaging studies with synaptic tracers, from child-

hood to early in the course of illness to a chronic stage, are

needed to address the questions relating to the time course

of the changes. The concomitant study of other biological

factors of the illness, such as oxidative stress, inflammation

and structural brain changes, would allow the correlations

of these elements with synaptic loss to be tested. This work
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would need to be complemented by preclinical studies to

determine the effect of these potential mechanisms on

synaptic proteins that can be measured postmortem and

in vivo using PET imaging.

Finally, these results may also have implications for drug

development. In animal models, the administration of a

p21-activated kinases (PAK) inhibitor in late adolescence

has been shown to block synaptic loss and prevent adult

behavioural deficits associated with schizophrenia [149].

Reversing or preventing synaptic loss could therefore be a

potential treatment target in schizophrenia.

Conclusions

There is a significant reduction in synaptophysin in the

hippocampus, cingulate and frontal cortices of patients with

schizophrenia as compared to matched healthy controls,

although the findings in the CC were not significant after

excluding a study that did not match for PMI, and we did

not find significant results for the levels of SNAP-25, PSD-

95, VAMP and syntaxin in the frontal cortex. We found no

difference in temporal cortex and occipital cortex for

synaptophysin. These findings are consistent with models

that implicate synaptic loss in hippocampus and frontal

cortical regions in the pathophysiology of schizophrenia,

but further studies are required to determine if this is a

general loss of synapses or specific loss of synaptophysin,

and to test regional variability.
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