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Abstract

Ocular dominance plasticity is a well-documented phenomenon allowing us to study

properties of cortical maturation. Understanding this maturation might be an important step

towards unravelling how cortical circuits function. However, it is still not fully understood

which mechanisms are responsible for the opening and closing of the critical period for ocu-

lar dominance and how changes in cortical responsiveness arise after visual deprivation. In

this article, we present a theory of ocular dominance plasticity. Following recent experimen-

tal work, we propose a framework where a reduction in inhibition is necessary for ocular

dominance plasticity in both juvenile and adult animals. In this framework, two ingredients

are crucial to observe ocular dominance shifts: a sufficient level of inhibition as well as excit-

atory-to-inhibitory synaptic plasticity. In our model, the former is responsible for the opening

of the critical period, while the latter limits the plasticity in adult animals. Finally, we also pro-

vide a possible explanation for the variability in ocular dominance shifts observed in individ-

ual neurons and for the counter-intuitive shifts towards the closed eye.

Author summary

During the development of the brain, visual cortex has a period of increased plasticity.

Closing one eye for multiple days during this period can have a profound and life-long

impact on neuronal responses. A well-established hypothesis is that the absolute level of

inhibition regulates this period. In light of recent experimental results, we suggest an alter-

native theory. We propose that, in addition to the level of inhibition, synaptic plasticity

onto inhibitory neurons is just as crucial. We propose a model which explains many

observed phenomena into one single framework. Unlike theories considering only the

level of inhibition, we can account for both the onset as well as the closure of this period.

Furthermore, we also provide an explanation for the small fraction of neurons that show

counter-intuitive behaviour and provide some testable predictions.

Introduction

Throughout development, sensory cortex can experience periods of heightened sensitivity to

sensory inputs. The rewiring of neuronal networks is very flexible during these periods, but
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there is less such plasticity otherwise. Having normal sensory experiences during these periods

is crucial for a healthy maturation of the brain and they are therefore called critical periods

(CP).

A well studied example is the critical period for ocular dominance (OD) in primary visual

cortex (V1). In the visual pathway, inputs from both eyes usually converge onto the same neu-

ron for the first time in V1, although a fraction of thalamic neurons already exhibits binocular-

ity in mice [1–3]. The extent to which a neuron’s visually-evoked activity is dominated by one

of the eyes is called ocular dominance (OD) and is often quantified by the ocular dominance

index (ODI). In each hemisphere of mice V1, the overall response to the contralateral eye is

roughly twice as high as that to the ipsilateral eye, but individual neurons display a broad

range of ODI values.

During a limited period early in the development, closure of one eye for multiple days

triggers a shift in neuronal responses towards the open eye. In mice, this critical period

spans about ten days, starting around postnatal day 20. The changes in neuronal responses

following this monocular deprivation (MD) can be roughly separated into two phases. In a

first phase, observed during the first three days of deprivation, the responses to the closed

eye are depressed while responses to open-eye inputs remain similar. This effect is often

called response depression. For longer deprivations, a second phase follows where the neu-

ronal responses to the open eye are increased, called response potentiation. In this second

phase, the neuronal activity caused by the closed eye also increases, but to a lesser extent [4].

Further insights into the working of ocular dominance plasticity are uncovered by studying

other deprivation paradigms. Firstly, binocular deprivation (BD) does not lead to OD shifts,

hinting at some level of competition depending on the strength or coherence of the inputs

from both eyes. Secondly, monocular inactivation (MI) abolishes the rapid response depres-

sion, suggesting that this response depression is activity dependent, relying on spontaneous

activity and residual activity caused by light travelling through the closed eyelid during MD

[4].

Before and after the critical period, the effects of monocular deprivation on ocular domi-

nance plasticity are either reduced or not observed at all. In pre-CP mice, monocular depriva-

tion leads to a decrease in activity from both eyes, thus not changing their relative strengths

and not affecting the overall ocular dominance [5]. In adult mice, the response depression

after short monocular deprivation is not observed. However, longer deprivation still leads to

the response potentiation of the open eye, and hence a certain shift in ocular dominance can

still be observed [6].

A key player in regulating the opening of the critical period is the maturation of inhibi-

tion. GAD95-KO mice, which exhibit an impaired γ-aminobutyric acid (GABA) release,

never experience a critical period and visual cortex remains in a juvenile state. A critical

period can be opened in these mice once per lifetime after diazepam infusion, which restore

the GABA release. Similarly, diazepam infusion before normal CP onset can accelerate the

start of the CP in wildtype mice [7]. Furthermore, a recent experimental study investigated

changes in cortical layer II/III excitation and inhibition in juvenile animals after only 24

hours of deprivation [8]. The authors found that the firing rate of parvalbumin-positive

(PV+) inhibitory neurons is decreased at that time, while the firing rate of excitatory neurons

is increased. Moreover, they show that this decreased inhibition is predominantly mediated

by a reduction in excitatory drive from layer IV and V to these PV+ neurons. Interestingly,

this reduction of inhibition is not observed in adult animals. The authors then linked this

effect to the OD shift, by showing how pharmacological enhancement of inhibition during

the critical period prevents any OD plasticity, while pharmacological reduction of inhibition
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in the adult animals results in an OD shift towards the open eye. It was therefore postulated

that OD plasticity depends on the increased firing rate of open eye inputs, caused by a tran-

sient reduction in inhibition.

The mechanisms behind the closure of the critical period remain more enigmatic. However,

several manipulations can reopen a window for OD plasticity in adult mice. Firstly, reducing

inhibition was shown to enhance the OD plasticity caused by monocular deprivation [8, 9].

Related to this, adult mice in enriched environments were shown to have reduced levels of

inhibition and OD plasticity [10]. Finally, high contrast stimulation during deprivation also

leads to OD shifts [11], suggesting that enhancing visually evoked responses of the open eye

could be functionally similar to reducing cortical inhibition. Other mechanisms that have been

implied with the ending of the critical period are changes in the extracellular matrix [12] and

the pruning of silent synapses [13]. Taken together, experimental results hint at a visual-expe-

rience dependent maturation of V1, where normal visual stimuli are necessary to shape the

network connectivity.

In this article, we propose a model for the first phase after deprivation, coinciding with the

response depression phase under MD. We follow the hypothesis that a reduced inhibition is

the key to allow for plasticity. More specifically, we model a neuronal network and propose

synaptic plasticity principles that are able to reproduce many of the phenomena discussed

above. In our model, excitatory-to-inhibitory plasticity is responsible for a rapid reduction in

inhibition during the CP, which in turn enables a shift in ocular dominance. Our model is con-

sistent with experimental results observed under MD of the contra- and ipsilateral eyes, under

MI and under BD. Furthermore, we discuss possible mechanisms underlying the opening and

closing of the critical period, and reinstatement of plasticity. Finally, our model provides a pos-

sible explanation to why some neurons shift counter-intuitively towards the closed eye and

why these neurons tend to have lower firing rates.

Materials andmethods

All LII/III neurons are modelled as rate units, where

ti
dri

dt
¼ �ri þ Gi

X

j

wijrj

 !

ð1Þ

Here, ρi denotes the firing rate of neuron i, τi is the integration time constant and Gi is the

gain function. The summation over index j runs over all presynaptic neurons, and we assume

wij positive in case of excitatory presynaptic neurons and negative in case of inhibitory presyn-

aptic neurons. In all our simulations, we used a linear gain function GðxÞ ¼ g � x with slope

g = 0.3 for all neurons. Finally, we used a time constant τe = τi = 1ms.

Simplified model

For our simplified model, we simulated 1250 presynaptic excitatory neurons, mimicking layer

IV inputs, one postsynaptic inhibitory neuron and one postsynaptic excitatory neuron, mim-

icking layer II/III neurons. The inputs to the layer IV neurons were modelled as two visual

inputs and a background input. The visual inputs represent both eyes and are modelled as step

currents ACLinput and A
IL
input, and the background input is an additional step current B. The visual

input currents are multiplied by a weight in order to generate different ocular dominances.

Synaptic plasticity onto inhibition as a mechanism for OD plasticity
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The weights were generated as follows:

x ¼ 0:30þ 0:35z ; z randomly drawn from a standard normal distribution

wipsi ¼

0 if x < 0

x if 0 < x < 1

1 if x > 1

8

>

>

>

<

>

>

>

:

wcontra ¼ 1� wipsi

ð2Þ

In other words, for each layer IV neuron, a random number was generated from a normal

distribution with mean 0.30 and standard deviation 0.35. The resulting random numbers were

rectified, i.e. negative numbers were set to 0, and numbers larger than 1 were set to 1. These

numbers were chosen as the weights for the ipsilateral inputs to the layer IV neurons, while

one minus the ipsilateral weights were the contralateral weights. In this way, each layer IV neu-

ron received an equal amount of input, but with different ocular dominance. An example of

the OD distribution for 1000 layer IV neurons is shown in S6 Fig.

From the 1250 layer IV neurons, 250 randomly chosen connections are made to the layer

II/III excitatory and inhibitory neurons. In this way, the layer II/III excitatory neurons receives

inputs with a range of different ODIs. The same random instantiation is used for MD-CL,

MD-IL, BD and MI, resulting in an identical initial ODI for each case. All inhibitory neurons

received inputs from 150 most contralateral and 100 most ipsilateral neurons.

For simulations of Fig 1 the feedforward E-to-E connections from layer IV to the layer II/

III neuron (wEE) are plastic under the learning rule given by the following equation

dwEE
dt

¼ ZEE � sgn ðrpre � rpostÞ � yH

� �

ð3Þ

The parameter θH is a threshold separating synaptic depression from synaptic potentiation.

For simulations of Fig 2, an extra threshold is introduced

dwEE
dt

¼
ZEE � sgnððrpre � rpostÞ � yHÞ if ðrpre � rpostÞ > yL

0 if ðrpre � rpostÞ < yL

(

ð4Þ

This learning rule is shown schematically in Fig 3b. Here, the parameter θH is a threshold sepa-

rating synaptic depression from synaptic potentiation, while θL is a threshold below which no

plasticity occurs. In both Eqs 3 and 4, ηEE is the learning rate and the function sgn(x) denotes

the sign function and is equal to 1 if x> 0, equal to 0 if x = 0 and equal to -1 if x< 0. The plas-

tic weights are constraint by hard lower and upper bounds, and all other weights (E-to-I, I-to-

E) are static.

We start the simulations with the wEE at the upper bound. The duration of the simulations

is 10s, with timesteps of 1ms. We alternated activation of the inputs to the layer IV neurons

(20ms at a constant value ACLinput ¼ AILinput ¼ 10Hz and a background activation B = 10Hz) with

disactivation (ACLinput ¼ AILinput ¼ B ¼ 0Hz for 30ms). After 500ms, we simulated deprivation. In

case of monocular deprivation, we reduced the contralateral input to zero, ACLinput; MD ¼ 0Hz. In

the case of monocular inactivation, we reduced the contralateral input and the background

input to zero, ACLinput; MI ¼ B ¼ 0Hz, and in the case of binocular deprivation, we reduced the

contra- and ipsilateral inputs to zero, ACLinput; BD ¼ AILinput; BD ¼ 0Hz. The values of all parameters

used during the simulation can be found in Table 1.

Synaptic plasticity onto inhibition as a mechanism for OD plasticity
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Fig 1. Single-threshold model. (a) Schematic of the model. One postsynaptic neuron receives inputs from a population of presynaptic
neurons, each with different ODI. We use a grey-scale color scheme where darker colors denote contralateral-eye dominated neurons
and brighter colors denote ipsilateral-eye dominated neurons. (b) Schematic of pre- and postsynaptic firing rates under normal rearing
(left), monocular deprivation of the contralateral eye (second from left), monocular deprivation with a reduced inhibition (second from
right) and monocular deprivation with high contrast inputs (right). The bottom row depicts the product between pre- and postsynaptic
firing rates, and the threshold θ separating LTD from LTP. (c) Example traces of the product of presynaptic and postsynaptic firing
rates of the neurons during monocular deprivation of the contralateral eye (MD-CL), binocular deprivation (BD), monocular
inactivation of the contralateral eye (MI) and monocular deprivation of the ipsilateral eye (MD-IL). For red and blue traces, the product
is taken with the most contralaterally dominated and ipsilaterally dominated presynaptic neuron respectively. (d) Ocular dominance
index of the postsynaptic neuron at the beginning of the simulation versus the end. (e) Evolution of synaptic weights over time, in the
case of monocular deprivation of the contralateral eye. The star denotes the onset of deprivation, the double dagger denotes the onset of
reduced inhibition. Corresponding neuronal activations are shown in panel c.

https://doi.org/10.1371/journal.pcbi.1006834.g001
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Fig 2. Double-threshold model. (a) Schematic of presynaptic multiplied by postsynaptic firing rates after monocular
deprivation, and assuming different ODI distributions of input neurons. If the ODI distribution is too narrow, it is
harder for the threshold θ to separate more closed-eye dominated inputs frommore open-eye dominated inputs. (b)
Schematic of presynaptic multiplied by postsynaptic firing rates after monocular deprivation, and assuming
heterogeneous postsynaptic firing. Postsynaptic neurons that receive weaker inputs and fire at lower rates, lead to a
depression of open-eye dominated inputs while leaving closed-eye inputs unaltered. These neurons show a counter-
intuitive shift towards the closed eye. (c) Examples of the product of presynaptic and postsynaptic firing rates for
normally active neurons during MD, BD andMI. For red and blue traces, the product is taken with the most
contralaterally dominated and ipsilaterally dominated presynaptic neuron respectively. (d) Ocular dominance index of
the postsynaptic neuron at the beginning of the simulation versus the end. The neurons are normally activated. (e)
Evolution of synaptic weights over time, in the case of monocular deprivation of the contralateral eye. The star denotes
the onset of deprivation, the double dagger denotes the onset of reduced inhibition. Corresponding neuronal activations
are shown in panel c.

https://doi.org/10.1371/journal.pcbi.1006834.g002
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Network

We simulated 1000 layer IV neurons, 100 layer II/III excitatory neurons and 20 layer II/III

inhibitory neurons. The layer IV neurons are divided into five groups of 200, each representing

a different input feature (e.g. a different orientation). Similarly, the layer II/III excitatory

Fig 3. Schematic of the network and excitatory learning rule. (a) A cartoon of the network architecture. A
population of presynaptic (layer IV) neurons with various ODIs makes feedforward connections onto layer II/III
excitatory and inhibitory neurons. Within the layer II/III, excitatory neurons have recurrent connections both to other
excitatory neurons as well as to the inhibitory neurons, which in turn project back onto the excitatory neurons. (b)
Schematic of the E-to-E plasticity rule. Low values for the product of presynaptic and postsynaptic rates do not lead to
plasticity. Intermediate values result in synaptic depression, and high values in synaptic potentiation.

https://doi.org/10.1371/journal.pcbi.1006834.g003

Table 1. Model parameters.

Timestep dt 1 ms

Gain function (slope) ge = gi 0.3

E time constant τe 1 ms

I time constant τi 1 ms

Nr. of L II/III exc. neurons NEL3 100

Nr. of L IV exc. neurons NEL4 1000

Nr. of L II/III inh. neurons NIL3 20

Nr. of ffw connections per input group Nffw 50

Max. E to E weight wmaxEE 1/Nffw

Min. E to E weight wminEE wmaxEE =2000

High threshold EE θH 26 Hz2

Low threshold EE θL 15 Hz2

Learning rate EE ηEE 12 � 10−5 Hz−2

Max. I to E weight wmaxEI
1

Min. I to E weight wminEI 0.06/NIL3

High threshold I to E ϕH mean: 6 Hz (see Methods)

Low threshold I to E ϕL ϕH-0.75 Hz

Learning rate I to E ηEI 3.75 � 10−4 Hz−2

Max. E to I weight wmaxIE 1/Nffw

Min. E to I weight wminIE wmaxIE =12:5

Learning rate E to I ηIE 3.75 � 10−7 Hz−3

E to I target rate (normal vision) ρtarget 6 Hz

BCM time constant τavg 12500 ms

Visual Inputs to L IV ACLinput ¼ AILinput 10 Hz

Background input ACLinput ¼ AILinput 10 Hz

https://doi.org/10.1371/journal.pcbi.1006834.t001
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neurons are divided into five groups of 20 neurons. Each layer II/III neuron received 50 con-

nections from each of the five layer IV groups (hence 250 feedforward synapses in total). How-

ever, connections from layer IV neurons of the same group were initialized at 0:4 � wmaxEE , while

other feedforward connections were initialized ten times smaller. In this way, an initial orien-

tation preference at eye-opening was mimicked [14].

Moreover, the feedforward connections were not chosen randomly. If we would randomly

pick these inputs, the probability to have very ipsilaterally or contralaterally dominated neu-

rons in layer II/III is low, and instead all neurons would have an ODI close to the layer IV

population ODI (S6 Fig). Therefore, the connections were set to result in a broader ODI distri-

bution in layer II/III. We outline below how we set 50 feedforward connections from one

group of 200 layer IV neurons. The same is valid for the four other input groups representing

the other orientations. The 200 layer IV neurons representing one orientation are divided into

groups according to ocular dominance, O1 toO5. We then ensured a broad ODI distribution

in layer II/III as follows. We choose x layer II/III neurons and randomly make yi connections

from Oi to these neurons, with x and yi given in Table 2.

This ensured both a broad distribution in layer II/III neurons (Fig 4a), as well as enough

contralaterally and ipsilaterally dominated inputs to each layer II/III neuron. The latter is

important to be able to observe an OD shift in our model (see Results).

Recurrent E-to-E connections between the 100 layer II/III neurons were initialized ran-

domly, as observed at eye-opening [14]. To this end, we picked random numbers from a nor-

mal distribution with mean and standard deviation equal to 5% of the maximum weight, and

ensured values below the minimum weight were reset at this minimum weight.

For each of the 20 inhibitory neurons we randomly picked one of the input groups repre-

senting an orientation, to which it made 50 strong initial connections equal to the maximum

weight, while 50 connections from each of the other input groups were initialized at the mini-

mum weight. Similarly to the simplified model, all inhibitory neurons received inputs from 30

most contralateral and 20 most ipsilateral neurons in each input group.

Finally, all feedforward input strengths from layer IV to layer II/III excitatory and inhibi-

tory neurons are multiplied by a factor of 5 to mimic a larger input population.

The feedforward and recurrent E-to-E plasticity rule is given by Eq 4. This learning rule is

shown schematically in Fig 3b. The thresholds are chosen such that the open eye inputs after

deprivation are above the highest threshold, while the closed eye inputs are under this thresh-

old. Furthermore, we choose the low threshold such that all inputs are below this threshold

after monocular inactivation. Finally, we show that our results are robust against the exact

choice of thresholds (S5 Fig).

The E-to-I plasticity rule is a BCM-type rule [15], given by

dwIE
dt

¼ ZIE � �prerpost � rpost � yBCM

� �

ð5Þ

Table 2. Input connectivity.

x y1 y2 y3 y4 y5

10 5 5 5 10 25

10 5 10 10 10 15

20 5 10 10 10 10

20 10 15 10 10 5

20 10 15 15 5 5

20 25 10 5 5 5

https://doi.org/10.1371/journal.pcbi.1006834.t002
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Following the results from [8], the rule should ensure a quick depression of E-to-I inputs from

both eyes and a subsequent recovery of mainly the open eye. Therefore, we choose no depen-

dence on presynaptic rate for depression, ϕpre = 2Hz, while we choose a dependence on pre-

synaptic rate for potentiation, ϕpre = ρpre if ρpre> 3.2Hz and zero otherwise. Finally, to ensure

the inhibition reaches roughly half of its value after deprivation as observed in [8], we raise the

minimum E-to-I weight to 0.4 of the maximum value. This E-to-I rule is such as to reproduce

experimentally observed inhibitory activity (Fig 4c), but we do not have enough data to further

constrain the rule.

θBCM is a sliding threshold given by (< ρpost >)2/ρtarget. The average of the peak postsynap-

tic firing rate< ρpost> is calculated online by low-pass filtering with a long time constant,

tavg
d < rpost >

dt
¼ � < rpost > þrpost ð6Þ

Fig 4. Network simulations of MD-CL. (a) Distribution of ODI values of layer II/III neurons before MD-CL (magenta) and
after MD-CL (green). The initial distribution is not uniform, but biased towards the CL eye as observed experimentally (see
Methods). (b) Individual OD shifts for all layer II/III neurons after MD-CL. Green lines denote shifts towards the open eye.
Red lines denote counter-intuitive shifts towards the closed eye. (c) Layer II/III excitatory and inhibitory population response
to contra- and ipsilateral eye over time. The 0% denotes the start of deprivation. A quick reduction of inhibition is followed by
a recovery of mainly the open-eye inhibition, as observed in [8].

https://doi.org/10.1371/journal.pcbi.1006834.g004
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The ρtarget is a target firing rate for the inhibitory neurons, and was chosen to be 6 [a.u.] for

normal vision, but reduced to 10% of this value after deprivation. Finally, the I-to-E plasticity

rule is based on the rule in Vogels et al. [16].

dwEI
dt

¼
ZEIrpreðrpost � �HÞ ; if rpost > �L

0 ; if rpost < �L

(

ð7Þ

By choosing the lower threshold for plasticity ϕL at a high value, close to but below ϕH, this

rule limits the maximum firing rates of the excitatory neurons but does not homeostatically

increase the firing rate when sudden drops occur (for example after MD).

To simulate heterogeneous firing rates, for each layer II/III neuron we generate a random

number x = 1 + 0.1z, with z drawn from a standard normal distribution. We then multiply all

the rates of the presynaptic neurons of a layer II/III neuron by the respective random number

x (thus either increasing or decreasing all presynaptic rates), while also multiplying the ϕH of

Eq 7 for all I-to-E synapses to this layer II/III neuron with x (thus increasing or decreasing the

maximal postsynaptic rate by an equal amount as the presynaptic rates). The threshold ϕL was

always a fixed amount lower than ϕH.

The first phase of the simulation lasts 50s. In this phase, the excitatory and inhibitory con-

nections develop and reach either the maximum or minimum bound. Furthermore, MD does

not lead to OD shifts because initially, the inhibition is weak and reducing inhibition cannot

enhance the excitation sufficiently.

After this first phase ensured stationary weights and a sufficiently high sliding threshold, we

simulate the deprivation. This second phase lasts 50s. Similarly as in the simplified model, we

model MD by reducing the closed-eye input to layer IV to zero, BD by reducing both ipsilat-

eral and contralateral inputs to zero, and MI by setting the contralateral input and the back-

ground input to zero. To simulate adult animals, we do not allow any plasticity from E-to-I

connections. To simulate pre-CP deprivation, we reduce the first phase of the simulation to 2s

instead of 50s, ensuring that the excitatory and inhibitory weights are still low. Furthermore,

we simulate the developmental shift in visual inputs strength by (1) increasing the background

input from 10 to 15, and reducing the visual inputs from 10 to 5 in the pre-CP case, (2)

decreasing the background input from 10 to 5 and increasing the visual inputs from 10 to 15

in the adult case.

ODI and selectivity index

The ocular dominance index (ODI) was calculated as

ODI ¼
CL� IL

CLþ IL
ð8Þ

where CL stands for the maximum response to a contralateral visual input, and IL stands for

the maximum response to an ipsilateral visual input. In this way, a neuron with ODI = 1 is

completely monocular for the contralateral eye, while a neuron with ODI = -1 is completely

monocular for the ipsilateral eye.

The input selectivity index (SI) was calculated as one minus the circular variance. We first

calculated the maximal response aj of a neuron to each of the N = 5 inputs, and sorted these

Synaptic plasticity onto inhibition as a mechanism for OD plasticity
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responses from large to small (a1 is the largest and a5 the smallest). Then, we calculated

r ¼
X

N

n¼1

aj � e
i2pN n

 !

=atot

SI ¼ jrj

ð9Þ

where atot ¼
PN

n¼1
aj. In this way, a neuron that is active for one input but silent for all other

inputs will have an SI equal to 1, while an input that is equally active for all inputs will have an

SI equal to 0.

Results

Hypothesis for unifying juvenile and adult OD plasticity

The experimental observation that increasing inhibition in pre-CP animals [7] and decreasing

inhibition in adult animals [9] allows for OD plasticity, naturally leads to a two-level inhibition

hypothesis. More specifically, a first increase in inhibition would open the critical period and a

further increase of inhibition would close it. However, the results by Kuhlman et al. [8] allow

for a different interpretation. Indeed, the authors showed that even during the critical period,

a reduction of inhibition is necessary to observe OD plasticity. The authors therefore proposed

that the increased levels of inhibition are crucial in opening the critical period because a subse-

quent reduction of inhibition can amplify the open-eye excitatory activity. Moreover, stimulat-

ing adult animals with high contrast gratings also leads to fast OD plasticity [11]. We can then

unify all the results by stating that an OD shift towards the open eye is possible when the open-

eye responses are transiently increased. This could be either by reducing inhibition, or by

enhancing excitation. Thus, we hypothesise the following:

• The loss of input after monocular deprivation shifts both open-eye and closed-eye pathways

towards depression. No OD shift would be observed at this point.

• Boosting the open-eye inputs, for example by a quick reduction inhibition, pushes the open-

eye, but not the closed-eye inputs over a threshold for potentiation. This leads to the depres-

sion of closed-eye inputs while maintaining open eye responses.

To test this hypothesis in simulated networks, we first consider a simplified model where a

single neuron representing a layer II/III pyramidal cell receives feedforward excitatory input

from a population of layer IV neurons and feedforward inhibition from one inhibitory neuron

(Fig 1a). The feedforward excitatory synapses onto the layer II/III neuron are plastic, while

other synapses are static. Assuming ρpre and ρpost are the presynaptic and postsynaptic firing

rates respectively, we use the following Hebbian excitatory learning rule (see Methods). If

the the product (ρpre � ρpost) caused by an input exceeds a threshold θH, the synaptic weight is

increased by an amount η. If this value remains below θH, the value is decreased by η. The
parameter θH therefore is a constant threshold separating synaptic depression from synaptic

potentiation, and η is the learning rate. In this way, layer IV synapses with various ODIs onto

the same layer II/III neuron will lead to different values for (ρpre � ρpost) after deprivation.

Indeed, a layer IV neuron that is dominated by the deprived eye, will be left with a small value

for ρpre after MD, while a layer IV neuron dominated by the open eye will be relatively unaf-

fected and have a high ρpre (Fig 1b). Moreover, MD will also reduce the postsynaptic firing rate

ρpost of the layer II/III neuron by an amount depending on its ocular dominance index. Finally

we initialize the feedforward excitatory weights at the upper bound.

Synaptic plasticity onto inhibition as a mechanism for OD plasticity
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In this simplified model, we first assume that monocular deprivation pushes all possible

(ρpre � ρpost) values into the long-term depression (LTD) regime by reducing ρpre and ρpost.

Since all synapses are depressed equally, this does not affect the relative response strength

between the eyes and therefore leaves the ODI unaltered. Secondly, a reduction of inhibition

can rescue the original postsynaptic firing rate and hence shifts only the (ρpre, open � ρpost)

above the long-term potentiation (LTP) threshold θH. Here, by ρpre, open we mean the presyn-

aptic rates corresponding to open-eye dominated neurons. Only after this reduction of inhibi-

tion, the ocular dominance shifts by depressing the closed-eye inputs while maintaining the

open-eye inputs (Fig 1b and 1d).

Simulating different types of deprivation

To simulate this simplified model, we connect 250 presynaptic neurons to one postsynaptic

excitatory neuron and one inhibitory neuron, each modelled as rate units. The presynaptic

neurons have a broad range of ODIs (see Methods). In this simplified model, only the layer IV

to layer II/III excitatory inputs are plastic and initialized at the upper bound. The layer IV neu-

rons are activated by visual inputs from both eyes and a background input (see Methods).

When both eyes are open, all these excitatory inputs are in the LTP regime and therefore

remain at the upper bound. We then simulate monocular deprivation of the contralateral eye

(MD-CL) by reducing only the visual part of the input of the contralateral eye to zero. The clo-

sure of the eye therefore reduces the firing rates and all synapses undergo LTD (Fig 1c, top

left). We subsequently reduce the feedforward excitatory-to-inhibitory connections to a third

of the initial value. This reduction of inhibition leads to a recovery of the original postsynaptic

excitatory firing rate, consistent with the data from Kuhlman et al. [8]. Now only the feedfor-

ward connections from presynaptic neurons dominated by the closed eye are depressed, while

the potentiation of the open eye pathway brings the respective synapses back to the upper

bound (Fig 1c, top left). This depression of the closed-eye pathway ultimately leads to an OD

shift toward the open eye (Fig 1d and 1e).

The same model can also reproduce the lack of OD plasticity after binocular deprivation. In

this case, both eyes are sutured and therefore all inputs are reduced to a third of the original

values. Since all presynaptic firing rates are attenuated by an equal amount, all (ρpre � ρpost)

have the same value. This ensures that the open-eye and closed-eye inputs will always have the

same direction of plasticity. In our case, they are all in the LTD region and therefore depressed

(Fig 1c top right, Fig 1d).

In the case of monocular inactivation of the contralateral eye, TTX injection in the retina

abolishes all neuronal activity. This is in contrast with MD-CL, where spontaneous activity is

present and some light can travel through the sutured eyelid. Experimentally, no ocular domi-

nance shift is observed after monocular inactivation [4], suggesting that the residual activity is

important. Similar to BD, the total amount of neuronal activity is lower under MI than under

MD-CL. However, unlike BD the presynaptic inputs strengths are now variable, depending on

the ODI of the respective input. This resembles the situation under MD-CL, but with all input

strengths shifted to lower values. With an appropriate choice for the threshold θH, we can

therefore still obtain that all synapses are depressed, and hence no OD shift is observed in our

postsynaptic neuron (Fig 1c bottom left, Fig 1d).

Finally, in the case of monocular deprivation of the ipsilateral eye (MD-IL), we follow the

same reasoning as in the MD-CL case. Closed-eye inputs fall below θH and open-eye inputs

remain above, leading to a shift towards the contralateral eye (Fig 1c bottom right, Fig 1d).

This shift is in agreement with [17, 18].

Synaptic plasticity onto inhibition as a mechanism for OD plasticity

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006834 March 12, 2019 12 / 22

https://doi.org/10.1371/journal.pcbi.1006834


Heterogeneity in OD shifts

Recent work by Rose et al. [19] uncovered a substantial degree of heterogeneity in OD plastic-

ity of individual neurons after monocular deprivation. About 40% of the neurons in layer II/

III do not show any particular plasticity, while the amount and direction of the shift in the

remaining 60% is variable. Indeed, some neurons even shift their responses counter-intuitively

towards the closed eye. The latter neurons were shown to have lower visually-evoked activities

and the counter-intuitive shift was caused by a depression of the open-eye inputs. Counter-

intuitive shifts were also observed in a study with cats, where a global counter-intuitive shift

towards the closed eye occurred after increasing the inhibition during the monocular depriva-

tion [20].

Most neurons in layer IV receive inputs coming from both eyes and project to layer II/III

neurons. If these layer IV neurons all have very similar ocular dominance, all synapses will be

modified in a similar way in our simplified model and no OD shift will be observed. Indeed, it

is highly unlikely that the threshold θH will fall somewhere within this narrow distribution (Fig

2a). For layer II/III neurons to show OD plasticity, the difference between the minimum and

maximum ODI of incoming layer IV inputs must therefore be large enough (S2 Fig). Assum-

ing a variety of OD distributions for the inputs would therefore suffice to reproduce both non-

plastic neurons and neurons shifting towards the open eye with different magnitude, but not

the counter-intuitive shifts towards the closed eye.

In order to reproduce these counter-intuitive shifters, we adapt our plasticity rule to contain

a second threshold. Besides the threshold separating the LTD region from the LTP region, we

introduce a lower threshold which separates a no-plasticity region from the LTD region. We

can then understand the counter-intuitive shifters as follows. Neurons receiving low-rate

input and/or firing at low rates exhibit smaller values of (ρpre � ρpost) compared to Fig 1. Subse-

quently, the closed-eye pathway could fall below the lower threshold for plasticity and would

not be altered, while the open-eye pathway would be in the depression regime (Fig 2b). This

results in a counter-intuitive shift where the closed eye gains strength relative to the open eye.

Finally, with this modified learning rule, we set our thresholds so that the (ρpre � ρpost) fall

below the threshold for plasticity immediately after deprivation but before the reduction of

inhibition. With this choice, the synapses are unaltered immediately after deprivation, as

opposed to all being depressed as in Fig 1b. Since both scenarios would not change the relative

strength of the two eyes until the inhibition is reduced, they both agree with experiments. In

practice, because of the variety of ODIs in the inputs, some inputs dominated by the open eye

may fall in the depression regime (Fig 2c, top left). Since we will assume that excitatory-to-

inhibitory plasticity has a faster action then excitatory-to-excitatory plasticity, this short period

of open-eye LTD has a negligible and transient effect Fig 2e.

Larger network simulations

The simplified models discussed in the previous sections only included feedforward excit-

atory-to-excitatory (E-to-E) plasticity onto a single layer II/III neuron. We now expand this

framework to a population of layer II/III neurons, while adding excitatory and inhibitory plas-

ticity in all connections (Fig 3a). The E-to-E plasticity rule remains the same as before, with a

low threshold θL below which no plasticity occurs, and a high threshold θH separating synaptic

depression from potentiation (Fig 3b). For the E-to-I plasticity rule, we require that it is not

too selective and that synaptic depression is induced after monocular deprivation. The first

requirement follows from the experimental observation that inhibitory neurons are broadly

tuned for orientations [21], while the second requirement is necessary for ocular dominance

plasticity in our model. We therefore choose to model E-to-I plasticity using a modified
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version of the BCM-rule [15] with hard upper bounds on the synaptic weights. We choose the

target firing rate to be dependent on the visual experience. For normal binocular vision, a high

target firing rate enables strengthening of inhibition and a reduced selectivity. For all forms of

deprivation, we reduce the target firing rate to 10% of its original value, ensuring a depression

of all E-to-I connections. In the cases of monocular deprivation, this depression is followed by

a recovery of the open-eye inputs (Fig 4c). Raising animals in complete darkness would there-

fore never lead to a maturation of inhibition, as observed experimentally [22, 23]. Finally, the

I-to-E plasticity rule is a modified version of the rule proposed in Vogels et al. [16], ensuring

each excitatory neuron does not exceed a maximal firing rate (see details in the Methods

section).

We assume a variety of ocular dominances in both layer IV and layer II/III neurons (see

Methods and S6 Fig), and a variety of excitatory firing rates. Moreover, we divide the layer IV

neurons into five groups that are activated separately. These groups mimic the encoding of dif-

ferent input features, for example differently oriented lines within a receptive field. After an

initial phase of the simulation where excitatory connections reach either upper or lower

bounds, we simulate MD-CL, MD-IL, BD andMI. Similar to the simplified model, we simulate

MD by abolishing the visual input from the corresponding eye while maintaining the back-

ground input. At the end of the simulation, the mean response of layer II/III neurons shifted

towards the open eye (Figs 4a, 4b and 5c). This shift is mediated by a depression of closed-eye

inputs, while open-eye inputs remain roughly the same (Fig 4b and 4c). Individual neurons

show a variety of OD shifts, and some neurons shift counter-intuitively towards the closed eye

(Fig 4b). When plotting the individual shifts versus the firing rate, it is clear that the counter-

intuitive shifters are neurons with lower-than-average firing rates (Fig 5a). We then simulate

MI by completely abolishing both the contralateral input and background input, and BD by

abolishing contra- and ipsilateral inputs but not the background. Since the firing rates of all

neurons are now substantially lower, no OD shift is observed (Fig 5c, S4 Fig). Finally, in the

cases of MD, we observe that inputs driven exclusively by the closed eye do not show any OD

shift (Fig 5d). Indeed, for these neurons the firing rates are more significantly reduced and

similar to the case of BD. This dependence of OD shift on initial ODI was experimentally

observed in [18].

Onset and ending of the critical period

In order to simulate the maturation of the network, we firstly assume that it starts from an

‘immature’, pre-critical-period state. We assume that the inhibitory and excitatory recurrent

connections are still weak and the E-to-I connections start close to the minimum bound. In

agreement with experimental data from Hofer et al. [21], the choice of our learning rules

ensure that E-to-E connections are input-selective while E-to-I connections are unspecific.

Moreover, during the development, excitatory neurons increase their input selectivity over

time while inhibitory neurons broaden their input tuning (Fig 6c). This can be understood as

follows. Both inhibitory and excitatory neurons start with a small bias for one input and there-

fore have a low selectivity index. However, our selective E-to-E rule ensures that excitatory

neurons only develop strong connections with similarly tuned neurons (Fig 6d, S3 Fig), while

the unselective E-to-I rule ensures that inhibitory neurons strengthen all incoming connec-

tions (Fig 6e, S3 Fig). This evolution is in qualitative agreement with experimental observa-

tions of input selectivity in juvenile mice [24].

We can then simulate both the pre-CP and adult networks by assuming that the inhibition

is unable to amplify the open-eye activity after deprivation. For the pre-CP case, the inhibitory

activity cannot be sufficiently reduced after monocular deprivation because of the immature
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levels of inhibition in the pre-CP period (Fig 6a). For the adult case, one candidate mechanism

could be the consolidation of these E-to-I synapses blocking E-to-I plasticity. When simulating

both cases, no OD shift towards the open eye is observed. In fact, since some inputs dominated

by the open eye fall in the depression regime, we notice a slight global counter-intuitive shift

(Fig 6b and 6f solid lines). This shift is eliminated by assuming that the background-to-visual

ratio is higher in the pre-CP and lower in the adult, as observed in [25] (Fig 6b and 6f dashed

lines).

Discussion

In this article, we simulated a simplified model of a layer II/III network in primary visual cor-

tex. Our model is able to reproduce several experimentally observed features of the critical

Fig 5. Network simulations of deprivation. (a) Relative firing rate distribution (normalized to population mean) for
counter-intuitive shifters and for the total population. We consider a neuron to be a counter-inuitive shifter if the ODI
difference is larger than 0.15. The population consists of 5000 neurons (50 network simulations of MD-CL with 100
neurons each). For the counter-intuitive shifters, most of the firing rates lie below the mean. (b) Evolution of synaptic
weights over time for one neuron in the network, in the case of monocular deprivation of the contralateral eye.
Similarly, for MD-IL, BD andMI, see S4 Fig. (c) Population ODI shifts for all forms of deprivation. Under both types of
MD, the population shifts towards the open eye. No shift is observed after BD andMI. (d) 5000 neurons (50 network
simulations of 100 neurons) are divided according to original ODI. The boxplots show the distribution of OD shifts for
both groups. Ipsilaterally dominated neurons show no response depression after MD-CL.

https://doi.org/10.1371/journal.pcbi.1006834.g005
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Fig 6. Pre-CP and ending of the CP. (a) In the pre-CP phase, the inhibition is still weak and close to the minimum value. Unlike
CP mice, the inhibition cannot be sufficiently reduced before CP onset. (b) MD-CL does not lead to an OD shift towards the
open eye in pre-CPmice. An OD shift towards the closed eye is observed (solid line), which is reduced when assuming a lower
visual-to-background activity ratio (dashed line). (c) In this pre-CP phase, the input selectivity index of excitatory neurons
increases, while inhibitory neurons broaden their selectivity. This is in qualitative agreement with experimental data [24]. (d)
Neurons are grouped according to input feature preference (different colors next to axes denote different input preference).
Recurrent E-to-E weights are specific: only synapses from neurons with similar input preference are strong, while other recurrent
inputs are weak. (e) Recurrent E-to-I weights are unspecific, synapses from all input groups are at the maximum bound. (f) We
simulate adult networks by preventing any E-to-I plasticity. MD-CL does not lead to an OD shift towards the open eye. An OD
shift towards the closed eye is observed (solid line), which is reduced when assuming a higher visual-to-background activity ratio
(dashed line).

https://doi.org/10.1371/journal.pcbi.1006834.g006
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period for ocular dominance. In particular, we simulated changes caused by monocular depri-

vation, binocular deprivation and monocular inactivation. Furthermore, we discuss possible

mechanisms for the onset and the end of the critical period. Our model therefore provides pos-

sible mechanistic insights into the development of cortical areas and the associated learning

rules, which could be tested experimentally.

Our aim was to acount for the effects of short deprivation (up to 3 days) on the ocular dom-

inance of layer II/III neurons. We did not include longer deprivations in our model (more

than 3 days), when response potentiation is observed. In this case, responses to both eyes—but

mainly to the open eye—start to increase. Therefore homeostatic plasticity mechanisms are a

likely candidate to explain this second phase of OD plasticity [18, 26, 27]. Furthermore, the

study observing counter-intuitively shifting cells [19] was performed on adult mice. However,

these mice were kept in enriched environments and stimulated with high contrast inputs, both

known to enable a juvenile-like plasticity [10, 11].

We only considered plasticity in connections from layer IV to layer II/III and within layer

II/III. Therefore, we did not take into account experimentally observed OD shifts in the tha-

lamic relay neurons [1, 2] and layer IV neurons [28]. Since these areas are upstream of layer II/

III, a naive explanation could be that the shift in layer II/III is fully accounted for by the shift

in the inputs to this layer. However, Gordon and Stryker [28] described how a larger OD shift

is observed in layer II/III compared to layer IV neurons, and similarly a larger shift in layer V/

VI is observed compared to layer II/III. Considering the canonical flow of sensory inputs,

from thalamus to layer IV, further to layer II/III and finally to layers V/VI, this result suggests

that plastic changes happen at each stage and accumulate over layers.

An increased inhibition is necessary in our model to open the critical period. This is

because weak inhibition cannot be reduced sufficiently to rescue excitatory firing rates after

monocular deprivation. Our hypothesis differs from previous theories on the opening of the

critical period, which did not take into account the transient reduction of inhibition observed

by Kuhlman et al. [8]. For example, one interesting proposal is that the increased inhibition

enhances the visual-to-background activity ratio [25], while another theory proposed that

increasing inhibition favoured more coherent inputs over stronger inputs [29]. It is possible

that multiple of these mechanisms play a role in OD plasticity. In our model, the background

activity is crucial to model the MI since it allows us to increase the impact of MI on the neuro-

nal firing rates. Moreover, assuming immature and adult levels of visual-to-background activ-

ity ratio lead to a better agreement of OD shifts between our model and experiments. Finally,

adding more spontaneous activity in our model could counteract maturation if we assume that

this spontaneous activity predominantly leads to synaptic depression, keeping the weights low

and random. In this case maturation of V1 can only happen when the visual-to-spontaneous

ratio is sufficiently high. This ratio could be gradually increased by the developmental changes

in NMDA-receptor channels [30], nogo-receptors and myelination [31], inhibition [25] and

changes in recurrent connectivity [14].

The recurrent excitatory connections in LII/III of our model are not critical for our results.

These synapses allow us to reproduce the selectivity of excitatory connections, but the recur-

rence weak (see Methods). Therefore, with slightly different threshold values, similar results

are obtained in a static networks without any E-to-E recurrence (S6 Fig). It would be interest-

ing to study the effect of richer recurrent dynamics [32]. Furthermore, the I-to-E plasticity

ensures that excitatory rates do not exceed a neuron-specific activity level. After deprivation, I-

to-E connections first strengthen to counteract the depression of E-to-I connections and sub-

sequently weaken again once the the inhibition recovers. In layer IV, a strengthening of I-to-E

connections is observed after 2 days of MD [33], however it is unclear whether these connec-

tions weaken again for longer deprivations.
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The end of the critical period is much less understood. Experiments suggest that the adult

levels of inhibition are reached during the CP [24]. Furthermore, Kuhlman et al. [8] showed

that in adult mice no reduction of inhibition is observed after one day of MD. This readily

leads to the assumption that the E-to-I plasticity, which is crucial in our model to observe OD

plasticity, is somehow abolished. We therefore implemented the end of the critical period as a

consolidation of the E-to-I plasticity, which could be mediated by changes in the extracellular

matrix. Indeed, perineuronal nets (PNNs), have been shown to develop around PV+ inhibitory

neurons at the end of the critical period [12], and could affect the plasticity of synapses onto

these PV+ neurons [34]. Furthermore, degrading the PNNs in adult animals restored a win-

dow for OD plasticity [12] and this removal is related to reduced inhibition [35]. Another pos-

sibility is that the E-to-I plasticity rule itself prevents a reduction of inhibition in adults, for

example due to changes in firing rates or correlations. Also the amount of silent synapses has

been linked to the ability of juvenile-like plasticity [13]. The end of the critical period is charac-

terized by the pruning of most of these silent synapses and a loss of PSD-95 in the adult leads

to an increase in silent synapses as well as a recovery of OD plasticity. However, even though it

was shown that the AMPA-to-NMDA ratio of excitatory synapses onto PV+ interneurons was

similar in wild-type and PSD95-KOmice, it is not clear how a loss of PSD-95 affects E-to-I

plasticity.

Our model allows for certain predictions that can be experimentally tested. Firstly, we

hypothesize that neurons showing a substantial OD shift after MD need to have a sufficient

difference between the lowest and the highest ODI of the input synapses (Fig 2 and). It

could be possible that the active synapses have a narrower distribution, but that reducing

the inhibition uncovers a broader distribution of silent synapses. In this way, both mecha-

nisms discussed previously—the presence of silent synapses [13] and the reduction of

inhibition [8]—could contribute to OD plasticity. Moreover, in animals with columnar

organisations of OD we would only expect a broad distribution to neurons on the edges

between columns. Our model would then predict that only these neurons show a fast OD

shift. Secondly, we introduce a low threshold in our plasticity rule separating no-plasticity

from plasticity. Such a low threshold has been observed experimentally [36] and was imple-

mented in a modified version of the BCM-rule [37]. The low threshold allows us to repro-

duce the effects of MI [4], the dependence of OD shift on ODI [18] and the counter-

intuitively shifting cells under MD [19], while providing an explanation to why the latter

tend to have lower firing rates. Thirdly, we assume that the E-to-I plasticity rule depends on

the excitatory population activity. In our case, this was implemented using different target

firing rates under normal vision and after deprivation. Such a dependence on population

activity has been observed in hippocampal I-to-E plasticity [38], and it would be interesting

to investigate whether and how E-to-I plasticity implements similar mechanisms. Finally,

our model predicts that increasing all excitatory firing rates during the monocular depriva-

tion leads to a reduced OD shift.

To conclude, in this article we describe a theory of the development of cortical layer II/III.

We implemented a simplified network with biologically plausible learning rules, which is able

to reproduce multiple experimental results. With our model, we propose that:

• A transient reduction in inhibition—in turn boosting the open-eye activity out of an LTD

regime—is required to shift the population response towards the open eye.

• A substantial level of inhibition is necessary to observe OD plasticity, enabling a subsequent

and sufficient reduction of the inhibition. The level of inhibition in immature networks is

still too low and therefore not effective at amplifying excitation.
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• Different ODI input distributions and firing rates can account for the variability in individ-

ual OD shifts. A low threshold separating no-plasticity from LTD is sufficient to account for

counter-intuitive shifts in neurons firing at lower rates.

• In adult animals, the reduction of inhibition is not observed [8]. We hypothesize that network

changes during the CP ultimately prevent E-to-I plasticity. These changes could for example

be consolidation of E-to-I weights, changes in firing rates and/or changes in correlations.

Supporting information

S1 Fig. Evolution of weights. (a), (c), (e) Evolution of synaptic weights over time for the sin-

gle-threshold model, in the cases of MI, MD-IL and MD-BD respectively. The star denotes the

onset of deprivation, the double dagger denotes the onset of reduced inhibition. (b), (d), (f)

Evolution of synaptic weights over time for the double-threshold model, in the cases of MI,

MD-IL and BD. The star denotes the onset of deprivation, the double dagger denotes the onset

of reduced inhibition.

(TIFF)

S2 Fig. How the input distribution affects OD shifts. (a) A layer II/III neuron receives inputs

with either a narrow ODI distribution (blue) or a broad distribution (red). (b) Layer II/III neu-

rons with similar ODI index only show an OD shift after MD when the inputs have a broad

ODI distribution.

(TIFF)

S3 Fig. Synaptic Weights after first learning phase. (a) Feedforward E-to-E weights are spe-

cific, only synapses from one input group are strong, while other feedforward inputs are weak.

Only 50 feedforward connections per input group are made, white denotes no connection (see

Methods). (b) Feedforward E-to-I weights are unspecific, synapses from all input groups (200

neurons) are at the maximum bound. Only 50 feedforward connections per input group are

made, white denotes no connection (see Methods). (c) Recurrent I-to-E weights after the first

learning phase.

(TIFF)

S4 Fig. Evolution of network weights. (a), (b), (c) Evolution of synaptic weights over time for

one neuron in the network, in the cases of MI, BD, MD-IL.

(TIFF)

S5 Fig. Thresholds and I-to-E weights. (a) Our results are robust against changes in threshold

values. The boxplots show the distribution of population ODI shifts after 50 simulations for all

types of deprivation. In each simulation, a random normal value for θH and θL is chosen with

as mean the usual values (see Methods) and standard deviation 5% of these values. (b) Evolu-

tion of the I-to-E weights after deprivation. Potentiation is observed to partially counteract the

reduction of inhibition in E-to-I connections, followed by depression to a minimum bound

when the inhibition recovers.

(TIFF)

S6 Fig. L IV and LII/II recurrence. (a) Example of ODI distribution in layer IV. (b) Randomly

sampling 50 connections from the layer IV population leads to a narrow distribution in layer

II/III. (c) Recurrent layer II/III connections are not crucial in our model. Similar results are

obtained by reducing the θH and the θL by 1.

(TIFF)
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Leon, Dong Yan, Siegrid Löwel, and Schlüter Oliver M. Progressive maturation of silent synapses gov-
erns the duration of a critical period. Proceedings of the National Academy of Sciences, 112(24):
E3131–E3140, 2015. https://doi.org/10.1073/pnas.1506488112

Synaptic plasticity onto inhibition as a mechanism for OD plasticity

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006834 March 12, 2019 20 / 22

https://doi.org/10.1038/s41593-017-0021-0
http://www.ncbi.nlm.nih.gov/pubmed/29184207
https://doi.org/10.1038/s41593-017-0002-3
https://doi.org/10.1038/s41593-017-0002-3
https://doi.org/10.1038/s41593-017-0019-7
http://www.ncbi.nlm.nih.gov/pubmed/29184213
https://doi.org/10.1016/j.neuron.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15603735
https://doi.org/10.1038/nn1844
https://doi.org/10.1038/nn1844
http://www.ncbi.nlm.nih.gov/pubmed/17293862
https://doi.org/10.1016/S0896-6273(03)00323-4
https://doi.org/10.1016/S0896-6273(03)00323-4
http://www.ncbi.nlm.nih.gov/pubmed/12818182
https://doi.org/10.1038/35004582
http://www.ncbi.nlm.nih.gov/pubmed/10724170
https://doi.org/10.1038/nature12485
http://www.ncbi.nlm.nih.gov/pubmed/23975100
https://doi.org/10.1523/JNEUROSCI.2233-09.2010
https://doi.org/10.1523/JNEUROSCI.2233-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20053917
https://doi.org/10.1073/pnas.1313385111
https://doi.org/10.1523/JNEUROSCI.4262-12.2013
https://doi.org/10.1523/JNEUROSCI.4262-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23864666
https://doi.org/10.1126/science.1072699
http://www.ncbi.nlm.nih.gov/pubmed/12424383
https://doi.org/10.1073/pnas.1506488112
https://doi.org/10.1371/journal.pcbi.1006834


14. Ko Ho, Cossell Lee, Baragli Chiara, Antolik Jan, Clopath Claudia, Hofer Sonja B, and Mrsic-Flogel
Thomas D. The emergence of functional microcircuits in visual cortex.Nature, 496(7443):96–100, apr
2013. https://doi.org/10.1038/nature12015 PMID: 23552948

15. Bienenstock E L, Cooper L N, and Munro PW. Theory for the development of neuron selectivity: orien-
tation specificity and binocular interaction in visual cortex. The Journal of neuroscience: the official jour-
nal of the Society for Neuroscience, 2(1):32–48, 1982. https://doi.org/10.1523/JNEUROSCI.02-01-
00032.1982

16. Vogels T P, Sprekeler H, Zenke F, Clopath C, and GerstnerW. Inhibitory plasticity balances excitation
and inhibition in sensory pathways and memory networks. Science (New York, N.Y.), 334(6062):1569–
1573, dec 2011. https://doi.org/10.1126/science.1211095 PMID: 22075724

17. Sato M. and Stryker M. P. Distinctive Features of Adult Ocular Dominance Plasticity. Journal of Neuro-
science, 28(41):10278–10286, 2008. https://doi.org/10.1523/JNEUROSCI.2451-08.2008 PMID:
18842887

18. Mrsic-Flogel Thomas D., Hofer Sonja B., Ohki Kenichi, Reid R. Clay, Bonhoeffer Tobias, and Mark Hüb-
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