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REVIEW

Synaptic tau: A pathological or physiological 
phenomenon?
Miranda Robbins1, Emma Clayton2 and Gabriele S. Kaminski Schierle1*  

Abstract 

In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer’s disease (AD) and how 
this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of 
working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tan-
gles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected 
neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction 
and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- 
synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein 
in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic 
plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological 
roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
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Introduction
�is review is primarily focused on synaptic Tau in Alz-

heimer’s disease. Studies that investigate the function of 

synaptic Tau have been obtained through various experi-

mental models including overexpression of proteins, 

Tau with FTLD. We are aware of the current limitations 

of various animal models as they may not fully replicate 

human AD, however there is still much we can learn 

from these models especially when it comes to a molec-

ular understanding of the disease, and we will therefore 

discuss results from animal models alongside results 

from tissue studies of AD patients.

An overview of Alzheimer’s disease, the most 
common form of dementia
Alzheimer’s disease (AD) is the most common form of 

dementia affecting 50 million people worldwide in 2018, 

a number predicted to triple by 2050 to affect over 152 

million people. Alongside this, 25% of hospital beds in 

the UK are occupied by people aged over 65 and suffer-

ing from dementia (Alzheimer’s Research UK). Age is 

the greatest risk factor for developing the sporadic form 

of AD [82, 119, 176, 184], however there are also genetic 

and environmental risk factors [120, 217, 219] that con-

tribute to familial or sporadic forms of AD, respectively. 

�e pathophysiology of AD is complex and not fully 

understood as we will see through the course of this 

review article.

AD is diagnosed histologically in post mortem brains 

of patients by the presence of two types of aggregated 

proteins with little understanding of how these proteins 

interact with each other during the different stages of 

disease. Extracellular plaques of Amyloid-beta (Aβ) pep-

tides and intracellular neurofibrillary tangles (NFTs) of 
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microtubule-associated protein Tau (MAPT; Tau) are 

both hallmarks of AD. Due to the presence of these dif-

ferent protein pathologies in AD, the field has been 

divided for a long time between people believing in either 

Aβ or Tau being causal to AD pathology [322]. For exam-

ple, scientists who suggested that Aβ was causative of AD 

thought that Tau and other pathology were secondary to 

the cascade triggered by Aβ [172].

In the past years though, some research has moved 

away from preventing Aβ pathology towards inhibit-

ing Tau pathology as the distribution and density of Aβ 

positive plaques are variable between neuropathological 

stages of the disease and not informative of the cogni-

tive status of the patient [144]. Cognitive decline is most 

closely associated to the load and progression of NFTs as 

compared to Aβ pathology [171, 326]. �erefore, Aβ may 

thus be considered as a catalyst of Tau pathology [35], 

with Tau being a more central player in AD progression. 

�e latter is supported by the fact that there are currently 

more than 20 different Tauopathies [395]. Tau pathology 

spreads anterogradely and follows the disease progres-

sion, the so called ‘Braak stages’, which progress from I–

IV based on brain regions burdened by NFTs. Although 

the locus coeruleus has previously been suggested to 

be the starting point [41, 43, 427], recent evidence sug-

gests that Tau pathology begins in the transentorhinal/

entorhinal regions [220]. �us, symptoms of AD highly 

correlate with the progression of Tau pathology from the 

hippocampus to the cortex, beginning with memory dys-

function and later leading to other cognitive impairments 

including loss of executive functioning, language, and 

visuospatial skills [101, 144, 245, 362]. �e hippocampus 

is an anatomical region of the brain responsible for spa-

tial or contextually-based learning and memory and it is 

one of the earliest and most drastically affected areas, dis-

playing atrophy, accumulation of Aβ plaques, and NFTs 

in AD [16–18]. �e role of hippocampal neuron subtypes 

in learning and memory is defined by their characteris-

tic calcium dynamics, a high degree of plasticity and the 

capacity to undergo synaptic remodeling into adulthood. 

It has also been believed that hippocampal neuron sub-

types are a major source of human adult neurogenesis [4, 

95, 233, 498] until recent controversy [420]. �e proper-

ties of hippocampal neurons are thought to impart the 

selective vulnerability of these cells, as pathology dras-

tically accelerates on reaching neurons in this region at 

early stages of AD [156].

Microtubule-associated protein tau (MAPT)

Full-length monomeric forms of Tau have long been 

seen as the ‘glue’ that binds and stabilises microtubules 

in axons, in concert with other microtubule-associated 

proteins, such as MAP2, which have homologous roles in 

neuronal dendrites [468]. Microtubule stability is impor-

tant for cellular polarity and for antero- or retrograde 

cellular transport of vesicles and organelles to occur. 

However, as the full interactome of Tau is revealed, the 

ubiquity of Tau’s roles is being uncovered to show how 

Tau binds to a diverse range of molecules to elicit a mul-

tiplicity of functions. Before binding to microtubules, 

Tau is an intrinsically disordered protein which confers 

conformational and functional flexibility. Numerous Tau 

binding partners with diverse cellular functions have now 

been reported. Tau binds directly to DNA for DNA pro-

tection [58, 279, 432, 467], to calmodulin to regulate gene 

expression [24], at the cell membrane to support growth 

processes [257], to Fyn for synaptic activity [200, 338], to 

actin for crosslinking actin filaments [56] and to numer-

ous other proteins with yet unknown functional conse-

quences [276]. Missense mutations in MAPT, the gene 

coding for Tau, can result in familial forms of frontotem-

poral dementia but are not causative of AD [111, 197, 

356]. �e ability of Tau to bind and interact with such a 

diverse range of molecules, and thus taking up so many 

roles, stems from Tau being produced as six different 

splice variants [158], from its ability to be post-transla-

tionally modified, its diverse binding regions, and from it 

being prone to terminal truncations (for review see [3].

The complex structure of tau

Six isoforms of Tau are present in the adult human cen-

tral nervous system, although Tau occurs as a larger iso-

form in the peripheral nervous system [153].

Figure  1a shows how the six different Tau isoforms 

arise from alternative splicing. N-terminus inserts, Exons 

2 and 3, result in 0 N, 1 N or 2 N Tau, whereby exon 3 

is never inserted independently of exon 2. Exclusion 

or inclusion of the microtubule binding repeat region 

(MTB), exon 10, results in 3 repeat (3R) or 4 repeat 

(4R)-Tau, respectively, altogether providing 0N3R-, 

0N4R-, 1N3R-, 1N4R-, 2N3R-, 2N4R- Tau [10, 150, 151, 

260]. �e N-terminus projection region has been found 

capable of binding to synaptic vesicles, either through 

protein binding (Fig.  1b, [424, 503] or through direct 

membrane interactions [44, 265]. �e proline-rich region 

and microtubule binding domain are capable of poly-

merising F-actin, a cytoskeletal protein that has various 

roles in neurons including remodelling dendritic spines 

upon synaptic stimulation [136, 177, 194]. �e proline-

rich region is also able to bind SH3 domains such as Fyn 

kinase, which is of interest for a post-synaptic role of Tau 

[371]. �e microtubule binding repeat region, alongside 

binding and stabilising tubulin, can also bind to lipid 

membranes [142], and part of this region forms the core 

of aggregates [128, 129].
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Debates about the role of post-translational modifi-

cations and truncated forms of Tau are ongoing. In one 

study, it was shown that the major form of Tau in the 

pre-synaptic compartment is truncated at its C-termi-

nal and therefore lacks the (aggregation-determining) 

microtubule binding domain region [416]. �e release 

of this truncated form of Tau is increased upon synaptic 

activity [216]. However, a study investigating the level of 

truncation in AD patient brains has shown that there is 

a relative increase in N-terminal truncations of Tau in 

AD patients as compared to controls [505]. �e longest 

isoform of Tau has a total of 85 possible phosphorylation 

sites that interact with multiple kinases and phosphatases 

[150, 151]. Phosphorylation can determine the confor-

mation and protein–protein interactions of this intrin-

sically disordered protein and therefore the residues at 

which Tau is phosphorylated can differ between physi-

ological versus pathological conditions (for a review see 

[209]. For example, phosphorylation can modulate bind-

ing dynamics of Tau to tubulin, biolipid, and Fyn kinase 

[200, 269, 317, 394] and thus forms part of Tau’s physi-

ological role. For binding to microtubules, consecutive 

phosphorylation of Tau is required, one to allow efficient 

phosphorylation of the second ‘primed’ site [152]. How-

ever pathologically, hyperphosphorylation of Tau has 

been associated with the formation and growth of neu-

rofibrillary tangles, as specific phosphorylation sites have 

been shown to readily enhance fibril formation [98].

Aggregation of tau

In the characteristic pathway leading to the formation 

of neurofibrillary tangles in AD, hyperphosphorylated 

monomeric Tau forms small soluble granular structures 

known as oligomers. �ese oligomers have been sug-

gested to act as toxic species which form part in AD 

pathogenesis [55, 284, 345, 452]. Oligomers are seen as 

an intermediate structure, capable of inducing a confor-

mational change in monomeric Tau which is then able to 

attach to the oligomeric structure. �e latter then leads to 

the formation of stacked β-sheet-rich strands which grow 

to form insoluble paired helical filaments (PHFs) which 

consequently amalgamate into large NFTs [129, 164, 

250]. It has been shown that PHF-like Tau can lead to 

loss of synaptic contacts which is known to occur in hip-

pocampal neurons of hibernating animals but reversed 

upon awakening [15]. Hyperphosphorylation of Tau has 

also been reported to occur in mice suffering from hypo-

thermia during anaesthesia [351]. �us, the pathogenic 

versus protective role of larger, insoluble structures, that 

are less neurotoxic than soluble oligomers but confine 

intracellular space and prevent intracellular trafficking 

[213] as they grow in size, is still an ongoing debate in the 

field.

Pathological tau

How oligomeric Tau forms is still unclear. Potential path-

ways leading to Tau oligomerisation include Tau release 

from microtubules, poly-anionic induction factors, or 

uptake into low pH compartments [21, 231, 307]. As 

neuronal activity has been shown to increase the rate of 

Tau pathology [476], it is possible that activity-dependent 

pathways may also mediate its aggregation. �is could be 

an age-dependent mechanism whereby neuronal activ-

ity over time causes the formation of pathological Tau 

species, and their propagation. Alternatively, high levels 

of network activity [355], lysosomal dysfunction [315], 

or cell death such as induced by traumatic brain injury 

[320, 376] may result in a higher concentration of Tau 

being released into the extracellular space. �e latter then 

leads to endocytic uptake and aggregation of Tau at low 

pH [307]. Tau has been shown to cause membrane dis-

ruption allowing it to leak from endo/lysosomes [57]. It 

is also thought that the impaired endosomal sorting com-

plex required for transport (ESCRT) III protein activity 

permits a leakage of Tau from endo/lysosomes into the 

Fig. 1 Tau is differentially expressed as six isoforms that contain 
multiple structural domains for diverse protein–protein interactions. 
a Alternative splicing of exons 2 and 3 (E2, E3) determines the 
N-terminus region, whereas exon 10 (E10) determines the number of 
repeat (R) regions and gives rise to 3R or 4R Tau. Overall six isoforms of 
Tau exist with their expression dependent upon age and anatomical 
location. b The N-terminus region of Tau is involved in membrane 
interactions and has been shown to bind to synaptic vesicles [44, 
265, 301]. The microtubule binding repeat regions bind and stabilise 
microtubules [260]
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cytosol [68]. Selectively, vulnerable cells may act as the 

primary site of aggregation. Tau released by these cells 

may consequently be propagated along synaptically-

connected networks whereby they recruit endogenous 

Tau and result in AD symptoms only after several years 

in the brain of an AD patient [26, 134, 135, 167, 183, 226, 

347]. Tau uptake through muscarinic receptors can alter 

calcium ion  (Ca2+) homeostasis [157]. Many of the Tau 

uptake mechanisms are further increased upon phospho-

rylation [218, 304] or neuronal activity, which, along with 

how synaptic pathological Tau can perturb activity, will 

be discussed in the next sections [246, 303, 416, 462]. Tau 

is also able to form membrane pore-like amyloid struc-

tures (annular protofibrils) similarly to those seen by 

α-synuclein and Aβ, which have been suggested to allow 

uncontrolled release of aggregates, ions, or vesicles [50, 

105, 252, 253, 343].

Oligomeric forms of Tau have been shown to impair 

synaptic function, the latter being an early marker pre-

ceding fibril formation, synaptic loss, axonal retraction 

and cell death [123, 241, 284, 297, 345, 353, 491]. Tau is 

also present at lower concentrations in the somatoden-

dritic compartments, often considered as the loss of its 

physiological function as it requires the detachment of 

Tau from microtubules [200, 338]. Tau has previously 

been found in pre- and post- synaptic compartments of 

healthy human volunteers and AD patients, but in AD 

patients it is primarily found in its ubiquitinated and 

phosphorylated form [124, 438]. Pre- and post- synap-

tic forms of Tau pathology have been described with-

out a clear mechanistic link between the two [200, 353, 

503]. Since Tau is able to accelerate spine formation and 

dendritic elongation, and is involved in memory path-

ways [230, 391, 392, 496] it has recently been discussed 

whether Alzheimer’s disease may be described as a physi-

ological to pathological shift of synaptic Tau function 

[200, 301].

Activity-dependence of tau pathology in the hippocampus

�e release of soluble Tau from neurons, both in  vivo 

and in vitro, can be regulated by neuronal activity, and is 

suggested to be a physiological process. It is not known 

whether Tau released by neurons is monomeric or oli-

gomeric [355, 476, 484]. Wu et  al. [476] investigated 

whether neural activity could increase the rate of the 

progression of Tau pathology by increasing the activity-

dependent release of Tau to synaptically-connected neu-

rons. To test this hypothesis, cells that expressed mutant 

P301L hTau aggregates were stimulated with picrotoxin 

and approximately 45% of the stimulated cells were 

shown to have internalised Tau as compared with 20% 

of unstimulated cells. Similar results were seen in  vivo, 

where hippocampal cells that were optogenetically 

stimulated for 20  days showed greater accumulation 

of Tau in cell bodies, and increased hippocampal cell 

layer atrophy compared to unstimulated animals [476]. 

�e study did, however not include experiments to link 

increased pathology with behavioural deficits related 

to AD to see whether neuronal stimulation and the Tau 

pathology it induced also caused an earlier or more pro-

nounced behavioural phenotype. From the study above, it 

was also unclear whether neuronal stimulation was driv-

ing Tau seed formation or whether it only increased their 

propagation through synaptically connected cells.

�e direct relationship between neuronal activity and 

Tau pathology still needs to be determined. From recent 

research it seems likely that there is a feedback mecha-

nism whereby neuronal activity causes increased Tau 

pathology, which in turn alters neurotransmission, and 

feeds forward to further Tau aggregation and propaga-

tion. Interestingly, Amyloid β (Aβ) induced hyperexcit-

ability has also been linked to catalysing Tau pathology 

[378]. Bright et  al. [46] showed such a relationship that 

includes a link with Aβ production. Neuronal hyper-

activity, which is able to regulate increased Tau transla-

tion and extracellular Tau secretion [235, 355], has been 

shown to increase Aβ production. Both Aβ and Tau have 

been related to neuronal hyperexcitability, and Tau has 

been linked to pro-convulsive effects [49, 53–55, 100, 

175, 187, 200, 244, 311, 339, 374, 375]. �e high fre-

quency activity that occurs in the hippocampal formation 

for learning and memory, as for other activities, such as 

spatial exploration or sleep for example, may explain an 

increase in pathology reaching these networks and thus 

the increased vulnerability of hippocampal cells. How-

ever, studies showing network hypoactivity also exist [55, 

290] and therefore more research is required to reconcile 

the role of Tau on neuronal activity and how this may 

affect memory impairment during the course of AD.

Relating tau pathology to models of memory 
impairment
Synapses were first hypothesised to be the primary site of 

memory simultaneously with their discovery by Ramón 

y Cajal (1894). �e most well established model for 

activity-dependent synaptic strengthening was discov-

ered when Lømo [278] found evoked responses to high 

frequency stimulation in the hippocampus that lasted for 

hours. Certain forms of neuronal activity, including the 

high frequency stimulation used by Lømo [278], result in 

the influx of  Ca2+ ions into synapses.  Ca2+ ions act as a 

2nd messenger for phosphorylation-dependent signalling 

cascades, causing neurotransmitter release, structural 

plasticity of the cytoskeleton, and the incorporation or 

alteration of ion channels and their subunits. �ese alter-

ations ultimately feedback to maintain an increased and 
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sustained  Ca2+ conductance and is known as long-term 

potentiation (LTP). Alongside LTP, its counterbalance 

that is induced by low frequency stimulation to decrease 

conductivity of synapses, long-term depression (LTD), 

was also discovered [423]. LTP and LTD have been heav-

ily studied in the hippocampus where they may underlie 

declarative learning and memory [308, 312, 76]. Impair-

ment to hippocampal-dependent memory function is 

seen as early symptom of AD, and correlates with Tau 

pathology in the hippocampus [16, 17, 42].

�e next question that had to be addressed was which 

molecular mechanisms had occurred to maintain the 

enhanced synaptic response during LTP? �ough a con-

troversial field, three mechanisms have consistently 

shown to be important for the induction of LTP (Fig. 2). 

(1) �e pre-synaptic mechanism increases the prob-

ability of neurotransmitter release by upregulating the 

number of release sites, or the concentration of cleft 

glutamate. (2) Post-synaptic mechanisms increases the 

single-AMPA receptor-conductance on binding gluta-

mate, either by increasing their opening probability, or 

prolonging their mean open-time through phosphoryla-

tion or exchange of subunits. (3) An additional post-syn-

aptic mechanism increases channel numbers by inserting 

receptor-containing vesicles into the plasma membrane, 

or by lateral diffusion of extrasynaptic regions [34]. �e 

reversal of these mechanisms can instigate LTD. It needs 

to be noted here that both, LTP and LTD remain a means 

to model memory, and do not necessarily equate to 

human hippocampal memory. However, the above mech-

anisms involve cytoskeletal restructuring for controlling 

synaptic volume, for stabilising active zone synaptic den-

sities, and for cycling and tethering of vesicles or proteins 

via cell membrane endo- and exocytosis or via recycling 

vesicles. Increased import of proteins into synapses, or 

local translation [84, 215], is also required. As the latter 

mechanisms are involved in memory formation, we thus 

think that LTP and LTD are a relevant model to study 

certain aspects of memory formation. Indeed, evidence 

that Tau can influence any of these mechanisms, either 

physiologically or in pathological conditions, would pro-

vide a direct molecular to behavioural link of how Tau 

may lead to memory impairment.

Tau may directly influence LTP and LTD. Tau knock-

out ameliorates Aβ induced deficits in LTP. Aβ oligomers 

show a fairly consistent impairment in LTP and enhance-

ment of LTD [249, 402, 460]. Endogenous wild-type Tau 

expression, but not the N296H FTLD mutant form, is 

required for Aβ dependent impairment of LTP [453], and 

impairment of LTP by Tau or Aβ oligomers is dependent 

upon amyloid precursor protein expression [360, 464].

However, studies have shown varying effects depend-

ent on age, disease model, and protocol used when 

understanding how Tau may alter electrophysiological 

Fig. 2 Key processes by which Tau could interfere with LTP induction to directly cause symptoms of memory impairment. Processes include 
channel activation or gating function for  Ca2+ ion entry, pre-synaptic vesicle cycling, post-synaptic vesicle cycling for subunit exchange and 
channel insertion, recruitment of receptors tethered at extra synaptic sites, and cytoskeletal restructuring to coordinate these mechanisms and to 
control the synaptic volume
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properties of cells. Table  1. summarises how the effects 

of Tau on electrophysiological measurements have a 

large degree of variability depending upon the methods 

applied. �e most consistent finding appears to be that 

exogenous oligomeric Tau impairs LTP, with monomeric 

Tau having no effect [123, 251, 352, 360, 434]. Fá et  al. 

[123] showed that a 20 min treatment of CA3-CA1 hip-

pocampal neurons with oligomeric 4R2N Tau before 

induction of LTP caused a marked reduction in LTP 

expression without affecting basal synaptic transmission. 

On the contrary, 4R1N monomeric Tau did not reduce 

LTP. Polydoro et al. [352] predicted that Tau impairs the 

induction rather than the expression of LTP as high fre-

quency but not theta burst stimulation failed to induce 

LTP in a hTau mouse model. Another study in rTgP301L 

mice expressing mutant Tau showed an impairment to 

both basal transmission and LTP [190] consistent with 

two similar studies using P301S or hTau mice [352, 491]. 

One study has even shown improved cognitive perfor-

mance and LTP in the dentate gyrus of young Tau-P301L 

mice, and suggested hyperphosphorylation of Tau to be 

the pathogenic cause of synaptic impairment [37]. Many 

other studies have also linked Tau pathology to poor cog-

nitive performance at a behavioural level [14, 205, 365, 

393, 435, 440], and the suppression of Tau expression 

with an amelioration of symptoms [391, 435].

In the studies listed in Table 1, no attempt was made to 

explain the molecular mechanism of how Tau impaired 

LTP. �e relationship between Tau pathology and these 

activity-dependent mechanisms (Fig.  2) therefore 

requires further explanation. Very different results for 

how different forms of Tau can alter the electrophysiol-

ogy of neurons can be seen in Table  1. One suggestion 

for the variation between models is the location and 

concentration of Tau expression, and the mutation site 

for the different forms of mutant Tau used. An example 

of mutations in different domains resulting in opposite 

electrophysiological functional effects is A152T [242] at 

the N-terminus projection domain, versus K280del in the 

second microtubule-binding repeat domain [316, 373]. 

A152T expressing mice show increased basal transmis-

sion with increased glutamate release, without changes 

to synaptic plasticity [92]. Mice overexpressing K280del 

show reduced basal transmission with reduced pre-syn-

aptic vesicles, and impaired synaptic plasticity [91]. �is, 

however, does not address how wildtype Tau in Alzhei-

mer’s disease functions. An additional cause of variability 

may be when different Tau isoforms contribute differ-

entially to pathology, though the relationship is unlikely 

to be so simple, for example 0  N and 1  N Tau result in 

similar electrophysiological phenotypes (Table  1, [190, 

491, 503]. Different isoforms of Tau have different roles 

in dendrite and spine formation, and it has been argued 

that the pathological mis-sorting of Tau, from the axon, 

is dependent on the level of specific Tau isoforms, though 

this may also just be driven by overexpression [444, 496]. 

It is possible that these opposing phenotypes may arise 

from different binding affinities of various forms of Tau 

Table 1 The changes to basal transmission and LTP measured in different mouse models expressing endogenous mutant, human 
or wildtype Tau. Results show the large amount of variation dependent upon the method applied, but exogenous oligomeric Tau is 
consistently impairing LTP

Study Model and Tau expression Basal transmission LTP

Boekhoorn et al. [37] 9-week Tau-P301L mice. 2 × expression level as compared with endogenous 
Tau (controlled for in wildtype); Under Thy1 promoter

No change Increase

Schindowski et al. [393] G272V and P301S (Thy22) mice. 4–sixfold expression level as compared with 
endogenous Tau; Under Thy1.2 promoter

Reduced No change

Hoover et al. [190] TgP301L mice. ∼13-fold-expression level as compared with endogenous Tau; 
Under CaMKII promoter

Reduced Impaired induction

Yoshiyama et al. [491] P301S (PS) mice. 3–fivefold expression level as compared with endogenous 
Tau (controlled for in wildtype); Under mouse prion (MoPrP) promoter

Reduced Impaired induction

Polydoro et al. [352] hTau mice. Expression not determined but higher than endogenous levels; 
Under Tau promoter

Reduced Impaired

Koch et al. [236] Human AD patients N/A Impaired. Reversal 
of LTP toward LTD

Fá et al. [123]
Lasagna-Reeves et al. [251]
Puzzo et al. [360]

Oligomeric exogenous Tau and wildtype mice No change Impaired

Maeda et al. [284] hTau-A152T mice. Three–fivefold expression level as compared with endog-
enous Tau; Under CaMKII‐tTA promoter

Increased No change

Decker et al. [92] hTau- A152T mice Increased No change
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(such as mutant, phosphorylated, or other conformers or 

isoforms of Tau) to synaptic proteins, such as, for exam-

ple, the vesicular protein synaptogyrin-3 [92, 93, 276, 

301, 503].

The binding of tau to synaptic vesicles

In the pre-synaptic compartment, exocytosis of synap-

tic vesicles containing neurotransmitter is vital for the 

transmission of nerve impulses from the ‘pre-’ to ‘post-’ 

synaptic neuron via chemical synapses. To maintain 

a sustained release of neurotransmitters during peri-

ods of high synaptic activity, such as required for some 

forms of plasticity, a trafficking cycle occurs which can 

combine clathrin mediated endocytosis (CME) and the 

engagement of reserve pools of vesicles (for a review see 

[431]. �e mediation of stages of this cycle are also highly 

 Ca2+-dependent often due to  Ca2+-dependent phospho-

rylation of synaptic proteins [94].

Tau is capable of mediating toxicity specifically via 

interactions with synaptic vesicle proteins and the pre-

vention of vesicle release. Mutant (R406W, V337M or 

P301L) or phosphorylated Tau immobilises synaptic 

vesicles by preventing their release from F-actin. �is 

reduced vesicle motility was hypothesised to occur 

through a mesh of immobilised vesicles formed by a 

crosslinking of the N-terminus of Tau with synapto-

gyrin-3 and its proline-rich and microtubule-binding 

domain binding to F-actin networks [136, 177, 194, 503]. 

�e reduced vesicle mobility could be rescued by knock-

down of synaptogyrin-3 or by depolymerisation of F-actin 

bundles [301, 503]. Deficits from this dysfunction, such 

as decreasing excitatory junction potential (EJP) ampli-

tudes, are not seen from low frequency (0.2 Hz) stimula-

tion that employ the recycling pool of vesicles for release, 

but only following high frequency (e.g. 10  Hz) stimula-

tion requiring the reserve population of vesicles. Under 

high frequency stimulation, normal levels of release can-

not be maintained and therefore result in impaired syn-

aptic transmission. �is work showed that this pathology 

only occurred with mutant FTLD or hyperphosphoryl-

ated Tau as opposed to wildtype Tau, which showed less 

synaptic colocalisation. However, it was also suggested 

that the formation of Tau multimers may also permit 

Tau to immobilise vesicles [503]. �e above results are 

comparable to results on studies related to α-synuclein, 

which have shown that α-synuclein is equally capable to 

immobilise synaptic vesicles by aggregation [103, 461, 

503]. As mentioned in Table  1, opposing effects of Tau 

have also been observed when measuring vesicle release 

probability. An increased release probability was shown 

to occur in 16 month-old mice expressing P30lL Tau in a 

subset of cells from the entorhinal cortex using a Tet-OFF 

system (rTgTauEC, [89, 353]. If mutations, phosphoryla-

tion or different conformations of Tau can alter its bind-

ing affinities with synaptic proteins, it could change the 

release probability of synaptic vesicles or influence the 

timing of other pathways required for the coordination 

of synaptic plasticity. Phosphorylation is known to alter 

binding properties and localisation of multiple other 

synaptic proteins including synapsin-1 [309], dynamin-1 

[75], assembly of complexes to mediate  Ca2+-dependent 

exocytosis [488], and post-synaptic AMPAR (α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) 

and NMDAR (N-methyl-D-aspartate receptor) subunits 

[180, 298]. An interesting question arises from Tau’s abil-

ity to bind synaptic vesicles as to whether it is acting as a 

static tether and scaffolding protein, or has an active role 

in a mechanism at the synaptic compartment.

Tau in the vesicle cycle of synaptic compartments

Bioinformatic analysis of Tau-interacting proteins based 

on co-immunoprecipitation studies by Liu et  al. [276] 

show that many of these proteins are enriched in classes 

related to membrane trafficking and transportation, 

or metabolic activity (Fig.  3a). �e functional annota-

tion chart shows that these genes can be split into two 

functional groups with the highest enrichment scores 

(Fig.  3b). �ese clusters are related to metabolism and 

transport, and to synaptic processes. �is suggests that 

Tau may have a role in membrane trafficking assisting 

in stabilising or transporting proteins. In the synapses, 

this could relate to processes such as CME and activity-

dependent trafficking of membrane or proteins to sup-

port plasticity.

Clathrin mediated endocytosis is important for the 

internalisation of extracellular material and maintain-

ing membrane homeostasis to balance exocytosis. CME 

requires the coordination of many endocytosis-related 

proteins for the formation of complexes at retrieved 

clathrin-coated pits on the membrane surface after cal-

cium-dependent calcineurin is activated by neural activ-

ity [211, 478, 479]. At the pre-synaptic compartment, 

CME is the main mechanism through which the synaptic 

vesicle pool is replenished during physiological activity 

at the hippocampal synapse [162]. In neurons, it is esti-

mated that ∼90% of all clathrin vesicles are involved in 

retrieval of synaptic vesicles [147]. At the post-synaptic 

compartment, CME regulates activity‐dependent endo- 

and exocytic trafficking of receptors [404]. CME is essen-

tial for activity-dependent AMPAR internalisation and 

LTD, and can therefore be upregulated by factors that 

induce synaptic depression such as NMDAR activation 

[12, 28, 114, 268, 288].
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Postulating synaptic roles of Tau based on binding 
studies
To help us to better interpret the spatial distribution 

of these proteins, Fig. 4 shows proteins that have func-

tional roles inside synaptic compartments, and have 

been shown to be capable of binding to monomeric 

Tau by co-immunoprecipitation studies [276]. Many of 

these proteins appear to be related to clathrin-medi-

ated endocytosis, and vesicle cycling pathways in syn-

apses. �ese proteins have been mapped onto pathways 

that occur in the synaptic compartments to come up 

with a potential role of endogenous Tau which subse-

quently may become impaired during the progression 

of AD pathogenesis (Fig. 4). It is important to note that 

while the binding partners of Tau have been described, 

the functional roles of these interactions have not been 

experimentally proven to be directly linked to Tau and 

must therefore be seen as discussion points. GluA2 and 

AMPARs are not known to be direct binding partners 

of Tau but have been added as a potential candidates, 

as Tau may modulate the latter by indirect interactions 

with PICK1 (Protein interacting with C kinase) [370]. 

�e full list of synaptic proteins that Tau is capable of 

binding to, are listed in Supplementary Table 1. 

Fig. 3 Bioinformatics analysis of Tau-interacting proteins suggests roles in scaffolding and transport with high enrichment at synapses and cell 
junctions. a Protein analysis through evolutionary relationships (PANTHER; [306] of proteins that bind Tau based on a co-immunoprecipitation 
study [276]. The proteins were classified according to their protein class. b Database for annotation, visualisation, and integrated discovery (DAVID 
GO annotation analysis [195, 196]. The two functional gene groups with the highest enrichment scores are shown for the 68 genes included in the 
annotation analysis
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Transferrin, AP2 and dynamin-1; possible role of tau 

in early stages of CME

Constitutive CME is required for plasma membrane 

protein and lipid turnover, endocytosis of activated 

growth-factor receptors, low-density lipoprotein and 

iron-saturated transferrin uptake [48, 79, 302]. Tau is 

capable of binding transferrin [276], which binds  Fe3+ 

ions prior to clathrin-mediated uptake into cells via 

transferrin receptors. Transferrin receptor clustering 

is important for the initiation of clathrin coated pits for 

Fig. 4 A schematic of possible roles of endogenous Tau in synaptic plasticity. The figure shows proteins that have been found to interact with Tau 
(though not necessarily functionally). Many of these proteins appear to map to clathrin-mediated endocytosis pathways that relate to synaptic 
vesicle trafficking in the pre-synaptic compartment (a) or receptor trafficking in the post-syanptic compartment (b) and are vital for synaptic 
transmission. Image based on data from [276]. Tau is not known to directly bind PICK1, GluA2, though there is an NMDA-dependent interaction 
of this complex with phospho-Tau [370]. These proteins are therefore added to the figure in order to highlight specific pathways that have been 
previously mentioned in the literature [434]
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the earliest stages of CME to occur [275, 277]. Transfer-

rin receptors are therefore also important for activity-

dependent AMPAR internalisation that is dependent on 

CME and required for LTD as they recruit AP2 (adaptor 

protein 2). Tau is able to bind AP2, the protein responsi-

ble for clathrin pit formation [406, 448]. Loss of transfer-

rin receptors also reduces LTP [264]. In the pre-synaptic 

compartment, following neuronal stimulation with KCl, 

Tau has been shown to relocate to the plasma mem-

brane and to colocalise with, though not evidently bind, 

synaptic vesicle protein CSPɑ/DnaJC5 (Cysteine String 

Protein- ɑ) [503]. CSPɑ regulates endocytosis by bind-

ing dynamin-1, another protein capable of binding Tau 

that is involved in activity-dependent CME of synaptic 

vesicles through vesicle scission [126, 127, 386, 478, 479, 

497].

PICK1 makes NMDAR-dependent interactions 

with endocytic proteins AP2 and dynamin. Following 

NMDAR stimulation, PICK1–AP2 interactions cluster 

AMPARs at endocytic zones, and PICK1 can polymerize 

dynamin-1 to undergo AMPAR endocytosis [130]. �e 

preference of different Tau isoforms to bind to the pro-

teins shown in Liu et al. [276] can be seen in Supplemen-

tary Table 1 [237].

Possible role of Tau in SNARE complex formation 

and exocytosis: syntaxin-1, synaptobrevin, NSF

CSPɑ is also essential for the high  Ca2+-sensitivity of 

exocytosis as it mediates the release of anchored synap-

tic vesicles by formation of the  Ca2+-sensitive SNARE 

complex (Fig.  4a; [65]. Like Tau, CSPɑ can bind synap-

totagmin, and proteins involved in the SNARE complex 

including syntaxin-1 and synaptobrevin [121, 330, 400, 

477]. SNARE complex assembly requires SNAP-25 (Sol-

uble NSF Attachment Protein) and syntaxin-1 to bind 

to synaptobrevin to exert sufficient force for membrane 

fusion to occur and to release the vesicle contents into the 

synaptic cleft [417]. �is assembly is disrupted in CSPɑ-

deficient mice [403]. CSP-KO in itself can induce neuro-

degeneration, and in Drosophila prevents the release of 

neurotransmitters and causes early death [386, 451, 507].

as CSPɑ is thought to induce the required structural con-

formation of SNAP-25 and prevent its degradation by 

the ubiquitin proteasome system (UPS), which degrades 

excess or damaged proteins [403] Tau is also able to 

bind the protein required for SNARE disassembly, NSF 

(N-ethylmaleimide sensitive fusion protein) (Fig. 4, [276, 

417]. �e role that CSP may play in Tau-mediated neu-

rodegeneration is being questioned following the find-

ing that CSP expression is downregulated in tauopathy 

models at timepoints that correspond to impaired synap-

tic function. In these models, CSPɑ was also found to be 

neuroprotective, whereby increased expression reduced 

neuronal loss [445].

CSPɑ/DnaJC5 bound to Hsc70 releases Tau from syn-

apses in what is believed to be a physiological, activity-

dependent mechanism [131]. It will be interesting to 

determine whether CSPɑ loss in tauopathies also reduces 

activity-dependent Tau release [355], and whether this 

leads to a clear phenotype. Other DnaJ proteins complex 

with Hsc70 for disaggregation [141, 331] or degradation 

[207] of aggregated proteins. Aggregated proteins can 

directly block CME through competition for Hsc70 [492]. 

It has been suggested that CSP may act as a chaperone 

to allow continuous and long-term use of proteins in the 

synaptic vesicle cycle [125].

ɑ-synuclein and 14–3-3ζ

�e fatal phenotype caused by CSPɑ, that prevents vesi-

cle release, is rescued by overexpression of ɑ-synuclein 

[66]. ɑ-synuclein is another pre-synaptic protein thought 

to have a role in the synaptic vesicle cycle including 

endocytosis [454], reclustering [327], and mobility [398, 

461] but is found in Lewy body aggregates seen in Par-

kinson’s disease (for an overview on ɑ-synuclein induced 

synaptopathy see [45]. Tau can bind to both ɑ-synuclein 

and β-synuclein [204, 276]. Co-morbid ɑ-synuclein or 

Lewy-related pathology occur in more than 50% of AD 

brains, and ɑ-synuclein and Tau have synergistic effects 

on each other’s aggregation [145, 169, 272]. ɑ-synuclein 

and Tau are thought to form a membrane-bound com-

plex with the actin cytoskeleton. Destabilisation of the 

cytoskeleton or the A30P ɑ-synuclein mutation linked to 

early-onset Parkinson’s disease reduces the formation of 

this complex [118, 243, 340]. ɑ-synuclein can also induce 

Tau phosphorylation at serine 262 to cause unbinding 

from actin and microtubules, and has been shown to be 

essential for Aβ42-induced Tau toxicity [56, 198, 204].

ɑ-synuclein shares functional homology with the highly 

conserved regulatory 14–3–3 proteins that are able to 

bind both ɑ-synuclein and Tau [276, 337]. Tau has also 

been found capable of binding to the zeta isoform of 

14–3-3 proteins (14–3-3ζ), which are enriched in the 

hippocampus, especially in synapses, and thought to be 

involved in learning and memory pathways [27, 88, 276, 

293, 412, 466]. Overexpression of 14–3-3ζ increases Tau 

phosphorylation at serine 262, actin unbinding, and 

depolymerisation of microtubules through the same 

pathway as ɑ-synuclein, and consequently leads to the 

degradation of synaptophysin by the UPS [204, 364]. 

14–3-3 is also capable of phosphorylation-dependent 

binding to CSPɑ/DnaJC5 [359], and plays a role in prim-

ing exocytosis and enhancing vesicle release through 

structural rearrangements of the actin cytoskeleton [64, 

382]. Alternatively, 14–3-3ζ can coordinate, together 
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with other DnaJ-Hsc70 complexes, the resolubilization of 

heat-aggregated proteins [486].

V-ATPase

14–3–3ζ has an ATPase activity and helps to regulate 

vacuolar-type  H+-ATPase (V-ATPase) activity [1, 5, 367]. 

Tau is able to bind to V-ATPase subunit A, required for 

the acidification of intracellular compartments for main-

taining synaptic vesicle proton gradients, protein sort-

ing, and receptor-mediated endocytosis. Loss of this 

protein impairs late stage exocytosis of synaptic vesicles. 

Mutations in V-ATPase subunits can cause epilepsy and 

parkinsonism [168, 240], cognitive impairment, and neu-

rodegeneration [110].

Cytoskeletal plasticity: co�lin, troponomyosins and septin 

7

Another interaction 14–3–3ζ can mediate, in concert 

with CaMKII  (Ca2+/calmodulin-dependent protein 

kinase II) and in opposition with  Ca2+/calmodulin-acti-

vated phosphatase calcineurin, is the dephosphoryla-

tion and activation of the actin organising protein cofilin 

[229, 500]. Tau can directly bind cofilin, CaMKII and cal-

cineurin [273, 276, 490]. Cofilin can compete with Tau 

for tubulin binding which has been suggested to cause 

microtubule instability and promote tauopathies through 

increasing free Tau available for fibril formation [473]. 

�e ability of both cofilin and Tau to bind to tubulin and 

actin suggests that they coordinate cytoskeletal plastic-

ity pathways.  Ca2+ entry through NMDARs can cause 

the indirect dephosphorylation and activation of cofilin 

through calcineurin. �is causes cofilin to enter synaptic 

compartments and depolymerise F-actin to cause spine 

shrinkage. Overactivation of this pathway during stress 

can cause the transient cofilin-actin rod response that 

bundles actin and releases ATP. �is response can occur 

in Alzheimer’s disease causing long-term F-actin bundles 

in axons and neurites [19, 287, 323]. In Tau-P301S mice, 

activated cofilin is also required for tauopathy, reduced 

synaptic integrity (as shown by depleted drebrin and syn-

aptophysin, and LTP deficits; these deficits were rescued 

in mice having a 50% reduction in cofilin concentrations 

[473]. �is reduction in cofilin also rescued loss of syn-

aptic proteins and impairment to LTP in APP/PS1 mice 

[472]. Cofilin is important for spine dynamics during LTP 

and LTD, as well as for AMPAR trafficking, for example, 

following chemical induction of LTP, activated cofilin 

results in increased surface AMPARs [69, 165, 504].

Tropomyosin is another actin-associated protein that 

stabilises F-actin and that Tau is capable of binding to 

in  vitro [276]. Tropomyosin recruits cofilins to F-actin 

and they help to determine the structure of pre-synaptic 

F-actin and the stiffness of the pre-synaptic membrane 

[31, 51, 430].

Septins are seen as the fourth filament protein in neu-

rons alongside actin, tubulin, and neurofilaments. �ey 

help regulate synaptic vesicle trafficking and neurotrans-

mitter release [296], and septin 7 interacts with the exo-

cyst complex [193]. Septins can bind with actin during 

various stages of CME and endosomal sorting, which is 

required for the maintenance of mature synapses, and 

synaptic plasticity such that septin 7 expression is up-

regulated during spatial memory formation [117, 457]., 

which is impaired in AD. In dendrites, septin 7 binds to 

the membrane of hippocampal neurons to regulate den-

drite branching and spine morphology but it can also 

prevent the lateral diffusion of membrane proteins out 

of spines [122, 481]. Following phosphorylation, septin 

7 stabilises post-synaptic density (PSD) protein PSD95 

during spine maturation [483]. Several septins are also 

found in NFTs [232].

Ca2+-dependent interactions: calcineurin, GAP-43/

neuromodulin, neurogranin, neurochondrin, calmodulin, 

CaMKII, and CaMKv

Further to calcineurin activating cofilin, Tau is capable of 

binding calcineurin, GAP-43/neuromodulin, neurogra-

nin, neurochondrin, calmodulin, CaMKII, and CaMKv 

(calmodulin kinase-like vesicle-associated), which have 

been shown to interact at synapses [36, 87, 266, 276, 349, 

415, 490]. Calcineurin has long been known to regulate 

activity-dependent cytoskeletal remodelling; it is able to 

dephosphorylate Tau to polymerise and stabilise micro-

tubules opposite to CaMKII [159]. Overexpression of Tau 

or Aβ oligomers have been shown to increase the acti-

vation of calcineurin [384, 487]. Calcineurin inhibition 

however, can rescue spine density and plasticity deficits 

in AD model mice [63, 366, 384]. Calcineurin can regu-

late the available concentration of calmodulin at the pre-

synaptic compartment through dephosphorylation of 

GAP-43, which also causes actin capping [40, 178, 256]. 

GAP-43 can cause presynaptic membrane changes, and 

is thereby involved in neurotransmitter release, endo-

cytosis [329], synaptic vesicle recycling, LTP, and spa-

tial memory formation [96]. GAP-43 has a high affinity 

for calmodulin at low  Ca2+ concentrations, sequestering 

calmodulin at the cell membrane until  Ca2+ influx occurs 

[11]. Tau helps maintain this cytoplasmic concentration 

of calmodulin available through  Ca2+-dependent binding 

to prevent it from entering the nucleus [24, 415]. Calmo-

dulin is important for the activation of CaM-dependent 

kinases. CaMKII has been shown to phosphorylate Tau 

at sites including serine 262 that promotes microtubule 

unbinding [411] and is thought to be involved in the for-

mation of fibrillar Tau [179, 490]. CaMKv is upregulated 
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following AMPAR activity to cause actin rearrangement, 

and is said to be the ‘convergence point for the transduc-

tion of  Ca2+ signals to the neuronal cytoskeleton’ [266]. 

�e calmodulin/calcineurin pathway has also been show 

to directly modulate endocytosis through dephosphoryl-

ation of endocytic proteins including dynamin-1 [74, 75, 

433].

MBP

Myelin basic protein (MBP) is the second most abun-

dant protein in the central nervous system. Like Tau, 

MBP is an intrinsically disordered protein with multi-

ple isoforms, and can be differentially phosphorylated 

suggesting that it has a role in neuronal signalling. Like 

Tau, MBP is also capable of binding tropomyosin, actin, 

microtubules, calmodulin, and clathrin [39, 106, 314, 

358]. As MBP can act as a clathrin adaptor protein, it 

has been suggested that it may form a bridge between 

clathrin-coated vesicles and microtubules [358]. MBP 

can also polymerise, bundle and crosslink actin fila-

ments and microtubules, and act as a tether for SH3-

domain proteins to lipid membranes (such as for the 

SH3-domain of Fyn-kinase) [38, 39, 188]. Although Tau 

is able to bind MBP, Tau and MBP appear to have analo-

gous roles in neurons versus oligodendrocytes, respec-

tively. MBP is important for formation and stabilisation 

of the cytoskeleton in oligodendrocytes [113, 138]. MBP 

forms prion-like aggregates, in parallel to the accumula-

tion of insoluble and phosphorylated Tau, and can occur 

due to reduced cholesterol levels and other lipids that 

cause MBP-membrane unbinding [133, 285, 470]. Like 

Tau, MBP can aggregate due to polyanionic factors such 

as lipids or lysosomal glycosaminoglycan (GAG) proteins 

[146].

Fyn

A small amount of Tau is found in dendrites and spines 

under physiological conditions and can be phosphoryl-

ated following NMDAR activation [317]. Phospho-Tau 

can facilitate the interaction of Fyn kinase, PSD95 and 

NMDARs to stabilise their position in the postsynaptic 

density [160, 201, 255, 313, 317]. �e interaction of Tau 

and Fyn was previously predicted to cause the transloca-

tion of Tau to cholesterol-rich lipid rafts to act as a signal-

ling protein [259]. �e entry of Tau into synapses is also 

thought to regulate the activity-dependent transportation 

of synaptic proteins, including Fyn kinase, GluA1 and 

PSD95 [225, 317]. Transport of PSD proteins is required 

to allow synaptic plasticity [115, 425]. At the postsyn-

aptic density, this complex has been implicated as the 

mechanism of Aβ -induced excitotoxicity caused during 

AD pathology through overactivation of NMDARs and 

phosphorylation of Tau at tyrosine 18 (Y18) [313, 389]. 

Y18 is also associated with the formation of insoluble Tau 

aggregates [47, 258]. Tau knockout has been shown to be 

neuroprotective by ameliorating Aβ-induced excitotoxic-

ity, by causing the exclusion of Fyn from the post-synap-

tic compartment and by destabilisation of PSD-95 [200, 

201]. Another recent paper has shown that post-synaptic 

FTLD-mutant Tau causes aberrant Fyn nanoclustering in 

hippocampal dendritic spines [338]. Fyn knockout causes 

impairments to LTP and spatial learning in mice, this is 

specific to Fyn as opposed to other nonreceptor tyrosine 

kinases [163]. Other than being linked with excitotoxic-

ity, the phosphorylation of Tau at serine 396 has also 

been shown to be required for hippocampal LTD [370]. 

Although the exact mechanism was not described, it was 

shown that Tau is necessary for an activity-dependent 

molecular interaction between GluA2 and PICK1, both 

of which are required for the internalisation or stabili-

sation of intracellular pools of AMPARs [170, 280, 370, 

443]. GluA2 subunits in AMPARs render them  Ca2+ 

impermeable [52, 186, 418]. �e GluA2 subunit can also 

bind NSF and AP2 for stabilisation versus internalisation 

[99, 262, 332, 336, 419, 480]. As NSF and AP2 binding 

sites on GluA2 overlap, they are thought to elicit differ-

ent functions, which may explain the complexities of 

AMPAR trafficking [262]. As well as its involvement in 

the GluA2-PICK1 interaction, Tau has also been shown 

capable of binding to NSF and AP2 by co-immunoprecip-

itation studies [276]. �e function of this binding may be 

related to NMDA-induced trafficking of AMPARs from 

synapses, whereby Tau deficiency results in reduced 

GluA2 subunits in the postsynaptic density during chem-

ical LTD [434]. GluA2 also regulates metabotropic gluta-

mate receptor-dependent LTD (mGluR-LTD) through a 

pathway involving cofilin-mediated actin reorganisation 

[506].

Tau can bind several proteins, interact with, or is 

directly involved in various stages of CME and synaptic 

trafficking, the proteins of which are also genetic risk 

factors for AD. �ese include the top three genetic risk 

factors, APOE [428], BIN1 [67, 217] and PICALM [174, 

248]. Similarly, many genetic risk factors for AD have 

been linked to CME though these proteins may not be 

known to directly bind to Tau, and will therefore be dis-

cussed in more detail (Fig. 5).

Possible roles of synaptic Tau based on interactions 
with proteins identi�ed as genetic risk factors 
in Alzheimer’s disease
Another hint that CME may be closely associated with 

AD pathology comes from genetic mutations that can 

lead to late onset Alzheimer’s disease (LOAD) includ-

ing PICALM [174, 248], EXOC3L2 (Exocyst complex 
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component 3-like 2; [335, 401], BIN1 [217], MEF2 (myo-

cyte enhancer factor-2; [61], KIBRA [83], RIN3 (Ras and 

Rab Interactor 3; [217], and Sorla [379]. Figure  5 illus-

trates how these genetic risk factor proteins may further 

interact with pathways involved in synaptic plasticity, or 

with the proteins previously discussed in Fig. 4.

PICALM

Picalm is an adaptor protein required for clathrin-

mediated endocytosis by directly binding to clath-

rin, phosphatidylinositol, and AP2 to help form 

clathrin-coated pits on the cell membrane [109, 305, 

441]. Overexpression or degradation of Picalm blocks 

endocytosis, and has also been related to the extent 

Fig. 5 The genetic risk factors for Alzheimer’s disease are involved in synaptic plasticity. Proteins that have genetic links to AD (italicised) are 
mapped into the pathways described for proteins that are capable of binding to Tau. Proteins used to demonstrate the pathway but that do not 
bind directly to Tau (purple) or are known genetic risk factors (italicised) are also shown
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of Tau pathology [7, 8, 228, 385, 441]. Picalm may be 

involved in CME-mediated uptake of Tau species and 

is also found bound to fibrillar Tau [6, 475]. Increased 

concentrations of calpain-cleaved Picalm are found in 

the AD brain, which has been hypothesised to impair 

endocytic function in AD [6].

APP

Genetic mutations in the Amyloid precursor protein 

(APP), from which the fragment Amyloid-beta (Aβ1-42) 

arises, can be a direct cause of AD [149]. APP is only 

partially processed at the cell surface but requires CME 

for further processing and its synaptic activity-depend-

ent release [73, 239, 247, 455]. APP has functional roles 

in regulating spine density whereby overexpression or 

knockdown of APP causes an increased or reduced num-

ber of spines, respectively [261]. Aβ can cause dysregu-

lation of intracellular  Ca2+ concentrations [13, 244], and 

synaptic depression, thought to occur by aberrant traf-

ficking and excessive removal of AMPARs [166, 191]. 

�is could induce LTD through NMDA receptor- and 

metabotropic glutamate receptor-mediated signaling 

[166, 281]. APP has been shown to bind to Tau [199] 

without any known role, a functional link between 

these proteins however occurs via Fyn kinase. As previ-

ously discussed, both Tau and Aβ have been related to 

neuronal excitability, however memory deficits, excito-

toxic seizures, and seizure-induced premature mortal-

ity of mice overexpressing the Swedish mutation of APP 

 (APPSwe) was reduced when nonreceptor tyrosine kinase, 

Fyn, was unable to enter post-synaptic compartments 

due to the expression of a truncated form of Tau [200]. 

For review on Aβ and trafficking see Perdigão et al. [346]. 

For reviews on synaptic mechanisms of Tau pathology 

see [107, 346].

BIN1, RIN3 and CD2AP

BIN1 is involved in endocytosis by binding to clathrin and 

AP2 during early endosome formation, and in the exocy-

tosis of vesicles from recycling endosomes to the cell sur-

face [57, 397]. Loss of BIN1 causes impaired presynaptic 

vesicle distribution and release, reduced synaptic density 

due to membrane trafficking, and an altered presynaptic 

protein clustering [381]. In the postsynaptic compart-

ment, this loss also causes reduced surface expression 

of the GluA1 AMPAR subunit in the post-synaptic com-

partment and altered AMPAR-mediated synaptic trans-

mission [397]. Overall, BIN1 knockout leads to deficits in 

synaptic transmission, and impaired spatial memory con-

solidation at the behavioural level [381]. Tau reduction 

has also been shown to reduce network hyperexcitability 

mediated by BIN1-interactions with L-type voltage-gated 

calcium channels (LVGCCs) [458]. BIN1 can rearrange 

the actin cytoskeleton and stabilise Tau-induced actin 

bundles [108]. BIN1 and Tau colocalise at the actin 

cytoskeleton [421] as has also be shown for BIN1 with 

the genetic risk factor protein RIN3 [217, 383] to medi-

ate receptor-induced endocytosis and transport of vesi-

cles from the plasma membranes to early endosomes 

[212]. BIN1 and RIN3 are both able to bind CD2AP (CD2 

associated protein), a protein found in cases of sporadic 

AD [185, 324, 328, 383, 439]. �is interaction has been 

related to regulating cholesterol, which has been linked 

to AD through genetic risk factors involved with choles-

terol homeostasis [62, 295], and increased incidence of 

AD in hypercholesterolemia [295, 341, 407]. In Drosoph-

ila, loss of the CD2AP ortholog, cindr, causes a combina-

tion of endocytic and exocytic synaptic defects including 

impairments of synaptic vesicle recycling and release 

[334, 408] and enhanced Tau-induced neurodegenera-

tion [408]. Loss of cindr causes defects in endocytosis as 

shown by depression of synaptic responses during high-

frequency stimulation, as mutants are unable to sus-

tain synaptic vesicle release [30, 173, 237]. It is thought 

that impairment to synaptic vesicle endocytosis may be 

through the ability of CD2AP to link the binding of clath-

rin and actin via cortactin [282, 334, 499]. CD2AP also 

binds actin, whereby its loss of function stabilises F-actin 

[210, 469]. Exocytosis of vesicles is also affected by cindr 

having a role in presynaptic  Ca2+ homeostasis. �is is 

thought to occur through binding 14–3-3ζ to regulate the 

UPS for activity-dependent proteostasis to control the 

degradation of proteins involved with plasticity [334]. It 

is possible that Tau influences this pathway as 14–3-3 can 

increase Tau aggregation and co-immunoprecipitation 

studies have shown that Tau can bind to 14–3-3ζ, though 

the functional relevance of this remains to be determined 

[182, 276]. �e UPS has an important role in endocytosis, 

protein trafficking, the size of post-synaptic potentials 

and the formation of long-term memory [202, 422, 502]. 

Alpha-synuclein, synaptophysin, syntaxin1, SNAP-25, 

synapsin1, GluA2, PSD95 and plasma membrane calcium 

ATPase (PMCA) have been identified as pre-synaptic 

targets for the UPS [29, 71, 78, 283, 334, 344, 403, 471]. 

AMPAR subunits are targets for degradation by the UPS 

for LTD induction following uptake by CME [115]. �is 

occurs through ubiquitination of PSD-95 which other-

wise acts as tether for AMPARs and shields them from 

degradation [78]. Burbea et  al. (2002) hypothesize that 

there is an intricate link between ubiquitination, clathrin-

mediated endocytosis and UPS degradation, suggesting 

activity-dependent ubiquitin-conjugation of AMPARs 

to influence AMPARs at synapses [344]. Unregulated 

deubiquitination of synaptic proteins can also result in 

synaptic overgrowth and blocked release of synaptic vesi-

cles [102]. Like Picalm, Bin1 and CD2AP depletion can 
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cause impaired vesicle recycling or release and result in 

an accumulation of Aβ and other proteins inside of early 

endosomes [450]. �is may also influence the aggregation 

of Tau, which is promoted at low pH inside of endolyso-

somal compartments [307].

MEF2C

MEF2C is a transcription factor that regulates hip-

pocampal-dependent learning and memory through the 

control of dendritic spine density, miniature excitatory 

postsynaptic currents (mEPSCs) frequency, probability 

of vesicle release, and activity-dependent AMPAR traf-

ficking through its presence in the pre- and post- synap-

tic compartments [20, 77, 221, 368]. MEF2C is therefore 

important for activity-dependent refinement of synaptic 

connectivity in homeostatic plasticity [20].

EXOC3L2

EXOC3L2 is a component of the exocyst, involved in the 

exocytosis of vesicles containing hormones, extracellu-

lar components, membrane lipids, and for the regulation 

of the readily releasable pool of synaptic vesicles via the 

binding of NSF and SNARE proteins including syntaxin1 

[189, 354]. �e activity-dependent addition of membrane 

to the synapse via the exocyst is required for synaptic 

plasticity [442]. �e exocyst interacts with postsynaptic 

density proteins to regulate NMDAR and AMPAR traf-

ficking and exocytosis at the postsynaptic membrane 

[143, 390]. Overall, the exocyst acts as an integrator 

between the secretory pathway and cytoskeleton, includ-

ing septins, actin, and microtubules, to localise vesicles to 

release sites [192, 436, 456].

KIBRA

KIBRA is enriched in brain regions involved with mem-

ory such as the hippocampus and cortex, where it is 

found in the perinuclear and somatodendritic regions of 

neurons, particularly at postsynaptic densities. KIBRA 

acts as a postsynaptic scaffold protein that connects the 

cytoskeleton with signalling molecules [208]. KIBRA is 

capable of binding activity-dependent AMPAR regula-

tors including NSF, PSD-95, PICK1, GluA1, GluA2 and 

GRIP1 (Glutamate receptor-interacting protein 1), and 

is involved in AMPAR recycling, through its ability to 

bind with the exocyst complex [286, 380]. By binding the 

exocyst, KIBRA can direct PKMζ (Protein kinase Mzeta), 

a brain-specific variant of PKCzeta that plays impor-

tant roles in memory formation, to required locations 

which is why it has been hypothesised to be a ‘synaptic 

tagging’ protein [489]. PKMζ is necessary and sufficient 

for enhanced synaptic transmission during LTP mainte-

nance and acts by increasing the number of postsynaptic 

AMPARs [270, 271]. PKMζ, but not other PKC isoforms, 

has been found in NFTs in brain regions specifically 

involved with memory loss in AD, whereas they are not 

found in NFTs of control brains without memory impair-

ment [85]. As KIBRA is involved in AMPAR recycling, 

knockdown of KIBRA results in an increase of AMPAR 

recycling following NMDAR internalisation [286]. �is 

mechanism is impaired by Tau in AD. Acetylated forms 

of Tau seen in AD brains (K274 and K281) promote 

memory loss by preventing the recruitment of KIBRA 

into post-synaptic compartments, causing impaired 

activity-dependent postsynaptic actin remodelling and 

AMPAR insertion [447].

PTK2B

PTK2B encodes Pyk2 (proline-rich tyrosine kinase 2), a 

susceptibility factor for AD [248]. Fyn kinase can acti-

vate Pyk2, which then binds and phosphorylates Tau 

[59, 263, 361]. Pyk2 interacts with NMDARs, dependent 

upon binding PSD95, to phosphorylate NR2 subunits and 

increase receptor conductance during the induction of 

LTP [238, 399, 463]. Pyk2 binding to PSD95 is activity-

dependent as it requires activation of calmodulin by  Ca2+ 

(Fig.  5, [25]. Pyk2 is fundamental to synaptic dysfunc-

tion triggered by Aβ as mice lacking Pyk2 were protected 

from synapse loss and memory impairment [388].

LDLR and ApolipoproteinE

�e LDLR (low density lipoprotein receptor) has been 

linked to AD both through direct mutations and through 

interaction with ApoE (apolipoprotein E), the high-

est genetic risk factor for LOAD [81]. LDLR is involved 

in cholesterol uptake via CME. Cholesterol is essential 

for the maintenance of mature synapses to increase the 

number of synaptic vesicles and release sites, and overall 

release efficacy [148, 410]. Another low density lipopro-

tein receptor found at the postsynaptic density, LRP1, has 

been found to be the major receptor for monomeric or 

oligomeric Tau uptake, and can also cause age-depend-

ent synaptic loss and neurodegeneration in a knockout 

mouse model [80, 275, 277, 300, 369]. Oligomeric hyper-

phosphorylated Tau can bind and be released from cells 

by HSPGs prior to binding LRP1 [80, 218, 304]. Apolipo-

protein E deficient mice show heparan sulfate-enhanced 

low density lipoprotein (LDL) aggregates that are taken 

up by LRP1, causing cholesteryl ester accumulation in 

macrophages and production of atherosclerotic plaques 

[267, 289]. LRP1 is also responsible for the endocytosis 

and degradation of Aβ, or Aβ-ApoE complex, whereby 

amyloid pathology is enhanced by the APOE4 allele, 

dependent upon LRP1 uptake [90, 214, 437]. Alongside 

this, LRP1 is involved in the endocytosis of APP, which is 

required for its processing of Aβ peptides [234].
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�e ApoE type 4 allele, the highest genetic risk factor 

for AD [81], causes impaired vesicle cycling to the cell 

surface resulting in intracellular cholesterol accumula-

tion [181, 428]. �is impaired cycling also traps AMPARs 

and NMDARs clustered with ApoE receptors inside of 

endocytic vesicles, causing synaptic dysfunction [70]. 

Aβ is capable of regulating the surface expression versus 

endocytosis of NMDARs, potentially through disruption 

to their binding with PSD95 [377, 414]. Impaired cycling 

by ApoE4 is thought to exacerbate Aβ induced endocy-

tosis of AMPA and NMDARs, and ApoE4 knock-in mice 

show increased sensitivity to the blockade of LTP by oli-

gomeric Aβ and by failing to restore Reelin signalling [70, 

414, 449]. In a pathway suggested by Durakoglugil et al. 

[112], Aβ competes against nonreceptor tyrosine kinase 

signalling, predominantly by Fyn kinase, over activation 

or antagonism of the Reelin pathway. In the absence of 

phosphorylation, the microtubule binding region of Tau 

is capable of binding ApoE3 but not ApoE4, [429]. ApoE4 

also increases Tau-mediated neurodegeneration as com-

pared with other alleles or knockout of ApoE, which is 

neuroprotective [405].

�ere are many genetic risk factors linked to AD that 

involve proteins required for CME, vesicle cycling or 

exocytosis. Alongside PICALM, BIN1, and Apolipopro-

tein E, which directly bind Tau, a number of proteins link 

genetic risk factor proteins with synaptic proteins capa-

ble of binding Tau and which are linked to vesicle cycling 

pathways [67, 276, 421]. Such proteins, recurring through 

this review, may include AMPARs, 14–3-3ζ, NSF, PSD95, 

Fyn kinase and clathrin itself. Many of the proteins which 

are able to bind Tau, or are related to LOAD and familial 

AD, also bind to the actin cytoskeleton and may there-

fore act as a linker between structural and signalling roles 

required for synaptic plasticity and memory mechanisms.

Tau as a linker between CME, vesicle tra�cking, 
and the cytoskeleton
Tau is able to simultaneously bind actin and micro-

tubules, and induce the polymerisation of actin along 

microtubule tracks [116]. As Tau has been linked with 

physiological and pathological actin structures, it is 

worth discussing how these cytoskeletal arrangements 

may link with CME and previously discussed synaptic 

trafficking mechanisms.

CME is intricately linked to actin dynamics though the 

exact stage, location and function of these associations in 

mammalian cells have been strongly debated. It appears 

that actin is involved with the invagination of membrane 

and late stages of CME [139]. Actin has been suggested to 

play structural role and mechanical roles in exerting force 

during scission and constriction steps required for vesicle 

endo- and exocytosis [203, 363, 413]. Actin is the main 

cytoskeletal component of synaptic compartments and 

spines, and is thought to facilitate the cytoarchitectural 

changes required for synaptic plasticity [60, 104, 299].

Actin has also been suggested to have an active role in 

the segregation of vesicle populations to determine their 

retention or release at the membrane surface [72]. In the 

pre-synaptic compartment, loss of F-actin integrity has 

shown impairment to synaptic vesicle release or recycling 

in multiple studies [409, 459, 501]. �is greatly reduces 

the number of synaptic vesicles in the stimulated con-

dition due to the inability to retrieve vesicles from the 

plasma membrane [409]. Stabilisation of F-actin by phal-

loidin also prevents neurotransmitter release [32, 350]. 

Pre-synaptically, the bundling and stabilisation of actin 

by phalloidin are far more dramatic following the induc-

tion of action potentials, which cause the assembly of 

filamentous actin fibres, tethered with vesicles, from the 

endocytic zone to the periphery of the vesicle pool [409]. 

�is may be similar to the effects seen when Tau is shown 

to cause increased resistance to depolymerising drugs by 

directly stabilising actin [136]. Decreased actin dynamics 

through actin bundling has previously been associated 

with senescence, whereas knockdown of the actin bun-

dling protein SM22/transgelin increases longevity [161].

F-actin also determines the mobility of receptors 

between the cell surface and the cytoplasm [2]. In the 

post-synaptic compartment, F-actin stabilises receptors 

in dendritic spines, whereby its disruption decreases the 

number of NMDAR and AMPAR clusters. In hippocam-

pal neurons, post-synaptic actin depolymerisation causes 

AMPAR endocytosis, similar to that induced by gluta-

mate [2]. By contrast, stabilisation of F-actin can inhibit 

AMPAR internalisation [2]. �e specific linker proteins 

that allow F-actin to facilitate these functions are not 

fully known. Much is still poorly understood about how 

CME and its role in vesicle cycling and plasticity links 

with actin and its mechanical and structural roles within 

the synaptic compartments. A number of proteins are 

responsible for actin dynamics, including the previously 

discussed proteins tropomyosin, cofilin, and adducin. 

Alongside the better known pathology of Aβ plaques and 

neurofibrillary tangles seen in AD, actin-depolymeriz-

ing factor (ADF)/cofilin-actin rods can also occur [310] 

which may be precursors to Hirano bodies, actin-rich 

inclusions that contain tropomyosin, Tau, and cofilin, 

among other proteins [140, 146].

As Tau is capable of binding the filament proteins sep-

tin7, tubulin and actin, Tau may act like a Velcro that 

reversibly positions structures into place for signalling 

pathways and to restructure proteins depending on the 

levels of synaptic activity. �is role may balance the level 

of proteins available for function versus their degrada-

tion through cleavage by calpain and the UPS. �is has 



Page 17 of 30Robbins et al. acta neuropathol commun           (2021) 9:149  

already been discussed for the protein synapsin1, how-

ever numerous other proteins including actin, cortactin, 

NMDAR and AMPAR subunits, PSD95, SNAP-25, GAP-

43, and GRIP are either targeted to scaffolding proteins 

such as PSD95 for stabilisation, or else marked by cleav-

age or ubiquitination for degradation [9, 33, 78, 348, 357, 

457, 474, 494]. Reduced post-synaptic glutamate recep-

tor localisation was proposed to be due to a depletion of 

PSD95 in the post-synaptic compartment, resulting in 

smaller postsynaptic densities following a reduction or 

mutation of Tau [325, 465]. �e UPS is only responsible 

for the local degradation of a subset of synaptic proteins, 

and its function is regulated by synaptic activity or neu-

ral growth factors (NGF) to adjust the concentration of 

proteins important for synaptic function. �is activity-

dependent or NGF-dependent UPS function can thereby 

feedback to regulate neurotransmitter release and syn-

apse elimination [206, 254, 372, 422].

The role of Tau tra�cking, its link to endocytosis, 
cholesterol and the cytoskeleton
A question that emerges from the above findings is 

whether the presence of Tau at different locations in the 

cells are due to internal Tau translocations or due to Tau 

being released into the extracellular space and its re-

uptake by neighbouring neurons. �ere have been many 

reports on Tau trafficking and its uptake mechanism. 

It is thus interesting to note that several endocytosis-

related pathways are involved in Tau trafficking and thus 

may explain why Tau pathology is linked to these differ-

ent pathways (for a review see [50]. Furthermore, there 

are several studies emerging highlighting the role of the 

extracellular and intravesicular environment on protein 

misfolding involving high sodium, zinc, and calcium 

ion concentrations and solvents [319, 426, 426], low pH 

[307], presence of glucosaminoglycans [227, 321] to name 

a few. Recent studies [80, 369] also highlights another 

potentially important factor, namely cholesterol. Cho-

lesterol has long been seen as a player in AD and many 

other neurodegenerative diseases, such as PD, Nieman 

Pick’s disease Type C (NPC) and ALS (for a review see 

[294]. �e increased membrane-associated cholesterol 

concentration in the brains of patients with sporadic AD 

correlates with the disease severity [86, 291, 482]. In age-

ing neurons cholesterol is mainly taken up by endocyto-

sis, as opposed to cell-autonomous cholesterol synthesis 

[137], and thus extracellular Tau and cholesterol may 

end up in the same endosomal compartment. Increased 

accumulation of Tau and cholesterol in endosomes may 

interfere with the WASH complex, similar to what has 

been observed in VPS35 (vacuolar protein sorting 35) 

related to PD [495], and thus affect the actin skeleton and 

endosome-lysosome networks [97, 154, 155]. Impaired 

cholesterol transport would not only reduce cholesterol 

being supplied to other organelles such as the mitochon-

dria and the plasma membrane and lipid rafts, but also 

reduce the number of synaptic vesicles being formed.

Conclusion
In AD, Tau is commonly discussed with regards to pre-

synaptic [301, 503] versus post-synaptic [200] pathol-

ogy, though little emphasis is put on mechanisms that 

may target common plasticity pathways such as synap-

tic protein and lipid trafficking, and vesicle cycling. In 

this review paper, we have highlighted synaptic proteins 

that Tau is capable of binding to, or genetic risk factor 

proteins, and mapped these to pathways that relate to 

plasticity mechanisms that would directly link Tau with 

impaired memory, a primary symptom of AD [23]. It is 

also important to note that changes to memory mecha-

nisms occur even as a result of healthy ageing. In general, 

it has been shown that in older animals LTP is less robust 

and requires stronger input whereas LTD is enhanced 

[22, 318, 333, 446]. AD pathology may further hijack 

these mechanisms leading to symptoms of dementia.

A small amount of Tau has been detected at synapses 

under physiological conditions. Due to the activity-

dependence of Tau translocation to synapses, it has been 

hypothesised that Tau may have a supporting struc-

tural role during development and plasticity [190, 132, 

317, 392, 434, 438]. Tau has been suggested to coordi-

nate microtubule and actin dynamics to allow structural 

alterations during activity, as Tau binds F-actin with 

a physiological function [136, 177, 493]. Tau has been 

found to be capable of binding to a number of proteins 

with roles associated with clathrin-mediated endocytosis 

(Fig. 4). It is plausible that Tau acts as either a tethering 

protein between vesicles, similarly to synapsin, at least 

during pathological conditions [301]. �is binding may 

occur with microtubules, septin, actin-mediated mecha-

nisms, or HSPG extracellular matrix for either supply-

ing, stabilising, or transporting components required 

for plasticity. Phosphorylation-dependent mechanisms 

that change protein interactions and synaptic scaffold-

ing may become impaired in pathways leading to NFTs 

[317]. Synaptic vesicles and exocyst cycling, and receptor 

targeting may be impacted during Tau pathology. Post-

synaptic roles in Tau pathophysiology have been related 

to AMPAR or NMDAR localisation, trafficking or func-

tioning [92, 190, 200, 313, 434, 465]. Hoover et al. [190] 

showed, using rTgP301L mice, that Tau mutation or 

hyperphosphorylation impaired trafficking or anchoring 

of AMPARs and NMDARs. Multiple indirect mecha-

nisms of NMDAR or AMPAR-dependent impairment 
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have been shown through changes to import Fyn kinase, 

PSD95, and KIBRA proteins into post-synaptic compart-

ments [200, 447, 465].

Based on recent evidence from the literature, we 

hypothesise that Tau serves as a scaffold to bind the 

cytoskeleton and to regulate its interactions with key syn-

aptic targets, particularly in coordinating CME at both 

the pre- and post- synaptic compartments. A similar role 

for Aβ in CME and clathrin-dependent membrane and 

protein trafficking pathways, which is known to affect 

synaptic vesicle endocytosis and exocytosis, has already 

been posited in AD [223, 346, 485], in schizophrenia 

and bipolar disorder [396]. Aβ42 oligomers are known 

to directly interact with Syntaxin 1a [485] Synaptophy-

sin [387], or indirectly interfere with dynamin through 

NMDAR activation [222, 224], and Synapsin1 [274, 292, 

342]. Although we have listed many possible pathways 

by which Tau may mediate its role at the synapse based 

on its binding ability, not all of these may have functional 

relevance or be directly related to AD pathology. �ese 

pathways may however highlight the intricacies of the 

dysfunction that may occur, or at least show the com-

plexity of the etiology and progression of AD.

Outstanding questions
Does Tau have physiological roles in the pre- and/

or post-synaptic compartments for pathways related 

to vesicle cycling and protein trafficking for plasticity, 

or is its localisation in synaptic compartments purely 

pathological?

What is the phenomenon that causes the conversion of 

monomeric to multimeric Tau species? Does Tau aggre-

gation impair any physiological roles of synaptic Tau and 

if so how and at what point(s) during the aggregation 

pathway? Is pathology to pathways involving physiologi-

cal Tau directly responsible for memory impairment seen 

in AD?

At what stage does pathological phosphorylation of 

Tau occur and how does this deter from physiological 

phosphorylation pathways and normal function?

Is the presence of Tau at different locations in cells 

due to internal Tau translocations or due to Tau being 

released into the extracellular space and its re-uptake 

by neighbouring neurons? And therefore, how does the 

extracellular environment and Tau uptake into the endo/

lysosomal pathway affect Tau location and pathology?

Of the proteins discussed in this review as being capa-

ble of binding Tau, which of these interactions have func-

tional roles inside of neurons? Are these interactions 

affected by multimeric Tau and could they be therapeuti-

cally targeted?
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