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Abstract

Memory storage in the brain relies on mechanisms acting on time scales from minutes, for long-term synaptic potentiation,
to days, for memory consolidation. During such processes, neural circuits distinguish synapses relevant for forming a long-
term storage, which are consolidated, from synapses of short-term storage, which fade. How time scale integration and
synaptic differentiation is simultaneously achieved remains unclear. Here we show that synaptic scaling – a slow process
usually associated with the maintenance of activity homeostasis – combined with synaptic plasticity may simultaneously
achieve both, thereby providing a natural separation of short- from long-term storage. The interaction between plasticity
and scaling provides also an explanation for an established paradox where memory consolidation critically depends on the
exact order of learning and recall. These results indicate that scaling may be fundamental for stabilizing memories,
providing a dynamic link between early and late memory formation processes.
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Introduction

Memory function consists of different, temporally overlapping

stages, roughly divided into working memory, short-term and

long-term memory, which are distinguishable by their increasing

capacity and storage duration [1,2]. Especially long-term memory

requires lasting changes which involve synaptic plasticity and,

subsequently, other complex and slow physiological and anatom-

ical network processes. Furthermore, the formation of long-term

memories relies on memory consolidation ([3], for a review see

[4]). Consolidation, in turn, seems to rely on the intrinsic

activation of the network that happens during sleep [5–7].

Commonly one distinguishes between two types of consolidation

[4,8–10]: (i) systems consolidation which transfers memories from

one brain area to another (e.g., from hippocampus to neocortex)

and (ii) synaptic consolidation which stabilizes memories within a

brain area. However, even after consolidation, memories are not

‘frozen’, thus, new memories learnt can disrupt memories

previously learnt and, furthermore, the recall of a memory can

destabilize this memory [4,11–13]. Memories have to be

(re)consolidated several times to achieve permanence [4].

It is an intriguing problem how the nervous system is capable of

distinguishing between memories of different storage duration

within the same brain area. Given that memories are represented

by synapses [14,15], somehow candidate synapses for long storage

duration (named in the following long-term storage LTS to not

confuse this with long-term memory) must respond differently to

those that are involved in short-term storage (STS) only. In

particular, one would expect that LTS-candidate synapses should

be susceptible to synaptic consolidation, while STS-candidates

should not.

All this happens mainly in the cross-section of the hippocampal

and cortical networks, a highly dynamic system continuously

driven by inputs as well as by intrinsic activity patterns. In spite of

this dynamic volatility, the network is capable of maintaining the

synaptic integrity of LTS-candidates for a long enough time such

that systems consolidation and other processes can set in.

Many computational and psychological memory models

describe the dynamics of systems consolidation between hippo-

campus and neocortex by introducing different time scales for

plasticity [16–20]. By contrast, experimental evidence [21]

indicates that the time scales are about the same. For synaptic

consolidation the underlying central difficulty, which makes it

hard to design more realistic memory models, is that synaptic

plasticity operates at time-scales of seconds to minutes while

consolidation takes days. The first steps after memory formation

are the processes of protein synthesis [4] and tagging [22–24]

distinguishing short- from long-term plasticity. They occur on a

time scale of minutes to hours after learning. However, synaptic

consolidation consists of several steps [4,10] and experimental
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evidences point out that NMDA- and AMPA-receptor reactiva-

tions [25–27] and sleep [6,28] are needed even days later to

(synaptically) consolidate a new learnt memory. Thus, there is a

time-gap between neuronal physiology (synaptic plasticity;

minutes) and consolidation (days). A physiologically plausible,

fully dynamic memory model that bridges such time-spans (from

learning to consolidation) such that LTS-candidate synapses

properly respond to synaptic consolidation, while STS-candidates

do not, is still missing.

Here we work towards bridging this gap by considering one

additional, well-established physiological component which natu-

rally operates at a longer time scale: synaptic scaling [29]. Synaptic

scaling has primarily been associated with the homeostatic

regulation of activity in a network [30]. Overly active networks

will – on a time scale of hours up to days – down-scale their

activity and vice versa, which is a result of synaptic scaling, where

synaptic weights are regulated by the deviation from a homeostatic

level of activity.

In the following, we show that neural circuits, which combine

synaptic scaling with conventional plasticity [31,32] such as long-

term potentiation (LTP; [33]), long-term depression (LTD; [34]),

or spike-timing-dependent plasticity (STDP; [35]), naturally

exhibit a transition from short- to long-term storage, where

LTS-candidate synapses are consolidated and maintain their

integrity through unspecific, ‘‘sleep-like’’ activation, while STS-

candidates fade. This bi-modal characteristic is due to an

intrinsically arising nonlinearity that induces – without any

addition assumption – a natural bifurcation in the dynamics of

the system. Intriguingly, this bifurcation can also explain

experimental results [36] on the apparently paradoxical effect of

memory destabilization during reconsolidation protocols [11,37],

where the recall of a previously learnt aspect actually disrupts its

memory. Our model does not attempt to implement any of the

complex and still little understood mechanisms for systems

consolidation or other long-term processes, which would lead to

true long-term memories. Instead, the goal of this study is to

present a generic mechanism for dynamically maintaining synaptic

integrity of LTS-candidates in the network by synaptic (re)conso-

lidation. Thus, this study suggests a solution to the long standing

problem of synaptic stability in a fully dynamic network by

proposing a bifurcation scenario resulting from combined plastic-

ity and scaling.

Results

Substantial evidence exists that strong synapses can maintain

their integrity better than weak ones, which are, for example, more

easily pruned during developmental processes [38,39]. Here we

show that this might not just be due to the quantitative difference

in synaptic strength. Instead such synapses may follow qualitatively

different dynamics in networks with long-term plasticity and

synaptic scaling.

Two different time scales of memory
Consider, for instance, a model neural circuit (see Materials and

Methods) of locally connected rate-coded units. Each unit i is

described by a leaky membrane potential ui and a firing rate or

activity Fi which depends in a non-linear way (here sigmoidal) on

the unit’s actual membrane potential (Fi~W½ui�). This formulation

allows for a general interpretation of each unit as either a rate-

coded neuron [40,41] or a population of neurons [42–44]. Thus,

the here presented results are independent of the spatial scale of

the neural circuit. In the following, we will use the terms ‘unit’ and

‘neuron’ synonymously.

In the basic state every neuron receives a small noisy

background input of about 1Hz. For a certain period of time

(here about two hours), only a local patch of neurons receives an

external input of stronger intensity (see green striped area in

Figure 1 A and green pulse ‘L =Learning’ in Figure 1 B,C; all

inputs are noisy) while others do not and serve as control. This

input mimics localized rate-coded signals from the environment or

other brain areas delivered to the circuit. In the circuit plastic

excitatory synapses to the nearest neighbor neurons exist (see, for

instance, in Figure 1 A the purple area regarding the blue unit), as

well as, short- and long-range lateral inhibition with unchanging

synaptic strengths (purple and bluish gray area). For simplicity, we

assume that each unit provides excitatory and inhibitory synapses.

The dynamics of the excitatory synapses wz

i,j between neuron i and

j is governed by the combination of synaptic plasticity and scaling

defined as [31]:

dwz

i,j

dt
~m FiFj
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where F is the activity, m a time constant of synaptic changes, k the

ratio of plasticity and scaling time constants, and FT the desired

homeostatic level of activity. As shown in previous work [31,32],

the quadratic weight-dependency of the synaptic scaling term

guarantees convergent synaptic weights without the need of

additional constraints [45–49]. The synaptic plasticity part consists

only of a correlation-based LTP-term. Analytical and numerical

results demonstrate (see below and Text S1) that a synaptic

plasticity rule consisting of a combination of LTP and LTD does

not alter the general dynamics, we will discuss in the following.

Depending on the intensity of the external input, differently

strong synaptic weights between the stimulated units are induced

by the combined rule of plasticity and scaling (bottom panels in

Figure 1 B,C). Thus, the units of the stimulated patch form a local

cell assembly similar to those found in recent experiments [50–52]

and represent a memorized version of the local external input.

Small differences in input intensity (100Hz vs. 130Hz) induce

large differences in weights (bottom panels, red curves). The gray

curves represent the controls from neurons that do not receive the

strong external input. As we show below, these strong weights

Author Summary

The ability to form memories of the past is a main feature
of the brain. Memories are formed by learning. However,
the biological mechanisms for learning, which change the
synaptic weights by synaptic plasticity, act on a different
time scale (minutes) than those that lead to memory
consolidation (days). Experimental results of the last 15
years show that there exists another mechanism, named
synaptic scaling, which also influences synaptic weights
but on an intermediate time scale (hours). In this study, we
analyse whether this process could bridge the time gap
and to what degree it can be used to link the processes of
synaptic changes with the slow processes of memory
formation (and forgetting). Furthermore, the combination
of synaptic plasticity and scaling provides a possible
explanation for the effect that memory recall can
destabilize existing memories. Thus, our results suggest
that synaptic scaling is a fundamental mechanism for the
dynamic processes of memory.

Synaptic Scaling Enables Memory Consolidation
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differences (red curves) arise from a generic nonlinear property of

the network, where weight-formation follows a saddle-node

bifurcation. This nonlinearity exhibits an intriguing phenomenon:

When all units in the circuit (within and outside the cell assembly)

receive a strong (120Hz) but brief input (here about 15 minutes;

yellow needles, ‘C1,C2= consolidation’, in panels B,C) only the

strong synapses will recover (panels C), while the weak ones

continue to decay (panels B). Here this brief and global input takes

the role of the coherent, but unspecific neural activation during

slow-wave-sleep, which is commonly considered as a potential

basis of synaptic consolidation [5,7]. This observation is the first

indication that the combination of plasticity and scaling in a simple

dynamic model allows differentiating between synapses for short-

term storage, which decay, from those for long-term storage,

which can be recovered (or rather consolidated).

Furthermore, we note that the network has only increased

activity during external stimulation. Such a stimulation yields an

imbalance in neuronal circuit activity depending on the recurrent

synaptic weights. Thus, the learnt cell assemblies are stronger

activated than controls and the memory contents stored in the

network are read-out (see below). As soon as the external input is

not present any more and only background input remains, all

activities relax back to background firing rate (&0:1{1Hz)

although recurrent weights are still high (Figure 1 B,C). This is an

important difference to attractor memory models [53–55], which

will continue to be active after stimulus withdrawal for (theoret-

ically) infinitely long time. This persistent activity is important for

explaining the dynamics of working memory (seconds) but

contradicts the idea of long-term memories which are not

permanently active. Here, the memory content is transferred

from the input to the synaptic weights [14]. The activities can

relax back to background state.

We remark that the emergence of the here shown phenomena

does not rely on saturation effects and fine tuned topology (see

Figure 1. Increasing the input frequency yields synapses that recover their weight by global, consolidation-like stimulation. (A) The
network consists of a square grid of N units with periodic boundary conditions in both directions. Each unit connects excitatorily with its nearest
neighbours (see purple area regarding blue neuron) and inhibitorily with the nearest and next-nearest neighbours (purple and bluish gray area). Each
unit receives an external projection (only a subset is shown). Two different input types are delivered: (i) a local learning stimulus (‘L’, green area) and
(ii) a global input to all neurons (‘C’, yellow). (B,C) Different input intensities induce different activities (middle row) and weights (bottom row) of the
input-target neurons (red). Pulses for local learning L are 5–10 times longer than for global consolidation C stimuli (see panels D–F for accurate
stimulation-response details). Before learning short activation of all neurons (‘contr’) has no significant effect on the weights. (B) Learning signal L
with F I

~100Hz. Synaptic weights of the red neurons grow but not the control weights (gray). After learning all activities relax back to background
(0:1{1Hz) and weights decay. Subsequent consolidation stimuli (C1,C2; F I

~120Hz) change weights minimally. (C) Stronger learning signal L
(F I

~130Hz) induces stronger weight growth (red curve) than in B. Now consolidation pulses (C1,C2; as before) yield weight recovery. This happens
for all stimuli that drive weights across the bifurcation level of weight decay versus recovery (dashed horizontal line). (D) Stimulation protocol during
learning. (E) Mean synaptic weight shows for increasing inputs an abrupt transition (DL[f1,30,60,120,720,1440gmin and
dL[f0:1,0:5,1,5,30,60,120,180gmin). (F1,F2) Different combinations of input interval DL and duration dL robustly lead to the same weights (red
neurons) for different input intensities (F I

1~100Hz, F I
2~130Hz). B–F: Background input has an intensity of 1Hz and all inputs are noisy (see

Materials and Methods).
doi:10.1371/journal.pcbi.1003307.g001

Synaptic Scaling Enables Memory Consolidation
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Text S1). A detailed quantification is provided below. First, we

show the impact of a memory recall on the spatial structure of the

LTS-synapses.

Learning and recall
During recall the spatial distribution of weights and activities

reveals an interesting competitive effect (Figure 2), that is

important for the formation of different memory cell assemblies

and also leads to the paradox of memory loss during recall ([36],

see below). Initially, during learning only the a local patch of units

is stimulated and the synapses of their target neurons all grow

(purple square in Figure 2 A; L-phase in Figure 1 C), where we

have used a strong and local stimulus to drive all synapses into the

LTS-regime. Consolidation stimulates the complete network and

all synapses within the assembly recover or exceed their initial

strengths (Figure 2 B; C1,C2-phase in Figure 1 C). The process of

remembering (recalling) a memory is often understood as partial

stimulation of an assembly and potentially of some other neurons

[56–58]. By ways of its learnt connections the assembly produces a

filling-in and generates a spatially quite complete excitation

pattern including most of its members (so-called pattern comple-

tion). According to the literature [1,14,56–60] this represent the

behaviorally relevant recall activity. Therefore, only a randomly

selected subset of assembly-neurons receives a stimulation (we used

here about 30% with some outliers). The resulting network activity

clearly shows a filled-in spatial assembly structure (Figure 2 C;

Please note that due to the partial stimulus all units of the assembly

are stronger active than the control ones. Thus we can assume that

the assembly is completed.), where, however, sometimes strongly

active neurons are neighbors of weakly active ones. For such

constellations the different activities induce a dissimilar weight

dynamic. Consider a pair of mutually connected neurons (see

hatching in panel C). The weakly active neuron (but still more

active than controls) induces a small synaptic plasticity term and

synaptic scaling is weak, too. By contrast, the synaptic scaling term

for the strongly active neuron is large and, thus, dominates the

dynamics. As a consequence, the corresponding weight shrinks

substantially (Figure 2 C, inset, yellow bars; see also Text S1 for

equations).

We remark that such network structures with generic lateral

inhibition admit separation of different assemblies from each other

if learning stimuli do not overlap too much. On the other hand - as

soon as overlap exists - activation imbalances, as described above,

may lead to interference and competition between different

memories. The consequence of this will be discussed in

conjunction with the paradox of memory loss during recall [36]

at the end of this study.

Analyzing STS- and LTS-domains
The difference between STS- and LTS-synapses in Figure 1 is a

non-linear phenomenon, which is due to a saddle-node bifurcation

and as such robust against changes in the stimulation patterns,

representing different learning protocols. We tested a range of

different input strengths and pulse protocols (Figure 1 D).

Generally, for small external inputs the resulting synaptic weights

depend roughly linear on the intensity (Figure 1 E) with a sudden

jump to high values above a certain input intensity. The critical

value, where this transition takes place, is insensitive to details in

the pulse protocol (indicated by the strong weight differences

shown in Figure 1 F1,F2).

The mechanism inducing this phenomenon is readily under-

stood by investigating the dynamics of this system in more detail.

We first analytically calculated the characteristic Weight-Input

curve of this system.

In the following we will show in an abbreviated form the

analytical calculations (see Text S1 for more details). We assume

that the long-range inhibition separates the circuit into two (or

more) subnetworks: (i) the externally stimulated local patch(es) and

(ii) the unaffected control units. This enables us to average

Equation 1 over all units within such a subnetwork. To calculate

the fixed point of the resulting mean field differential equation we

set it equal to zero and solve it. As result we receive the weight-

nullcline of the system (The weight-nullcline is a set of states where

weights do not change under the given dynamics.):

�wwz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�FF2

�FF{FT

r

ð2Þ

with �xx as averaged value of variable x. Equation 2 describes the

resulting strength of the synaptic weights within a subnetwork

given the dynamic of plasticity and scaling and a mean neuronal

activation �FF . As the maximal activation of each unit can not

Figure 2. Spatial structure of activity and weights during learning, consolidation and recall. (A) A local learning input (region marked by
purple squares) leads to growth of all input driven weights. Mean weights are plotted, which naturally are smaller for border or corner neurons as
they do not get inputs from outside. (B) Before consolidation, weights have decayed but will be recovered fully by a global and weak consolidation
stimulus given to the whole network. (C) Recall stimulates only some of the input neurons. Nonetheless, activity is filled in and the memory pattern is
completed. Note, an imbalanced activation induces a disparate development of weights between strongly and weakly active connected neurons, for
example those marked by hatching in panel C. One weight shrinks substantially (see inset in C, yellow bars).
doi:10.1371/journal.pcbi.1003307.g002

Synaptic Scaling Enables Memory Consolidation
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exceed a (given by the input-output function W½ui�), the maximal

possible synaptic weight is given by wmax~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ka2ð Þ= a{FTð Þ
p

. The

resulting weight-activity function in the phase space is shown in

Figure 3 B,C (blue line) for the parameters used in Figure 1. Of

course, the course of the function depends on the used synaptic

plasticity rule (the numerator in Eq. 2), but it also shows that the

LTP-term (�FF2) dominates and that additional plasticity mecha-

nisms (e.g., LTD [34] or short-term plasticity [61]) do not alter the

basic dynamic (see Figure S1 in Text S1).

The average activity within a subnetwork induces certain

synaptic strengths (Equation 2). In turn, the mean external input
�FF I (multiplied by the input weight wI ) and the average recurrent

synaptic weights themselves adapt the average activity. The

resulting fixed point of this dynamic is calculated by the mean field

differential equation of the membrane potential u (Eq. 4). This

yields the activity-nullcline (In analogy to the weight-nullcline, the

activity-nullcline is a set of states where activities do not change.):

�wwz
~

1

tR
�uuz �NN{

Y
�FF �ww{

{wI �FF I

�NNz

Y
�FF

ð3Þ

with membrane resistance R and average excitatory ( �NNz

Y
) and

inhibitory ( �NN{

Y
) number of connections per unit within the

subnetwork. As �NNz

Y
and �NN{

Y
are the only topology-related

parameters in this equation (and Eq. 2), the described dynamics

are independent of the detailed topology (see Figure S2 in Text

S1). The activity-nullcline follows roughly the sigmoidal shape of

the activation function (Eq. 5). Furthermore, it shows that external

inputs of different intensity delivered to the circuit change the

neuronal activation (see green line in Figure 3 B for 100Hz

compared to the red line in panel C for 130Hz) and, therefore,

(via Eq. 2) the synaptic weights. The direct influence of the

external input on the synaptic weights within a subnetwork can be

assessed by calculating the intersections between both nullclines.

These intersections are the fixed points of the whole subnetwork

(activity as well as weights). The resulting fixed point equation has

no closed-form solution and, therefore, has to be solved

numerically. Direct simulations of the whole circuit (Euler-

method) match our theoretical predictions (Figure 3 A).

Specifically, we find a saddle node bifurcation where different

fixed points are reached for low as compared to high input

intensities. For the particular setting displayed in Figure 3, a

continuous regime of fixed points for the weights exists for firing

rates below approximately 120Hz (Short-Term Storage, STS;

green, Figure 3 A), while above this frequency, the system jumps

to a fixed point regime with substantially larger weights (Long-

Term Storage, LTS; red, Figure 3 A). The gray area below STS

represents the range of weights found for the randomly stimulated

control neurons (targets of the yellow neurons in Figure 1 A).

Note, to obtain this curve we assumed that the circuit consists of

several roughly independent subnetworks. This means that in one

circuit different fixed points are reached at different spatial

locations. For instance, in Figure 1 C after local stimulation the

(local) patch is in the LTS-regime (about 130Hz in Figure 3 A)

while the control units are weakly stimulated and, therefore, they

are in the gray control regime (about 1Hz) with small synaptic

weights. The bifurcation is essential for the dynamics discussed

here. Using different parameter values for the system does not

change the fixed point curve significantly (see, e.g., Figure 4 B

and Figure S3 in Text S1 compared to the used setting shown in

Figure 4 A and Figure 1 B,C). However, if one parameter is

changed dramatically an adequate adaption of the other

parameters can still guarantee the desired circuit dynamics (see

Figure 4 C,D). Thereby, the range of parameters remains in a

physiological regime.

The emergence of the (desired) form of the F I vs. wz function

can be explained by the changing locations of the nullclines in the

phase space (Figure 3 B,C). For small input frequencies, the

nullclines intersect at three different points and, therefore, two

stable and one unstable fixed points exist (green and red markers

in Figure 3 B). As weights gradually start to grow from low values,

the system gets trapped in the lower stable fixed point in the STS-

domain. For high input frequencies only one stable fixed point

exists which is in the LTS-domain (Figure 3 C). As soon as the

strong external input ends, only the lower fixed point exists and

the weights start to decay and, without further inputs, reach

control values after maximally ten days (Figure 3 D and Text S1).

However, brief consolidation inputs prevent this as discussed

next.

Figure 3. Combination of plasticity with synaptic scaling generates two distinct weight domains representing short-term and long-
term storage. (A) Both domains (STS and LTS) arise from a bifurcation (see main text and Text S1) between two stable fixed point domains
(continuous lines). Depending on the input, weights either continuously grow (control and STS-domain) or suddenly jump to a high value (LTS-
domain). Between both domains there is a transition range (dashed line). Blue dots show results from numerical simulations (Figure 1), which match
the analytical curve. (B) Fixed points are defined by the intersection between activity- (green) and weight- (blue) nullclines. As long as all three fixed
points (green stable; red unstable) exists the phase space is divided into two attractor regimes which are also indicated by arrows (F I

L~100Hz). (C)
Higher frequencies shift the activity-nullcline (red line) upwards which results in only one attractor regime (LTS; F I

L~130Hz). (D) Passive weight
decay happens for all synapses as long as there is no consolidation stimulus present. Dashed parts of the curve indicate that LTS-synapses can be
consolidated.
doi:10.1371/journal.pcbi.1003307.g003

Synaptic Scaling Enables Memory Consolidation
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Consolidation of memory
Bifurcation analysis also helps to understand why synapses with

values in the upper fixed point regime (LTS-synapses) respond to

global and unspecific consolidation inputs while others do not.

Weight changes strongly differ for differently strong initial weights

when presenting a single consolidation stimulus (Figure 5 A and

Figure S6 in Text S1). Weights above the bifurcation threshold

(dashed line) are increased substantially, while those under the

threshold are almost unaffected (close beneath threshold they rather

decrease due to the lateral inhibition, see Figure 1 A, top). This

phenomenon is robust against the duration of the consolidation

stimulus (Figure S4 in Text S1). As a consequence, while all weights

decay after learning, consolidation will recover those above

bifurcation threshold. Hence, consolidation must not come too

late, or also those weights might have dropped beneath threshold

from which they cannot be recovered (Figure 5 B). Note, this

phenomenon is not ‘‘history dependent’’, which means it does not

matter whether learning or consolidation had driven the weights

into the LTS-regime before decay has set in (Figure S5 in Text S1).

We remark that our model solely captures dynamic network

effects and that we do not attempt to model systems consolidation,

which relies on complex and little-understood physiological

processes. It appears, however, important that the here observed

dynamic properties of such a network allow synapses to maintain

(and regain) their stability such that systems consolidation or other

processes may find a stable substrate to operate on. The wide

parameter range within which this happens (Figure 5 C) supports

this argument, because recovery is robust and stable. Only if the

consolidation input is too short or too late, forgetting sets in.

As consolidation is a sleep-induced effect [5,6,10], little is known

about the actual activity characteristics of the consolidation

process. Input intensities required for consolidation are similar to

those for initiation (similar to Figure 1 E), but emphasis lies on the

fact that for consolidation the whole network is stimulated in an

unspecific way and that the consolidation stimuli can be shorter (in

Figure 1 B,C about 15 minutes of total duration). Additionally,

similar to during sleep induced activations (e.g., spindles or ripples

[6]), the memory-related cell assembly is reconstructed (‘‘re-

played’’; see, e.g., [62] for review) during the consolidation input

(Figure 2 B).

Stimulus-dependent destabilization of memory
The recall of a previously well-learnt memory item may lead to

the paradoxical phenomenon that this memory will be less well

remembered than a newly learnt one. In the literature, this

phenomenon is widely interpreted as memory destabilization or

rather disruption [4,11–13,37,63] and has been found in some

studies [11,64], but not in others [65,66]. Thus, the question arises

what the dynamical processes are that underlie it and especially

also why memory destabilization/disruption depends on details of

experimental protocols. In one specific experimental paradigm

[36] destabilizing happens due to the interference of a new

memory item with the previously learnt first memory, but only if

the first memory was recalled before the second was learnt. In this

protocol the first memory is impaired, while the new one is now

susceptible to consolidation. In the following, we show that

combined plasticity and scaling also naturally accounts for this

paradox. We compare the experimental paradigm with the

collective dynamics of our model system and highlight reasons

for the ambivalence about the emergence of this phenomenon

[11,64–66].

In a series of elegant experiments, Walker et al. [36] have shown

that destabilization of memory happens during a motor learning

task. In a control experiment (Figure 6, Protocol 1) human subjects

were first trained only on one motor sequence (learning, L1, blue,

day one) and then tested once on day two (recall, R2) and day

three (recall, R3). Significant improvement in accuracy was

observed at day two, but not at day three (Figure 6 A). In the

second control experiment (Figure 6, Protocol 2) subjects had been

trained on the first sequence on day one (L1, blue) and on a

different, second sequence on day two (L2, red), hence 24 h later.

Testing was done on day three (R3, blue and red) and

performance had improved for both sequences equally (Figure 6

B, blue and red bars). Both observations (panels A and B) were

explained [36] by the overnight consolidation (C1, C2) of the

memory. In the third experiment (Figure 6, Protocol 3) subjects

learnt the first sequence on day one and were – as above – tested

on day two (R2, blue) showing the same clear improvement

(Figure 6 C, left blue bar). Immediately after testing they had to

learn sequence two (L2, red). When re-tested on the third day (R3,

blue and red) performance had significantly improved for

Figure 4. Robustness of bifurcation structure. (A) FT
~0: The F I vs. wz function of the fixed points of the system as already shown in Figure 3

A. For simplicity we show here only the curve without indicating the different storage domains. (B) FT
~0:1: Changing, for instance, the desired firing

rate parameter of the synaptic scaling term does not induce significant changes in the F I vs. wz function. The overall circuit dynamics are the same
as shown in Figure 1 (see Figure S3 in Text S1). This holds for negative FT values (not shown), too. (C) FT

~0:2: Only a dramatically different FT value
induces changes in system’s dynamic. Here, a pole emerges for small input intensities. To avoid this pole and maintain the desired dynamic the
background input could be increased (F I

&20Hz) to keep the system on the right side of the pole. Alternatively, other parameters could be adapted.
For instance, (D1) the steepness of the neuronal output function (b~0:04) or (D2) the inflexion point (E~120Hz) have to be decreased.
doi:10.1371/journal.pcbi.1003307.g004
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sequence two but dramatically dropped for sequence one (Figure 6

C, right blue and red bars). This indicates that the second memory

interferes with the first but only when the first is activated before

the second was learnt.

In our model setting, we performed an identical set of

experiments, i.e., with the same learning and testing sequences

as used for the human subjects. The model was set up with two cell

assemblies, partially overlapping at a corner. Assembly one (blue)

was trained on one input sequence and assembly two (red) on

another sequence. For recall – as explained above (Figure 2) – we

stimulate only a randomly selected subset of 30% of the original

neurons. Connectivity and all other parameters were the same as

before (Figure 1). Training of either sequence leads to increased

synaptic weights which are in the LTS-domain, hence, large

enough to allow for consolidation. Consolidation stimuli, C1 and

C2, were applied ‘‘at night’’, where we briefly (three times 15 min)

stimulated the whole network (similar to the procedures in

Figure 1), as indicated by the dashed arrows in panels G–I. In

these panels one can also see the development of the synaptic

weights for the first (blue) and the second (red) cell assembly for all

three experiments. Performance indices of the model (Figure 6 D–

F) are similar to those for the human experiments and we find that

data points for the two control experiments match (Figure 6 A,D

and B,E). Moreover, also the non-trivial effect on memory

disruption is robustly reproduced by the model (Figure 6 C,F).

The weight growth normally happening at consolidation C2 is

only visible in the control protocols (Figure 6 G,H). By contrast,

the readout that happens for protocol 3 at R2 effectively prevents

the first memory from consolidation (Figure 6 I).

This phenomenon based on the intrinsic competitive effect

arising from activation imbalances already discussed for Figure 2

(see inset in panel C) above. This can be seen in panel G here (see

box with magnification), as the recalls R2 and R3 yield a reduction

of the average weight curve, without inducing transitions from the

LTS- to STS-regime. Learning the second memory acts for the

first assembly ‘‘like a recall’’, due to the partial overlap between

assemblies. This is visible in panel H (box). Thus, learning a

second memory can reduce the average weights of the first one. In

panel H all weights are far above threshold and both assemblies

can be consolidated. This is different for the last experiment (panel

I). Recall R2 together with learning the other sequence L2 pushes

the blue curve down more strongly (see box) than in panels G and

H such that it has dropped under the bifurcation threshold when

consolidation C2 happens. Close beneath threshold we remember

that consolidation acts disruptive (see negative parts of the curve in

Figure 5 A), which leads to a further weight decrease at time point

C2. Panels J–L show the time courses of the fraction of synapses of

each cell assembly that are in the LTS-domain, which corresponds

to the above discussed effects. We remark that we have set all

parameters in this simulation purposefully so that we can in panel I

exactly depict the critical bifurcation point, where at C2 the red

weights are just above threshold while the blue ones are just below

and the first memory is disrupted. This is meant to emphasize that

the transition from the LTS- to the STS-regime, which is a

qualitative change, is sensitive to the experimental parameters.

This might underly the fact that destabilization, which leads to an

actual memory disruption, is not always found in real experiments

[65,66]. While recall and learning of other memories can robustly

destabilize a memory, it is the relation of the weight-values relative

to the bifurcation threshold, which can give rise to memory

disruption (or not). A detailed parameter analysis of the

destabilization phenomenon, confirming its robustness, is provided

in the supplemental information (Figure S7 in Text S1). This

analysis shows that only, if weights are too big or stimulation for

recall is too broad and not competitive enough, transitions from

the LTS- to the STS-domain do not happen as the system will not

travel through the bifurcation. We remark that several recalls

briefly after each other affect the same subset of synapses and,

therefore, a destabilized memory can not be destabilized further

by applying more recalls.

More specifically, we observe that the overlap between the cell

assemblies, related to the fraction of reactivated neurons during

recall, is the most critical factor which determines whether one

assembly can be destabilized (Figure 7). Zero overlap - trivially so -

leads to no disturbance (not shown), small overlap represents the

situation which is most strongly susceptible to the disruption of a

long term memory (Figure 7, left rows), where more synapses

move from the LTS- to the STS-domain than vice versa. By

contrast, for a large overlap both assemblies drive each other up

into the LTS-domain (Figure 7, right rows). Intuitively this makes

sense. Large overlap means that both memories are very similar,

hence they might as well begin to couple themselves in an

associative (hebbian) way. For small overlap the (dis-)similarity of

the memories might rather be ‘‘confusing’’ and an agent (animal/

Figure 5. Consolidation qualitatively relies on synaptic strength and temporal protocol. (A) The global activation signal (F I
C~120Hz,

dC~15min) induces the recovery of those synaptic weights which are above the bifurcation threshold (LTS-regime; dashed line). For synapses just
under the threshold consolidation mildly decreases the weights. Decrease arises from the network inhibition (network as in Figure 1 A). (B) Recovery
of weights occurs only if the consolidation stimulus occurs early enough (C1; upper panel). When the stimulus is too late (C2; lower panel), weights
have dropped into the STS-regime and cannot be recovered. (C) Weight recovery is robust to changes of interval DC and duration dC of the
consolidation signal (F I

C~120Hz, DC[f6,12,18,24,48g hr and dC[f1,3,5,10,15,30gmin). For intervals up to 24 h relatively short consolidation signals
– either delivered as one or as many pulses – suffice for recovery.
doi:10.1371/journal.pcbi.1003307.g005
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human) might benefit from forgetting one of them not being able

to decide whether they are the same or different. It would be

interesting to investigate this from a psychophysical point of view.

We expect that memory similarity is the crucial factor which

determines the capabilities of the system for memory maintenance

versus destabilization.

Discussion

Previous theoretical studies have shown that synaptic scaling

could play a key role in neural network dynamics. For instance,

synaptic scaling assures competition [67] between synapses at the

same dendrite and, therefore, can help to distinguish different

inputs [68,69]. Furthermore, scaling can outbalance neuronal

heterogeneities in a way that the performance at working memory

tasks is improved [70]. In this study we have shown that synaptic

scaling appears a viable candidate mechanism to bridge the large

temporal gap between synaptic plasticity (minutes) and synaptic

consolidation (days), where we have investigated simulated 24 h

sleep-waking cycles. Scaling operates on time scales of hours to

days [29] and synaptic plasticity on seconds to minutes [33].

Processes on other time scales, for example short-term plasticity

[61], long-term depression (LTD, [34]), or synaptic tagging

[22,23], can influence synapses without great impact on the

dynamics of our model, because these mechanisms are ‘‘tempo-

rally close’’ to the synaptic plasticity part of the learning rule used

here (see Eq. 2). Our analytical and numerical results indicate

(Text S1 and [31,32]) that a different formulation of the synaptic

plasticity part will not interfere with the final dynamics as long as

the weight-nullcline obeys �wwz

w ~a:�FFb with a,bw0 which holds for

many generic plasticity rules [31]. This constraint also holds for

Figure 6. Learning new memory can induce disruption of previously learnt memory in experiment and model. (A–C) Experimental
results recompiled from Walker et al. [36] showing different memory characteristics in human subjects for a motor learning task over three days. Bar
plots (insets) show the relative performance change compared to the previous measured data point. The main panels show the absolute
performance change over time. Blue represents the first and red the second memory; ‘L’ is learning, ‘C’ consolidation, and ‘R’ recall of a memory at the
respective day. (D–F) Performance indices of the model are calculated across all neurons of the memory-related sub-population. For details see in
Materials and Methods. (G–I) Temporal weight development averaged over sub-population. Dashed arrows indicate consolidation at ‘‘night’’. (A)
Consolidation leads to significant performance improvement after one night for a single learnt memory (blue). (B) Later learning of a second memory
(day 2, red) results to improvement of both (blue and red). (C) Recall of the first (R2) before learning the second memory (L2) induces strong
performance decrease for the first (R3, blue) but not for the second memory (R3, red). (D–F) Performance indices (black dots) from the model at the
respective points in time follow the same characteristics as human performance in (A–C). (G,H) Consolidation leads to recovery of the corresponding
weights in both control protocols but (I) not for the first (blue) memory when using protocol 3, which leads to a massive reduction of LTS-synapses.
(J–L) Fraction of memory-related synapses in the LTS-domain.
doi:10.1371/journal.pcbi.1003307.g006
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the more complex dynamics of spike-timing-dependent plasticity

(STDP; [35,71]) as strong neuronal activations lead to long-term

potentiation (LTP) independent of the exact timing of spiking [72–

74]. In an intermediate activity regime we would expect that

STDP together with scaling could yield the emergence of even

more complex cell assembly structures which could store spatial-

temporal patterns [75–79]. Over longer time scales (on average)

the dynamic of STDP can be simplified by the BCM-rule

[47,80,81]. This rule consists of an LTP- and an LTD-term and,

therefore, the phenomena revealed in this study are maintained

(compare also Figure S1 in Text S1). As an important

consequence, the bifurcation is preserved under these conditions.

Thus, our model with such additional faster synaptic modification

mechanisms would exhibit only changed time-courses of the

transient synaptic dynamics, for example the learning- or decay

times, or more complex structures of cell assemblies, but this

would not modify the bifurcation scenario qualitatively and,

therefore, the consolidation paradigm presented here. However,

not only different plasticity mechanisms can be used, but also the

homeostatic term (here, synaptic scaling) could be another (slow)

mechanism adapting synaptic weighs. Note, not every homeostatic

term (e.g., [46–48]) fulfils the above stated weight-constraint.

We considered a class of models of general form (see Materials

and Methods). Together with the analytical results this indicates

that the phenomenon of synaptic consolidation and differentiation

between two storage durations within one network is nearly

independent of the underlying network topology (see Figure S2 in

Text S1), plasticity rule considered (see above), details of neuronal

and network properties, and type of stimuli. The main require-

ments, which have to be fulfilled, are: (i) a learning rule which

guarantees stable synaptic weights depending on the neuronal

activity (�wwz

w ~a:�FFb) as assured by the combination of LTP and

scaling, (ii) leaky, non-linear units (single neurons or ensembles of

neurons), (iii) an excitatory recurrent network with, on average,

long-range inhibition, and (iv) ‘local’ external stimuli with

increased firing rate. Therefore, the bifurcation and consolidation

mechanisms described here are not restricted to a certain brain

area. Instead, they can occur in every brain area fulfilling the

above requirements. Commonly on assumes for memory the

neocortex and hippocampus [4,42,52,82]. Furthermore, the area

has to have global activations during sleep [6] which could then

serve as the consolidation stimulus. Furthermore, the learning

stimulus in this model depends on the input frequency. This means

that the cell assembly or memory in this model can correspond to

a wide variety of long-term memories represented by Hebbian cell

assemblies in the brain [14,15]. This includes declarative as well as

non-declarative memory types.

Often (computational) memory models are currently based on

attractor neural networks [53,54,57,83–85]. In these networks,

after the withdrawal of the external input, the activity of a

reactivated memory persists for a longer duration [55,86]. This

feature allows for the use of attractor models to reproduce the

(relatively) short neuronal dynamics during working memory tasks

(up to ten seconds). However, without additional external stimuli

these networks are even longer persistently active than the working

memory time scale. This means that a reactivated memory in an

attractor network will stay active for several minutes or days.

Therefore, other mechanisms, as, for instance, inhibitory plasticity

[58], are considered to deactivate the recalled memory. All this

seems physiologically problematic. By contrast, in our model

activity drops back to the background state after a short period

(Figure 1) as the memory is not an attractor of the activity

dynamics. This is another important property of our system, which

combines dynamic behavior with the possibility for synaptic

Figure 7. Transitions of synapses between LTS- and STS-regime for different degrees of cell assembly overlap related to the
fraction of reactivated neurons during recall. Columns present the fraction or overlap NR of activated neurons (randomly chosen) in percent of
assembly size, rows show how many synapses are in the LTS- or STS-domain (STS: green; LTS: red) before (top) and after (bottom) recall. The middle
row shows how many synapses have actually changed their role during the recall. Duration of recall is 270 sec.
doi:10.1371/journal.pcbi.1003307.g007
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recovery by consolidation. To enable working memory dynamics

within this circuit, our model could be extended by the

mechanisms of short-term plasticity [61,87,88]. However, the

drop in activity results in a decay of weights which, due to further

mechanisms, could be probabilistic as already proposed by Fusi

et al. [89].

The decay of synaptic weights can be avoided by repeatedly

delivering brief and global consolidation signals to the network.

Here, we assume that such signals can arise during sleep, especially

by spindles and ripples [6]. Experimental findings show that, for

instance, the disruption of ripples impairs memory consolidation

[90] and, furthermore, that synaptic weights are, as in the model,

increased after slow-wave sleep or rather spindles [7]. Although we

did not include the rich dynamics induced by sleep, our model

suggests a potential basis for synaptic consolidation happening

during sleep. Furthermore, other experimental studies [25,26]

show that, even six months after learning, memory needs repetitive

inductions of plasticity (reconsolidation). The biological mecha-

nisms of this phenomenon are slightly different to initial synaptic

consolidation [91]. However, as in this model, the functional

properties of these two events are assumed to be similar [13,63].

The dynamics presented here also yield the fact that the model

– similar to the real system – remains susceptible to perturbations

and we explicitly reproduced the elusive effect of memory

disruption by recall [36]. Similar, drug-induced effects had also

been reported in a few studies [11,37] but others failed to obtain it

[65,66]. Furthermore, learning something new shortly before or

after recall seems to increase the chance of perturbing the old

memory [12,13]. This ambivalence is hard to account for with

other existing memory models but finds a possible explanation in

the bifurcation scenario found here. The bifurcation scenario also

predicts that relearning of the disturbed memory should be much

faster than before as weights are still larger than without learning.

Furthermore, memory similarity (here ‘‘assembly overlap’’) has a

non-trivial effect on consolidation versus destabilization (Figure 7).

This is a novel and intriguing prediction which may well be tested

in psychophysical experiments.

In general, it seems that memory has to be repeatedly

consolidated [4,25], which could happen during sleep [5], until

it is increasingly stabilized. To achieve the latter, systems

consolidation, which also begins during sleep [6], performs a

transition from a dynamic to a more static memory representation.

By this, the stored information is transferred to the neocortex [4].

The process suggested here is capable of repeatedly recovering

LTS-candidate synapses, while STS-candidates fade. This may,

thus, essentially contribute to providing a stable substrate for

systems consolidation and other processes.

Materials and Methods

Network
The network consists of a circuit (Figure 1 A) with N units. Each

unit i receives an external input F I
i with fixed weight wI

w0.

Furthermore, each unit has plastic excitatory connections wz

i,j to its

Nz

Y
nearest-neighbors j (purple area in Figure 1 A regarding blue

unit) and constant inhibitory connections w{

i,k to its N{

Y
nearest

and next-nearest neighbors k (bluish gray and purple area in

Figure 1 A). We remark that the specific layout of this topography

is not relevant for the results obtained here (see Figure S2 in Text

S1), as long as there is a competition between local excitation and

longer-ranging inhibition.

Each neuron i in the circuit is defined by its leaky membrane

potential ui which changes according to

_uui~{
ui

t
zR

X
Nz

Y

j

wz

i,jFj{

X
N{

Y

j

w{

i,jFjzwI F I
i zni

� �

0

B
@

1

C
A ð4Þ

with membrane time constant t, resistance R, and external input

given by F I
i with unchanging input weights wI . The input is

modulated by a noise term ni drawn each time step from a normal

distribution N (0,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

0:1:F I
i

p

) with mean zero and standard devia-

tion 0:1:F I
i . In all simulations the (abstract) membrane potential

ranges from values about {150 to 600.

The membrane potential is non-linearly transformed to a firing

rate Fi by a sigmoidal-function:

Fi:W½ui�~
a

1zexp b: E{uið Þð Þ
, ð5Þ

where a is the maximum firing rate, b the steepness of the

sigmoidal function, and E its inflexion point. All parameters

combined specify the input-output behavior of the unit.

Only the excitatory synapses wz

i,j in the second layer are

modified using the ‘‘Synaptic Plasticity and Synaptic Scaling’’

(SPaSS)-rule [31]:

_wwz

i,j~m FiFjzk{1 FT
{Fi

� �
wz

i,j

� �2
� 	

, ð6Þ

where m defines the plasticity rate and k the ratio between

plasticity- and scaling rate. The desired ‘target’ firing rate of

synaptic scaling is given by FT . A detailed analysis of the

properties of this rule is provided elsewhere [31,32].

All equations are solved analytically in a mean field approach

(see Results section and Text S1) and numerically with the Euler

method (Dt~0:5 sec). In the following, we provide the parameters

used (if not stated otherwise). For numerical simulations, we set

N~100, Nz

Y
~8, N{

Y
~24, thus, the circuit is a 2-d grid. The

inhibitory and projection weights are proportional to the maximal

possible weight: w{

i,j~w{
~0:3:wmax and wI

~wmax with

wmax~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ka2ð Þ= a{FTð Þ
p

. The neuronal parameters are

a~100Hz, b~0:05, E~130Hz, R~0:012V, and t~1 sec.

The here shown results are independent of t. Although, a smaller

value would be biological more reasonable, we took t~1 sec as

this avoids numeric instabilities (Dt~0:5 sec). The plasticity

parameters are m~1=30000 sec{1, k~60, and FT
~0Hz. To

avoid boundary effects, we used periodic boundary conditions

resulting in a toroidal network topology.

Learning and recall protocol for reconsolidation
experiment
In Walker et al. [36] training and recall of memory items differ

in the number of blocks each consisting of 30 seconds task

followed by 30 seconds rest. Here we use 36 blocks for a training

session and 10 blocks for recall. Throughout the task a stimulus of

185Hz intensity is given to the memory-related neurons (Nm~9).

Consolidation signals consist of three blocks with 15 minutes

whole network stimulation (F I
~120Hz) followed by 15 minutes

pause. Every time step gaussian noise is added to the external

stimuli as mentioned above but with a standard deviation of

0:01:F I
i .

For Walker et al. [36] as well as for model results all values in

the insets of Figure 6 are average values over 10 trials. Data points

Synaptic Scaling Enables Memory Consolidation

PLOS Computational Biology | www.ploscompbiol.org 10 October 2013 | Volume 9 | Issue 10 | e1003307



(black dots) in the main panels have been calculated from the bar

plots by us; connecting lines are for graphical reasons only.

Performance indices of the model are calculated as time- and

space-averages of the synaptic weights across all neurons of the

respective sub-populations. The time averages have been obtained

over five blocks. These are the five last task blocks used for recalls

or learning (the learning pulses define the 100% value).

Supporting Information

Text S1 Analytical derivations and detailed analyses of

cell assembly dynamics. First, we derive the nullclines of the

system and the resulting bifurcation phenomenon. Then, we show

that this bifurcation and the related consolidation effect are

general mechanisms which hold under different conditions as, for

instance, random topology or different synaptic plasticity rule.

Furthermore, we provide an analytical derivation of the weight

decay without external stimuli and more detailed analyses of

memory consolidation and destabilization. At the end of the

document is the used Matlab source code for the grid network.

(PDF)

Author Contributions

Conceived and designed the experiments: CT MTs FW. Performed the

experiments: CT. Analyzed the data: CT CK MTi MTs FW. Contributed

reagents/materials/analysis tools: MTi FW. Wrote the paper: CT MTi

MTs FW.

References

1. Eichenbaum H (2011) The cognitive neuroscience of memory: an introduction.
Oxford University Press, USA, 2nd edition.

2. Tetzlaff C, Kolodziejski C, Markelic I, Wörgötter F (2012) Time scales of
memory, learning, and plasticity. Biol Cybern 106(11): 715–726.

3. Müller G, Pilzecker A (1900) Experimentelle Beiträge zur Lehre von Gedächtnis.
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