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Abstract NeuromedinU is a potent regulator of food intake and activity in mammals. In

Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and

locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire

connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin

neurons use synaptic transmission in addition to peptidergic neuromodulation and identify

acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the

regulatory effect on feeding. We further show that subtypes of hugin neurons connect

chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections.

Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides.

Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels

in flies and mammals. We propose that hugin neurons are part of an ancient physiological control

system that has been conserved at functional and molecular level.

DOI: 10.7554/eLife.16799.001

Introduction
Multiple studies have demonstrated functional conservation of fundamental hormonal systems for

metabolic regulation in mammals and Drosophila. This includes insulin (Ikeya et al., 2002;

Rulifson et al., 2002), glucagon (Kim and Rulifson, 2004), and leptin (Rajan and Perrimon, 2012).

In addition to these predominantly peripherally released peptides, there is a range of neuropeptides

that are employed within the central nervous systems (CNS) of vertebrates and have homologs in

invertebrates, e.g. neuropeptide Y (NPY), corticotropin-releasing hormone (CRH) or oxytocin/vaso-

pressin (Nässel and Winther, 2010; Nässel and Wegener, 2011; Grimmelikhuijzen and Hauser,

2012; Mirabeau and Joly, 2013; Jékely, 2013).

Among these, neuromedinU (NMU) is known for its profound effects on feeding behavior and

activity; NMU inhibits feeding behavior (Howard et al., 2000), promotes physical activity

(Novak et al., 2007; Chiu et al., 2016), and is involved in energy homeostasis (Nakazato et al.,

2000; Ivanov et al., 2002) and stress response (Hanada et al., 2001; Zeng et al., 2006). Hugin is a

member of the pyrokinin/PBAN (pheromone biosynthesis activating neuropeptide) peptide family

and a Drosophila homolog of NMU that has recently gained traction due to similar effects on behav-

ior in the fly: increased hugin signaling inhibits food intake and promotes locomotion

(Melcher et al., 2006; Schoofs et al., 2014; Bader et al., 2007b). In mammals, distribution of the

NMU peptide, NMU-expressing cells and NMU-positive fibers is wide and complex. High levels of
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NMU have been reported in the arcuate nucleus of the hypothalamus, the pituitary, the medulla

oblongata of the brain stem, and the spinal cord (Domin et al., 1987; Ballesta et al., 1988;

Howard et al., 2000; Ivanov et al., 2004). The number of neurons involved and their morphology is

unknown. In Drosophila, the distribution of hugin is less complex, yet similar: the peptide is pro-

duced by neurons in the subesophageal zone that have hugin-positive projections into the ring

gland, the pars intercerebralis and ventral nerve cord (Melcher and Pankratz 2005) (Figure 1).

While comparisons across large evolutionary distances are generally difficult, these regions of the fly

brain were suggested to correspond to aforementioned regions of NMU occurrence based on mor-

phological, genetic and functional similarities (Ghysen, 2003; Hartenstein, 2006). Consequently,

NMU/hugin has previously been referred to as a clear example of evolutionary constancy of peptide

function (Taghert and Nitabach, 2012).

Although functional and morphological aspects of neurons employing either neuropeptide have

been extensively studied in the past, knowledge about their connectivity is fragmentary. While

large-scale connectomic analyses in vertebrates remain challenging, generation of high-resolution

connectomes has recently become feasible in Drosophila (Ohyama et al., 2015; Berck et al., 2016;

Fushiki et al., 2016; Schneider-Mizell et al., 2016). We took advantage of this and performed an

integrated analysis of synaptic and G-protein-coupled receptor (GPCR)-mediated connectivity of

hugin neurons in the CNS of Drosophila. Our data demonstrates that hugin neurons employ small

molecule transmitters in addition to the neuropeptide. We identify acetylcholine as a transmitter

that is employed by hugin neurons and find that it is required for their effect on feeding behavior.

Next, we show that hugin neurons form distinct units, and demonstrate that clusters of neurons

employing the same neuropeptide are remarkably different in their synaptic connectivity. One unit

of hugin neurons is presynaptic to subsets of median neurosecretory cells (mNSCs) in the protocere-

brum. In parallel to the synaptic connectivity, mNSCs also express the G-protein-coupled receptor

PK2-R1, a hugin receptor, rendering them likely targets of both fast synaptic transmission and neuro-

modulatory effects from hugin neurons. These mNSCs produce diuretic hormone 44 (DH44, a CRH-

like peptide) and Drosophila insulin-like peptides, both of which have mammalian homologs that are

likewise downstream of NMU (Wren et al., 2002; Malendowicz et al., 2012). Endocrine function is

essential to ensure homeostasis of the organism and coordinate fundamental behaviors, such as

feeding, mating and reproduction, and acts as integrator of external and internal sensory cues

(Swanson, 2000). Consequently, connections between sensory and endocrine systems are found

across species (Yoon et al., 2005; Tessmar-Raible et al., 2007; Strausfeld 2012; Abitua et al.,

2015). We show that hugin neurons receive chemosensory input in the subesophageal zone (SEZ),

thereby linking chemosensory and neuroendocrine systems.

brainstem

hypothalamus
pituitary

hypothalamus

SEZ

pars intercerebralis

ventral nerve cordspinal cord

ring glandA B

NMU

feeding physical activity

C D

+-

hugin

feeding locomotion

+-

rodents Drosophila

Figure 1. Comparison of mammalian neuromedinU and Drosophila hugin. (A) NeuromedinU (NMU) is widely

distributed in the rodent CNS. NMU peptide, NMU-expressing cells and NMU-positive fibers are found in several

regions of the brain stem, hypothalamus, pituitary and spinal cord (black dots). The number of neurons and their

morphology is unknown. (B) In Drosophila, distribution of the homologous neuropeptide hugin is less complex

and well known: hugin is expressed by sets of neurons in the subesophageal zone (SEZ) that project into the pars

intercerebralis, ring gland and ventral nerve cord. (C, D) Increased NMU and hugin signaling has similar effects:

feeding behavior is decreased, whereas physical activity/locomotion is increased.

DOI: 10.7554/eLife.16799.002
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Results

Input and output compartments of hugin neurons
The hugin gene is expressed in only 20 neurons in the Drosophila CNS. This population comprises

interneurons, which are confined within the CNS, as well as efferent neurons, which leave the CNS.

The interneuron type can be subdivided into those projecting to the protocerebrum (hugin-PC, eight

neurons) or the ventral nerve cord (hugin-VNC, four neurons). The efferent type can be subdivided

into those projecting to the ring gland (hugin-RG, four neurons) or the pharynx (hugin-PH, four neu-

rons) (Figure 2A) (Bader et al., 2007a). Based on these morphological features, we first recon-

structed all hugin neurons in an ssTEM volume covering an entire larval CNS and the major

neuroendocrine organ, the ring gland (Figure 2B; see Materials and methods for details). We then

localized synaptic sites, which could be readily identified as optically dense structures (Prokop and

Meinertzhagen, 2006). Comparing neurons of the same class, we found the number as well as the

distribution of pre- and postsynaptic sites to be very similar among hugin neurons of the same class

(Figure 2C–E, Video 1). Presynaptic sites are generally defined as having small clear core vesicles

(SCVs) containing classic small molecule transmitter for fast synaptic transmission close to the active

zone (Prokop and Meinertzhagen, 2006). Efferent hugin neurons (hugin-RG and hugin-PH) showed

essentially no presynaptic sites (<1 average/neuron) within the CNS and we did not observe any

SCVs. For hugin-RG neurons, membrane specializations resembling presynaptic sites were evident at

their projection target, the ring gland. These sites did contain close-by DCVs but no SCVs and had

in many cases no corresponding postsynaptic sites in adjacent neurons. Instead they bordered hae-

mal space indicating neuroendocrine release (Figure 2—figure supplement 1A). The configuration

of hugin-PH terminals is unknown as their peripheral target was outside of the ssTEM volume. For

the interneuron classes (hugin-PC and hugin-VNC), we found SCVs at larger presynaptic sites, indi-

cating that they employ classic neurotransmitter in addition to the hugin peptide (Figure 2—figure

supplement 1B,C). Hugin-PC and hugin-VNC neurons’ projections represent mixed synaptic input-

output compartments as they both showed pre- as well as postsynaptic sites along their neurites

(Figure 2D,E).

All hugin neurons receive inputs within the SEZ [previously called subesophageal ganglion (SOG)],

a chemosensory center that also houses the basic neuronal circuits generating feeding behavior

(Hückesfeld et al., 2015). However, only the hugin-PC neurons showed considerable numbers of

synaptic outputs in the SEZ, consistent with their previously reported effects on feeding

(Schoofs et al., 2014; Hückesfeld et al., 2016) (Figure 2E).

Acetylcholine is a co-transmitter in hugin neurons
The existence of presynaptic sites containing SCVs in addition to large DCVs led to the assumption

that hugin-PC and hugin-VNC (possibly also hugin-PH neurons) employ small molecule neurotrans-

mitters parallel to the hugin neuropeptide. To address this, we checked for one of the most abun-

dantly expressed neurotransmitter in the Drosophila nervous system: acetylcholine (ACh)

(Yasuyama and Salvaterra, 1999; Salvaterra and Kitamoto, 2001). In the past, immunohistochemi-

cal and promoter expression analyses of choline acetyltransferase (ChAT), the biosynthetic enzyme

for ACh, were successfully used to demonstrate cholinergic transmission (Barnstedt et al., 2016;

Miyamoto, 2012; Yapici et al., 2016). We used both, anti-ChAT antibody as well as a ChAT pro-

moter analysis, and investigated co-localization with hugin neurons. In the EM data, we found hugin

neurons to have comparatively few SCVs, suggesting only low amounts of small transmitters. In addi-

tion, ChAT is preferentially localized in the neuropil and less so in the somas (Sámano et al., 2006).

Consistent with this, we found that ChAT immunoreactivity in hugin cell bodies was relatively low

and varied strongly between samples. Therefore, we quantified the anti-ChAT signal to show that

while ChAT levels were in some cases indiscernible from the background, overall highest levels of

ChAT were found in hugin-PC and hugin-VNC/PH neurons (Figure 3A). Note that while hugin-PC

and hugin-RG neurons were easily identifiable based on position and morphology, hugin-PH and

hugin-VNC neurons usually clustered too tightly to be unambiguously discriminated and were thus

treated as a single mixed group. Similar to the immunohistochemical analysis, the ChAT promoter

(ChAT-GAL4) drove expression of a fluorescent reporter in all hugin-PC neurons plus a subset of
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Figure 2. EM reconstruction of hugin neurons and their synaptic sites. (A) Hugin neurons are known to form four

morphologically distinct classes: hugin-PC (protocerebrum), hugin-VNC (ventral nerve cord), hugin-RG (ring gland)

and hugin-PH (pharynx, asterisks mark nerve exit sites). (B) Reconstruction of all hugin neurons based on serial

section electron microscopy (EM) of an entire larval brain. (C–E) Spatial distribution of synaptic sites for all hugin

classes. Hugin interneurons (hugin-PC and hugin-VNC) show mixed input/output compartments, and presynaptic

sites indicate the existence of a small molecule transmitter in addition to the hugin neuropeptide. In contrast,

Hugin-RG and hugin-PH show almost exclusively postsynaptic sites within the CNS. Each dot in D and E

Figure 2 continued on next page
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hugin-VNC/PH neurons (Figure 3B). Hugin-RG showed weak ChAT signal with either method, con-

sistent with these neurons lacking SCVs in the EM data.

These findings suggested that ACh may be a co-transmitter in hugin neurons. We previously

demonstrated that RNAi-induced knockdown of the hugin neuropeptide rescues the phenotype of

feeding suppression caused by induced activation of hugin neurons in behavioral and electrophysio-

logical experiments (Schoofs et al., 2014). Here, we present the knockdown of ChAT using an

established UAS-ChAT-RNAi line (Plaçais et al., 2013; see Materials and methods). Under unim-

peded conditions (i.e., without ChAT knockdown), activation of hugin neurons leads to severe

decrease of food intake in intact larvae. This decrease in food intake was rescued by knockdown of

ChAT in hugin neurons to a similar degree as the knockdown of the hugin neuropeptide itself

(Figure 3C).

In addition to a general decrease in food intake, activation of hugin neurons leads to a decrease

in cycle frequency of pharyngeal pump motor activity (Schoofs et al., 2014). We used extracellular

recordings of the antennal nerve (AN) in isolated CNS for precise monitoring of motor patterns of

the pharyngeal pump (Schoofs et al., 2009). As for the food intake, knockdown of ChAT in hugin

neurons also rescued the suppressive effect of hugin neuron activation on pharyngeal pumping

(Figure 3D). Taken together, these data clearly demonstrate that ACh plays a functional role in

hugin neurons. Moreover, this suggests that hugin neuropeptide and ACh have to be employed

together in order to regulate feeding behavior.

Hugin classes form distinct units that share synaptic partners
Reconstruction of hugin neurons and localization of synaptic sites revealed that neurons of the two

interneuron classes, hugin-PC and hugin-VNC, were reciprocally connected along their main neurites

to ipsilateral neurons of the same class (Figure 4, Figure 2—figure supplement 1E,F). These con-

nections made up a significant fraction of each neuron’s total synaptic connections, implying that

their activity might be coordinately regulated.

We therefore further explored the different

classes within the population of hugin-producing

neurons, asking whether hugin classes establish

functional units or whether they are indepen-

dently wired. To this end, we reconstructed 177

pre- and postsynaptic partners of hugin neurons

(Figure 5A, see Materials and methods for

details). First, we found that neurons of the same

hugin class were connected to the same pre-

and postsynaptic partners. Furthermore, most

synaptic partners were connected exclusively to

neurons of a single hugin class (Figure 5B). Sec-

ond, pre- and postsynaptic partners of each

hugin class resided in different parts of the CNS

(Figure 5C; Video 2). For hugin-RG and hugin-

PH, the vast majority of synapses were made

with interneurons, 93 ± 4% and 97 ± 3%, respec-

tively. This percentage was lower for hugin-PC

(66 ± 6%) and hugin-VNC (81 ± 2%). To our

knowledge, none of these interneuron partners

Figure 2 continued

represents a single synaptic site. Graphs show distribution along dorsal-ventral and anterior-posterior axis of the

CNS. See also Video 1.

DOI: 10.7554/eLife.16799.003

The following figure supplement is available for figure 2:

Figure supplement 1. Exemplary synaptic sites in the ssTEM volume.

DOI: 10.7554/eLife.16799.004

Video 1. Morphology of hugin-producing neurons.

Video shows morphology of hugin-producing neurons

as well as distribution of their presynaptic and

postsynaptic sites. Hugin interneurons (PC and VNC)

have mixed input-output compartments, whereas

efferent hugin neurons (PH and RG) show almost

exclusively postsynaptic sites within the CNS. Outlines

of the CNS including the ring gland are shown in white.

DOI: 10.7554/eLife.16799.005
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Figure 3. Acetylcholine (ACh) is a neurotransmitter of hugin neurons. (A,B) Co-localization of the biosynthetic

enzyme for ACh, choline acetyltransferase (ChAT), in hugin neurons using a ChAT antibody (A) or a ChAT

promoter-GAL4 driving a fluorescent reporter (B). ChAT immunoreactivity was variable but strongest signals were

found in hugin-PC and hugin-VNC/PH neurons. Similarly, ChAT-GAL4 consistently drove expression in hugin-PC

and subsets of hugin-VNC/PH. Shown are exemplary scans and quantification of ChAT co-localization in the

different hugin classes. Note that while hugin-PC and hugin-RG neurons are easily identifiable, hugin-PH and

hugin-VNC neurons were usually too close to be unambiguously discriminated and were thus treated as a single

mixed group. Each data point in the dot plots represents a single hugin neuron. Horizontal lines mark median. (C,

D) ACh is necessary for the effect of hugin neurons’ activation on food intake (C) and pharyngeal pumping (D).

Food intake was measured in intact larvae. Pharyngeal pumping was monitored by extracellular recordings of the

antennal nerve (AN) and analyzed with respect to the cycle frequency of the motor patterns. Activation of hugin

neurons using the thermosensitive cation channel dTrpA1 (HugS3-GAL4 x UAS-dTrpA1) led to a decrease in food

intake and pharyngeal pump activity compared to the control (OrgR, OrgR x UAS-dTrpA1). Knockdown of either

the hugin neuropeptide or ChAT but not LacZ control (UAS-dTrpA1;HugS3-GAL4 x UAS-RNAi) rescued the effect

Figure 3 continued on next page
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have been previously described, making it diffi-

cult to speculate on their functions at this point.

Non-interneuron partners will be described in

the following sections. In summary, these find-

ings show that neurons of each hugin class form

complex microcircuits that are largely separate

from one another.

Hugin neurons receive diverse
chemosensory synaptic input
Hugin neurons have a significant number of their

incoming synapses (63 ± 22%) within the SEZ.

This region of the CNS is analogous to the brain-

stem and is a first-order chemosensory center

that receives input from various sensory organs

(Ghysen, 2003). In addition, subsets of hugin

neurons were recently shown to be responsive

to gustatory stimuli (Hückesfeld et al., 2016).

We therefore searched for sensory inputs to

hugin neurons and found a total of 68 afferent

neurons that made synaptic contacts onto hugin

neurons (Figure 6A). Two major groups

emerged: a larger, morphologically heteroge-

neous group consisting of afferent neurons pro-

jecting through one of the pharyngeal nerves

(the antennal nerve) and, unexpectedly, a sec-

ond, more homogeneous group entering the

CNS through abdominal (but not thoracic)

nerves. We observed that the reconstructed

afferent presynaptic partners of hugin neurons

covered different parts of the SEZ. Thus, we

sought to cluster these afferent neurons by com-

puting the similarity in spatial distribution of

their synaptic sites, termed synapse similarity

score.

Clustering based on synapse similarity score

resulted in seven different groups, each of them

covering distinct parts of the SEZ (Figure 6B;

Video 3; see Materials and methods for details).

To address the issue of the origin of identified

sensory inputs, we compared our data with pre-

vious descriptions of larval sensory neurons. It is

well established that abdominal nerves innervate

internal and external sensory organs of the

peripheral nervous system. This includes proprio-

ceptive (chordotonal), tactile, nociceptive (multi

dendritic neurons) and a range of sensory neu-

rons whose function is still unknown

(Hwang et al., 2007; Ghysen et al., 1986;

Figure 3 continued

of hugin neuron activation on food intake as well as on pharyngeal pumping. For details see Materials and

methods, and Schoofs et al., (2014). Numbers below box plots give N [C: # larvae; D: # trials (# larvae)]. Mann-

Whitney Rank Sum Test (*** = p<0.001; **=p < 0.01).

DOI: 10.7554/eLife.16799.006
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Figure 4. Hugin neurons synapse reciprocally within-

class but not across-class. (A) Connectivity matrix of

hugin to hugin connections. Each row indicates number

of synaptic connections of given hugin neuron to other

hugin neurons. Connections that could not be

recapitulated for both hemisegments are grayed out.

Numbers in colored boxes give % of incoming (x-axis)

and outgoing (y-axis) synaptic connections of the

respective hugin neuron. Hugin to hugin contacts are

made between hugin interneurons of the same class,

not between classes (see schematic). Note that efferent

hugin neurons, hugin-RG and hugin-PH, do not have

presynaptic sites. (B) Distribution of hugin-hugin

synapses. Synaptic contacts between hugin-PC or

hugin-VNC neurons are made along their main

neurites. Only neurons of one hemisegment are shown.
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Figure 5. Each hugin class is part of a distinct microcircuit, weakly or not at all connected to those of the other

classes. (A) Synaptic partners of hugin neurons were reconstructed. Pre- and postsynaptic partners of a single

hugin-PC neuron are shown as example. (B) Comparison of hugin neurons’ connectivity as measured by

connectivity similarity score. High similarity score indicates a large fraction of shared synaptic partners connected

Figure 5 continued on next page
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Bodmer and Jan, 1987). To our knowledge, no abdominal sensory neurons with projections into the

SEZ such as the one observed presynaptic to hugin have been described. However, the majority of

afferent neurons synapsing onto hugin neurons stems from the antennal nerve. This pharyngeal

nerve carries the axons of gustatory receptor neurons (GRNs) from internal pharyngeal sensilla as

well as those of olfactory receptor neurons (ORNs) and other GRNs from the external sensory organs

(Figure 6C,D) (Colomb et al., 2007; Vosshall and Stocker, 2007). ORNs can be unambiguously

identified as they target specific glomeruli of the antennal lobe (Vosshall and Stocker, 2007), but

no such sensory neurons were found to directly input onto hugin neurons (Figure 6—figure supple-

ment 1).

The GRNs likewise target restricted regions of the SEZ neuropil, but this is not as well character-

ized as the antennal lobes (Colomb et al., 2007; Miyazaki and Ito, 2010). The antennal nerve neu-

rons that contact the hugin cells show the morphology of this large, heterogeneous population of

GRNs (Colomb, 2007; Kwon et al., 2011). We thus compared our clustered groups with previously

defined light microscopy-based gustatory compartments of the SEZ (Colomb, 2007). Groups 2 and

6, which cover the anterior-medial SEZ, likely correspond to two areas described as the target of

GRNs from internal pharyngeal sensilla only (Figure 6D). The remaining groups were either not pre-

viously described or difficult to unambiguously align with known areas. Our division into groups is

also reflected at the level of their connectivity to hugin neurons: sensory neurons of group 1 have

synaptic connections to both hugin-PC and hugin-VNC neurons. Groups 2–5, encompassing the pre-

viously described pharyngeal sensilla, are almost exclusively connected to hugin-PC neurons. Group

6 sensory neurons make few synapses onto

hugin-RG neurons. Group 7, encompassing the

abdominal afferent neurons, is primarily presyn-

aptic to hugin-VNC (Figure 6E).

The efferent type hugin neurons, hugin-PH

and hugin-RG, show little to no sensory input. In

contrast, the interneuron type hugin neurons,

hugin-PC and hugin-VNC, receive a significant

fraction of their individual incoming synaptic

connections (up to 39%) from sensory neurons.

Summarizing, we found two out of four types of

hugin neurons to receive synaptic input from a

large heterogeneous but separable population

of sensory neurons, many of which are GRNs

from external and internal sensory organs.

Hugin-PC neurons were recently shown to be

activated by bitter gustatory stimuli but not salt,

fructose or yeast (Hückesfeld et al., 2016). Our

data strongly suggests that this activation is at

least partially based on monosynaptic

Figure 5 continued

by similar numbers of synapses. Neurons are ordered by dendrogram of similarity score of pre- (x-axis) and

postsynaptic (y-axis) partners. Matrix shows combined pre- and postsynaptic similarity score. Self-self comparisons

were omitted (asterisks). Hugin classes connect to unique sets of pre- and postsynaptic partners. Neurons of each

hugin class have the same synaptic partners, and there is little to no overlap with other classes (see schematic). (C)

Reconstructed pre- and postsynaptic partners by hugin class. Neurons are color-coded based on total number of

synapses to given hugin class [minimum = 1; maximum (pre-/postsynaptic): hugin-PC = 53/16, hugin-VNC = 21/18,

hugin-RG = 39/none, hugin-PH = 23/none]. Hugin-RG and hugin-PH neurons do not have postsynaptic partners

within the CNS. See also Video 2 and supplemental neuron atlas.

DOI: 10.7554/eLife.16799.008

The following figure supplement is available for figure 5:

Figure supplement 1. Neurons connected by more than two synapses to hugin neurons were reliably

reconstructed.

DOI: 10.7554/eLife.16799.009

Video 2. Each class of hugin neurons connects to

unique sets of synaptic partners. Video shows all

reconstructed presynaptic and postsynaptic partners of

hugin neurons (see Figure 5C). Neurons are colored by

total number of synapses to/from given hugin class.

Each hugin class forms distinct microcircuits with little

to no overlap with those of other classes.

DOI: 10.7554/eLife.16799.010
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Figure 6. Each class of hugin neurons receives inputs from distinct subsets of sensory neurons. (A) Sensory inputs to hugin neurons enter the CNS via

the antennal nerve (arrowheads) and abdominal nerves (asterisks). Neurons are color-coded based on total number of synapses to hugin neurons. (B)

Sensory neurons clustered based on synapse similarity score. This score is computed from the spatial overlap of synaptic sites between two neurons.

See also Video 3. (C) Potential origins of sensory inputs onto hugin neurons. The antennal nerve collects sensory axons from the dorsal organ ganglion

(DOG) and pharyngeal sensilla. Abdominal nerves carry afferents from abdominal segments of the peripheral nervous system (PNS). (D) Target areas of

antennal nerve chemosensory organs in the subesophageal zone (SEZ). Olfactory receptor neurons (ORNs) terminate in the antennal lobes (AL).

Gustatory receptor neurons (GRNs) from different sensory organs cover distinct parts of the SEZ (based on (Colomb et al., 2007). (E) Connectivity

matrix of sensory neurons onto hugin. Sensory neurons are ordered by dendrogram of synapse similarity score and rearranged to pair corresponding

cluster of left (L) and right (R) hemisegment. Each row of the matrix shows the number of synaptic connections onto a single hugin neuron. Numbers in

gray boxes along y-axis give percentage of synaptic input onto each hugin neuron represented as one neuron per row. A threshold of two synapse

minimum was applied. See text for further details.

DOI: 10.7554/eLife.16799.011

The following figure supplement is available for figure 6:

Figure supplement 1. Clustered synapses of sensory inputs to hugin neurons cover discrete parts of the subesophageal zone.

DOI: 10.7554/eLife.16799.012
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connections to GRNs. Moreover, the heterogene-

ity among the population of sensory neurons sug-

gests that hugin-PC neurons do not merely

function as simple relay station but rather fulfill

an integrative function, for example between

multiple yet-to-be-identified modalities or various

external and internal sensory organs.

Dual synaptic and peptide-receptor
connection to the neuroendocrine
system
NMU has been well studied in the context of its

effect on the hypothalamo-pituitary axis. We

therefore looked for similar motifs among the

downstream targets of hugin neurons. The cluster

of hugin-PC neurons projects their neurites from

the SEZ to the protocerebrum, terminating

around the pars intercerebralis. Median neurose-

cretory cells (mNSCs) in this area constitute the

major neuroendocrine center in the CNS, homol-

ogous to the mammalian hypothalamus, and tar-

get the neuroendocrine organ of Drosophila, the

ring gland (Hartenstein, 2006).

Three different types of mNSCs produce distinct neuropeptides in a non-overlapping manner: 3

mNSCs produce diuretic hormone 44 (DH44), 2 mNSCs produce Dromyosuppressin (DMS) and 7

mNSCs produce Drosophila insulin-like peptides (Dilps, thus called insulin-producing cells [IPCs])

(Figure 7A) (Park et al., 2008). We found that hugin-PC neurons make extensive synaptic contacts

onto most but not all of the mNSCs (Figure 7B; Figure 2—figure supplement 1G,H). mNSCs of the

pars intercerebralis derive from the same neuroectodermal placodes and develop through symmet-

ric cell division (de Velasco et al., 2007). Among the mNSCs, IPCs have been best studied: they

have ipsilateral descending arborizations into the SEZ and project contralaterally into the ring gland

(Rulifson et al., 2002). In contrast, morphology of DH44- or DMS-producing mNSCs has been

described in less detail. Our reconstruction showed that all reconstructed mNSCs have the exact

same features, rendering them morphologically indistinguishable (Figure 7C). To assign identities to

the reconstructed mNSCs, we hypothesized that similar to hugin neurons, the three types of mNSCs

would differ in their choice of synaptic partners. We therefore reconstructed all presynaptic partners

and calculated the connectivity similarity score between the mNSCs. Clustering with this similarity in

connectivity resulted in three groups comprising 3, 2, and 7 neurons, coinciding with the number of

neurons of the known types of mNSCs. We thus suggest that the group of three represents DH44-

producing cells, the group of two represents DMS-producing cells and the group of seven repre-

sents the IPCs (Figure 7D).

On this basis, hugin-PC neurons make extensive synaptic contacts to the IPCs but less so to DMS-

and DH44-producing mNSCs. In accordance with hugin-PC neurons using ACh as neurotransmitter,

IPCs were previously shown to express a muscarinic ACh receptor (Cao et al., 2014). Whether addi-

tional ACh receptors are expressed is unknown. Overall, synapses between hugin-PC neurons onto

mNSCs constitute a large fraction of their respective synaptic connections (hugin-PC: up to 35%;

mNSCs: up to 17%). In support of a tight interconnection between hugin neurons and these neuro-

endocrine neurons, we found that most of hugin-PC neurons’ presynaptic partners are also presyn-

aptic to mNSCs (Figure 7E). These findings demonstrate that the neuroendocrine system is a major

target of hugin neurons.

Unlike the small molecule messengers used for fast synaptic transmission, neuropeptides – such

as hugin – are thought to be released independent of synaptic membrane specializations and are

able to diffuse a considerable distance before binding their respective receptors. However, it has

been proposed that neuropeptides released from most neurons act locally on cells that are either

synaptically connected or immediately adjacent (van den Pol 2012). We therefore asked whether

the synaptic connections between hugin-PC neurons and mNSCs would have a matching peptide-

Video 3. Clusters of chemosensory neurons cover

distinct areas of the subesophageal zone (SEZ). Video

shows morphology and presynaptic sites of sensory

inputs to hugin neurons. Neurons are clustered based

on a synapse similarity score (see Figure 6). Each

sphere represents a presynaptic site. Sphere size

increases with the number of postsynaptically

connected neuronal profiles for that synapse.

DOI: 10.7554/eLife.16799.013
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Figure 7. Hugin-PC neurons are presynaptic to all insulin-producing neurosecretory neurons. (A) Schematic of

median neurosecretory cells (mNSCs) of the pars intercerebralis. mNSCs produce Drosophila insulin-like peptides

(Dilps), diuretic hormone 44 (DH44) and Dromyosuppressin (DMS) in a non-overlapping manner. (B) EM

reconstruction of all mNSCs and their synaptic contacts with hugin-PC neurons. (C) Ipsilateral mNSCs present

similar arborizations, making morphological identification impossible. Instead mNSCs were categorized by

connectivity (see D). (D) Synaptic partners of mNSCs were reconstructed and mNSCs were clustered based on

connectivity similarity. This revealed three clusters consistently across both hemispheres that matched groups of 3

DH44-, 2 DMS- and 7 Dilps-producing cells (see text for details). Connectivity matrix shows that hugin-PC neurons

primarily target Dilps-producing cells (also called insulin-producing cells, IPCs) and less so DMS-producing cells.

(E) Connectivity between presynaptic partners of hugin-PC neurons and mNSCs. Hugin-PC neurons share inputs

with Dilps- and DMS-producing neurons but not with DH44-producing neurons. Each column across all four

graphs represents a presynaptic partner of hugin-PC. Whiskers represent standard deviation.

DOI: 10.7554/eLife.16799.014
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receptor connection. The hugin gene encodes a prepropeptide that is post-translationally processed

to produce an eight-amino-acid neuropeptide, termed pyrokinin-2 (hug-PK2) or hugin neuropeptide

(Meng et al., 2002). This hugin neuropeptide has been shown to activate the Drosophila G-protein-

coupled receptor (GPCR) CG8784/PK2-R1 in mammalian cell systems, but the identities of the target

neurons expressing the receptor remain unknown (Rosenkilde et al., 2003). To address this, we

used two independent methods to generate transgenic fly lines, CG8784-GAL4::p65 and CG8784-

6kb-GAL4, driving expression under control of putative CG8784 regulatory sequences (Figure 8A;

Figure 8—figure supplement 1). Both CG8784-GAL4 lines drive expression of a GFP reporter in a

prominent cluster of cells in the pars intercerebralis. Double stainings show that this expression co-

localizes with the peptides produced by the three types of mNSCs: Dilp2, DH44, and DMS

(Figure 8B–D; Figure 8—figure supplement 1). To support the receptor expression data, we per-

formed calcium (Ca2+) imaging of the mNSCs upon treatment with hug-PK2 (Figure 8—figure sup-

plement 2). Indeed, calcium activity of the mNSCs increased significantly after treatment with

concentrations of 1 mM hug-PK2 or higher. These findings support the hypothesis that hugin-PC neu-

rons employ both classical synaptic transmission and peptidergic signaling to target neurons of the

neuroendocrine center.

Neuropeptides are produced in the soma and packaged into dense core vesicles (DCVs) before

being transported to their release sites (van den Pol, 2012). Exploring the spatial relationship

between DCVs and synapses, we observed that for both interneuron type hugin classes (hugin-PC

and hugin-VNC) DCVs localized close to but not exclusively at presynaptic sites (Figure 9A,B). This

was often the case at local swellings along the main neurites which featured multiple pre- as well as

postsynaptic sites, as well as close-by DCVs. It is conceivable that such complex local synaptic cir-

cuitry might enable local peptide release. We found 98% of the synapses between hugin-PC and

mNSCs to have DCVs in proximity to the presynaptic sites, opening up the possibility of co-transmis-

sion of hugin peptide and ACh (Nusbaum et al., 2001) (Figure 9C). However, most DCVs were
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B

Figure 8. GPCR-mediated neuromodulatory transmission is used in addition to synaptic connections. (A) Generation and expression pattern of a hugin

receptor GAL4 line, CG8784-GAL4::p65. Promoter-based driver line for hugin G-proteincoupled receptor PK2-R1 was generated by replacing the first

coding exon of the CG8784 loci with GAL4 in a BAC clone containing ~80 kb flanking genomic context and integrating the final BAC into attP site

VK00033. (B) CG8784-GAL4::p65 drives expression in cells of the pars intercerebralis (PI). (C) Co-staining against Drosophila insulin-like peptide 2

(Dilp2), diuretic hormone 44 (DH44) and Dromyosuppressin (DMS) shows that hugin receptor PK2-R1 is expressed in all median neurosecretory cells

(mNSCs). Scale bars represent 10 mm.

DOI: 10.7554/eLife.16799.015

The following figure supplements are available for figure 8:

Figure supplement 1. Second hugin receptor line, CG8784-6kb-GAL4, drives expression in median neurosecretory cells (mNSCs) of the pars

intercerebralis (PI) similar to CG8784-GAL4:p65.

DOI: 10.7554/eLife.16799.016

Figure supplement 2. Hugin neuropeptide increases calcium (Ca2+) activity in median neurosecretory cells (mNSCs).

DOI: 10.7554/eLife.16799.017
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probably too distant from presynaptic sites to be synaptically released, suggesting para- and non-

synaptic release (Morris and Pow, 1991; Maley, 1990) (Figure 2—figure supplement 1D).

Taken together, these findings show that the neuroendocrine system is indeed a major down-

stream target of hugin neurons and that this is achieved by a combination of synaptic and GPCR-

mediated neuromodulatory transmission (Figure 9D).

Discussion

Organizational principles of peptidergic microcircuits
Almost all neurons in Drosophila are uniquely identifiable and stereotyped (Vogelstein et al., 2014;

Manning et al., 2012). This enabled us to identify and reconstruct a set of 20 peptidergic neurons in

an ssTEM volume spanning an entire larval CNS (Ohyama et al., 2015). These neurons produce the

neuropeptide hugin and have previously been grouped into four classes based on their projection

targets (Figure 2A) (Bader et al., 2007a). We found that neurons of the same morphological class

(a) were very similar with respect to the distribution of synaptic sites, (b) shared a large fraction of

their pre- and postsynaptic partners and (c) in case of the interneuron classes (hugin-PC and hugin-

VNC), neurons were reciprocally connected along their axons with other neurons of the same class.

This raises the question why the CNS sustains multiple copies of morphologically very similar neu-

rons. Comparable features have been described for a population of neurons which produce crusta-

cean cardioactive peptide (CCAP) in Drosophila (Karsai et al., 2013). The reciprocal connections as

well as the overlap in synaptic partners suggest that the activity of neurons within each interneuron

class is likely coordinately regulated and could help sustain persistent activity within the population.

In the mammalian pyramidal network of the medial prefrontal cortex, reciprocal connectivity

between neurons is thought to contribute to the network’s robustness by synchronizing activity

within subpopulations and to support persistent activity (Wang et al., 2006). Similar interconnectiv-

ity and shared synaptic inputs have also been demonstrated for peptidergic neurons producing
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Figure 9. Dense core vesicles localize close to but not directly at presynaptic sites. (A,B), Overlay of presynaptic sites and dense core vesicles (DCVs)

for exemplary hugin-PC (A) and hugin-VNC (B) neuron. DCVs are found close to but not exclusively at presynaptic sites (see inlets). Scale bars represent

10 mm (overview) and 1 mm (inlets). (C) Volume reconstruction of representative synapse between hugin-PC neuron and median neurosecretory cells

(mNSCs) producing Drosophila insulin-like peptides (Dilps) shows DCVs (arrowhead) in the vicinity of presynaptic densities (arrow). Scale bar represents

100 mm. (D) Summarizing schematic and model. Hugin-PC neurons make classical chemical synapses almost exclusively onto Dilps-producing mNSCs.

Additionally, all mNSCs express hugin receptor PK2-R1 (CG8784) and are often in close vicinity to hugin neurites, allowing para- or non-synaptically

released hugin neuropeptide to bind.

DOI: 10.7554/eLife.16799.018
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gonadotropin-releasing hormone (GnRH) and oxytocin in the hypothalamus (Campbell et al., 2009;

Theodosis, 2002). Likewise, this is thought to synchronize neuronal activity and allow periodic

bursting.

Functional versus connectomic map of hugin
Previous studies showed that specific phenotypes and functions can be assigned to certain classes of

hugin neurons: hugin-VNC neurons increase locomotion motor rhythms but do not affect food

intake, whereas hugin-PC neurons decrease food intake and are necessary for processing of aversive

gustatory cues (Schoofs et al., 2014; Hückesfeld et al., 2016). For hugin-RG or hugin-PH such spe-

cific functional effects have not yet been described (for summary see Table 1). One conceivable sce-

nario would be that each hugin class mediates specific aspects of an overarching ’hugin phenotype’.

This would require that under physiological conditions all hugin classes are coordinately active. How-

ever, we did not find any evidence of such coordination on the level of synaptic connectivity. Instead,

each hugin class forms an independent microcircuit with its own unique set of pre- and postsynaptic

partners. We thus predict that each class of hugin-producing neurons has a distinct context and func-

tion in which it is relevant for the organism.

Data presented in this study provide the neural substrate for previous observation as well as

open new avenues for future studies. One of the key features in hugin connectivity is the sensory

input to hugin-PC, hugin-VNC and, to a lesser extent, hugin-RG. While hugin-PC neurons are known

to play a role in gustatory processing, there is no detailed study of this aspect for hugin-VNC or

hugin-RG neurons (Hückesfeld et al., 2016). Sensory inputs to hugin neurons are very heteroge-

neous, which suggests that they have an integrative/processing rather than a simple relay function.

Hugin neurons also have profound effects on specific motor systems: hugin-PC neurons deceler-

ate motor patterns for pharyngeal pumping whereas hugin-VNC neurons accelerate locomotion

motor patterns (Schoofs et al., 2014; Hückesfeld et al., 2016). For hugin-PC, we have demon-

strated that this effect is mediated by both synaptic and hugin peptide transmissions. For hugin-

VNC, this effect is independent of the hugin neuropeptide, suggesting synaptic transmission to play

a key role (Schoofs et al., 2014). Suprisingly, we did not find any direct synaptic connections to the

relevant motor neurons. However, the kinetics of the effects of hugin neurons on motor systems

have not yet been studied at a high enough temporal resolution (i.e. by intracellular recordings) to

assume monosynaptic connections. It is thus well conceivable that connections to the respective

motor systems are polysynaptic and occur further downstream. Alternatively, this may involve an

additional non-synaptic (peptidergic) step. A strong candidate for this is the neuroendocrine system

which we identify as the major downstream target of hugin-PC neurons. Among the endocrine tar-

gets of hugin, the insulin-producing cells (IPCs) have long been known to centrally regulate feeding

behavior (Erion and Sehgal, 2013). It is not known if insulin-signaling directly affects motor patterns

in Drosophila. Nevertheless, increased insulin signaling has strong inhibitory effects on food-related

sensory processing and feeding behavior (Wu et al., 2005a; Wu et al., 2005b). Whether the neuro-

endocrine system is a mediator of the suppressive effects of hugin-PC neurons on food intake

remains to be determined.

Table 1. Summary of known effects of hugin classes and their connectivity.

hugin
class known effects connectivity

PC decrease food intake*; decelerate AN motor pattern (for pha-
ryngeal pumping)*; necessary for bitter avoidance*

chemosensory input via AN; output onto neuroendocrine system; unidentified
interneuron inputs and outputs in SEZ and higher brain centers

VNC accelerate M6 motor patterns (for locomotion)† chemosensory input via AN; unknown sensory input from abdominal nerves;
unidentified interneuron inputs in SEZ; outputs in VNC

RG unknown weak chemosensory input via AN; inputs from unidentified interneurons in SEZ;
no synaptic outputs in CNS

PH unknown inputs from unidentified interneurons in SEZ; no synaptic outputs in CNS

Known effects based on *Hückesfeld et al. (2016) and †Schoofs et al. (2014). AN, antennal nerve; SEZ, subesophageal zone; VNC, ventral nerve cord.

DOI: 10.7554/eLife.16799.019
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The first functional description of hugin in Drosophila was done in larval and adult

(Melcher and Pankratz, 2005), while more recent publications have focused entirely on the larva

(Schoofs, 2014; Hückesfeld et al., 2016). One of the main reasons for this is the smaller behavioral

repertoire of the larva: the lack of all but the most fundamental behaviors makes it well suited to

address basic questions. Nevertheless, it stands to reason that elementary circuits should be con-

served between larval and adult flies. To date, there is no systematic comparison of hugin across the

life cycle of Drosophila. However, there is indication that hugin neurons retain their functionality

from larva to the adult fly. First, morphology of hugin neurons remains virtually the same between

larva and adults (Melcher and Pankratz, 2005). Second, hugin neurons seem to serve similar pur-

poses in both stages: they acts as a brake on feeding behavior – likely as response to aversive sen-

sory cues (Hückesfeld et al., 2016). In larvae, artificial activation of this brake shuts down feeding

(Schoofs et al., 2014). In adults, removal of this break by silencing of hugin neurons leads to a facili-

tation (earlier onset) of feeding (Melcher and Pankratz, 2005). Such conservation of neuropeptider-

gic function between larval and adult Drosophila has been observed only in a few cases. Prominent

examples are short (Lee et al., 2004, 2008) and long neuropeptide F (Beshel and Zhong, 2013;

Wang et al., 2013), both of which show strong similarities with mammalian NPY. The lack of addi-

tional examples is not necessarily due to actual divergence of peptide function but rather due to the

lack of data across both larva and adult. Given the wealth of existing data on hugin in larvae, it

would be of great interest to investigate whether and to what extent the known features (connectiv-

ity, function, etc.) of this system are maintained throughout Drosophila’s life history.

Parallel synaptic and neuromodulatory connections along
chemosensory-endocrine axis
A neural network is a highly dynamic structure and is subject to constant change, yet it is constrained

by its connectivity and operates within the framework defined by the connections made between its

neurons (Getting, 1989). On one hand, this connectivity is based on anatomical connections formed

between members of the network, namely synapses and gap junctions. On the other hand, there are

non-anatomical connections that do not require physical contact due to the signaling molecules,

such as neuropeptides/-hormones, being able to travel considerable distances before binding their

receptors (van den Pol, 2012). Our current integrated analysis of the operational framework for a

set of neurons genetically defined by the expression of a common neuropeptide, positions hugin-

producing neurons as a novel component in the regulation of neuroendocrine activity and the inte-

gration of sensory inputs. We show that most hugin neurons receive chemosensory input in the sube-

sophageal zone, the brainstem analog of Drosophila (Ghysen, 2003; Schoofs et al., 2014). Of

these, one class is embedded into a network whose downstream targets are median neurosecretory

cells (mNSCs) of the pars intercerebralis, a region homologous to the mammalian hypothalamus

(Hartenstein, 2006). We found that hugin neurons target mNSCs by two mechanisms. First, by clas-

sic synaptic transmission as our data strongly suggest that acetylcholine (ACh) acts as transmitter at

these synapses. Accordingly, subsets of mNSCs have been shown to express a muscarinic ACh

receptor (Cao et al., 2014). Whether additional ACh receptors are expressed is unknown. Second,

by non-anatomical, neuromodulatory transmission using a peptide-receptor connection, as demon-

strated by the expression of hugin G-protein-coupled receptor PK2-R1 (CG8784) in mNSCs. Strik-

ingly, while PK2-R1 is expressed in all mNSCs, the hugin neurons have many synaptic contacts onto

insulin-producing cells but few to DMS and DH44 neurons. This mismatch in synaptic vs. peptide tar-

gets among the mNSCs suggests an intricate influence of hugin-producing neurons on this neuroen-

docrine center. In favor of a complex regulation is that those mNSCs that are synaptically connected

to hugin neurons additionally express a pyrokinin-1 receptor (PK1-R, CG9918) which, like PK2-R1, is

related to mammalian neuromedinU receptors (Alfa et al., 2015; Cazzamali et al., 2005;

Park et al., 2002). There is some evidence that PK1-R might also be activated by the hugin neuro-

peptide, which would add another regulatory layer (Cazzamali, 2005).

The concept of multiple messenger molecules within a single neuron is well established and

appears to be widespread among many organisms and neuron types (Burnstock, 2004;

Nusbaum et al., 2001; Merighi, 2002; Brezina, 2010; Li and Kim, 2008). For example, cholinergic

transmission plays an important role in mediating the effect of NMU in mammals. This has been

demonstrated in the context of anxiety but not yet for feeding behavior (Telegdy and Adamik,

2013; Tanaka and Telegdy, 2014). There are, however, only few examples of simultaneous
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employment of neuromodulation and fast synaptic transmission in which specific targets of both

messengers have been investigated at single-cell level. In many cases, targets and effects of classic

and peptide co-transmitters seem to diverge (e.g. (Sun et al., 2003; Li and van den Pol, 2006;

Stein et al., 2007). In contrast, AgRP neurons in the mammalian hypothalamus employ neuropeptide

Y, the eponymous agouty-related protein (AgRP) and the small molecule transmitter GABA to target

pro-opiomelanocortin (POMC) neurons in order to control energy homeostasis (Cansell et al.,

2012). Also, reminiscent of our observations is the situation in the frog sympathetic ganglia, where

preganglionic neurons use both ACh and a neuropeptide to target so-called C cells but only the

neuropeptide additionally targets B cells. In both targets, the neuropeptide elicits late, slow excit-

atory postsynaptic potentials (EPSPs) (Jan and Jan, 1983). It is conceivable that hugin-producing

neurons act in a similar manner by exerting a slow, lasting neuromodulatory effect on all mNSCs and

a fast, transient effect exclusively on synaptically connected mNSCs. Alternatively, the hugin neuro-

peptide could facilitate the postsynaptic effect of acetylcholine. Such is the case in Aplysia where a

command-like neuron for feeding employs acetylcholine and two neuropeptides, feeding circuit

activating peptide (FCAP) and cerebral peptide 2 (CP2). Both peptides work cooperatively on a

postsynaptically connected motor neuron to enhance EPSPs in response to cholinergic transmission

(Koh et al., 2003).

In addition to the different timescales that neuropeptides and small molecule transmitters oper-

ate on, they can also be employed under different circumstances. It is commonly thought that low-

frequency neuronal activity is sufficient to trigger fast transmission using small molecule transmitters,

whereas slow transmission employing neuropeptides requires higher frequency activity

(Nusbaum et al., 2001). Hugin-producing neurons could employ peptidergic transmission only as a

result of strong excitatory (e.g. sensory) input. There are, however, cases in which base activity of

neurons is already sufficient for graded neuropeptide release: Aplysia ARC motor neurons employ

ACh as well as neuropeptides and ACh is generally released at lower firing rates than the neuropep-

tide. This allows the motor neuron to function as purely cholinergic when firing slowly and as cholin-

ergic/peptidergic when firing rapidly (Whim and Lloyd, 1989). However, peptide release already

occurs at the lower end of the physiological activity of those neurons (Weiss et al., 1993;

Vilim et al., 1996). It remains to be seen how synaptic and peptidergic transmission in hugin neu-

rons relate to each other.

The present study is one of very few detailed descriptions of differential targets of co-transmis-

sion and – to our knowledge – the first of its kind in Drosophila. We hope these findings in a geneti-

cally tractable organism will provide a basis for elucidating some of the intriguing modes of action of

peptidergic neurons.

Comparative view of hugin and neuromedin systems
The mammalian homolog of hugin, neuromedinU (NMU), is found in the CNS as well as in the gas-

trointestinal tract (Ballesta et al., 1988). Its two receptors, NMUR1 and NMUR2, show differential

expression. NMUR2 is abundant in the brain and the spinal cord, whereas NMUR1 is expressed in

peripheral tissues, in particular in the gastrointestinal tract (Mitchell et al., 2009). Both receptors

mediate different effects of NMU. The peripheral NMUR1 is expressed in pancreatic islet b cells in

humans and allows NMU to potently suppress glucose-induced insulin secretion (Alfa et al., 2015).

The same study also showed that Limostatin (Lst) is a functional homolog of this peripheral NMU in

Drosophila: Lst is expressed by glucose-sensing, gut-associated endocrine cells and suppresses the

secretion of insulin-like peptides. The second, centrally expressed NMU receptor, NMUR2, is neces-

sary for the effect of NMU on food intake and physical activity (Zeng et al., 2006; Peier et al.,

2009). In this context, NMU is well established as a factor in regulation of the hypothalamo-pituitary

axis (Wren et al., 2002; Malendowicz et al., 2012) and has a range of effects in the hypothalamus,

the most important being the release of corticotropin-releasing hormone (CRH) (Hanada et al.,

2001, 2003). We show that a subset of hugin-producing neurons targets the pars intercerebralis,

the Drosophila homolog of the hypothalamus, in a similar fashion: neuroendocrine target cells in the

pars intercerebralis produce a range of peptides, including diuretic hormone 44 which belongs to

the insect CRH-like peptide family (Cabrero et al., 2002) (Figure 10). Given these similarities, we

propose that hugin is homologous to central NMU just as Lst is a homologous to peripheral NMU.

Demonstration that central NMU and hugin circuits share similar features beyond targeting
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neuroendocrine centers, e.g. the integration of chemosensory inputs, will require further studies on

NMU regulation and connectivity.

Previous work on vertebrate and invertebrate neuroendocrine centers suggests that they evolved

from a simple brain consisting of cells with dual sensory/neurosecretory properties, which later diver-

sified into optimized single-function cells (Tessmar-Raible et al., 2007). There is evidence that

despite the increase in neuronal specialization and complexity, connections between sensory and

endocrine centers have been conserved throughout evolution (Yoon et al., 2005; Strausfeld 2012;

Abitua et al., 2015). We propose that the connection between endocrine and chemosensory centers

provided by hugin neurons represents such a conserved circuit that controls basic functions like

feeding, locomotion, energy homeostasis and sex.

Indisputably, the NMU system in mammals is much more complex as NMU is found more wide-

spread within the CNS and almost certainly involves a larger number of different neuron types. This

complexity, however, only underlines the use of numerically smaller nervous systems such as Droso-

phila’s to generate a foundation to build upon. Moreover, NMU/NMU-like systems may have similar

functions not just in mammals and Drosophila but also other vertebrates such as fish (Chiu et al.,

2016; Li et al., 2015) and other invertebrates such as C. elegans (Maier et al., 2010). In summary,

our findings should encourage research in other organisms, such as the involvement of NMU and

NMU homologs in relaying chemosensory information onto endocrine systems, and more ambi-

tiously, to elucidate their connectomes in order to allow comparative analyses of the underlying net-

work architecture.

Materials and methods

Neuronal reconstruction
Reconstructions were based on an ssTEM (serial section transmission electron microscope) data set

comprising an entire central nervous system and the ring gland of a first-instar Drosophila larva. Gen-

eration of this data set was described previously (Ohyama et al., 2015). Neurons’ skeletons were

manually reconstructed using a modified version of CATMAID (http://www.catmaid.org)

(Saalfeld et al., 2009). Hugin-PH (pharynx) neurons were first identified by reconstructing all axons

in the prothoracic accessory nerve, through which these neurons exit the CNS toward the pharynx.

BA

chemosensory
synaptic input

SEZ

hugin

pars intercerebralis

synaptic peptide

DH44DMSDilps

+

ring gland

chemosensory
input

NTS (caudal brain stem)

NMU

ARC (ventromedial hypothalamus)pituitary

?

NMU CRHNMU?

?

Figure 10. Summary of hugin connectivity and hypothetical implications for neuromedinU in mammals. (A) Hugin

neurons link chemosensory neurons that enter the subesophageal zone (SEZ) and neuroendocrine cells of the pars

intercerebralis by synaptic as well as peptide-receptor connections. (B) Distribution of NMU-positive neurons in

mammals is much more complex. The effect of neuromedinU (NMU) on feeding and physical activity originates in

the arcuate nucleus (ARC) of the hypothalamus where it causes release of corticotropin-releasing hormone (CRH)

which itself is a homolog of diuretic hormone 44 (DH44) in Drosophila. NMU-positive neurons have also been

found in the nucleus of the solitary tract (NTS) a chemosensory center in the caudal brain stem. It remains to be

seen if, similar to hugin neurons, NMU neurons serve as a link between chemosensory and neuroendocrine

system.

DOI: 10.7554/eLife.16799.020
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Similarly, hugin-RG (ring gland) neurons were identified by reconstructing all neurosecretory cells

that target the ring gland. To find the remaining hugin neurons, neighbors of already identified

hugin neurons were reconstructed. Among those, the remaining hugin neurons were unambiguously

identified based on previously described morphological properties such as projection targets, den-

dritic arborizations, relative position to each other and prominent landmarks like antennal lobes or

nerves (Bader et al., 2007a, Bader et al., 2007b). The mapped synaptic connections represent fast,

chemical synapses matching previously described typical criteria: thick black active zones, pre- (e.g.

T-bar, vesicles) and postsynaptic membrane specializations (Prokop and Meinertzhagen, 2006).

Hugin inputs and outputs were traced by following the pre- and postsynaptically connected neurites

to the respective neurons’ somata or nerve entry sites in sensory axons. Subsequently, all sensory

and endocrine neurons synaptically connected to hugin neurons were fully reconstructed. Interneur-

ons were fully reconstructed if (a) homologous neurons were found in both hemispheres/-segments

(did not apply to medially unpaired neurons) and (b) at least one of the paired neurons was con-

nected by a minimum of three synapses to/from hugin neurons. Neurons that did not fit either crite-

rion were not fully reconstructed and thus excluded from statistical analysis. This resulted in the

reconstruction 177 synaptic partners that together covered 90%/96% of hugin neurons’ above

threshold pre-/postsynaptic sites (Figure 5—figure supplement 1). The same parameters were

applied to the reconstruction of synaptic partners of median neurosecretory cells (mNSCs). Morpho-

logical plots and example synapse’s volume reconstruction were generated using custom python

scripts or scripts for Blender 3D (www.blender.org). The script for a CATMAID-Blender interface is

on Github (https://github.com/schlegelp/CATMAID-to-Blender). See supplemental neuron atlas

(Supplementary files 1,2) of all reconstructed neurons and their connectivity with hugin neurons.

Normalized connectivity similarity score
To compare connectivity between neurons (Figure 5B), we used a modified version of the similarity

score described by Jarrell et al. (Jarrell et al., 2012):

f Aik;Ajk

� �

¼min Aik;Ajk

� �

�C1max Aik;Ajk

� �

e�C2min Aik ;Ajkð Þ

With the overall connectivity similarity score for vertices i and j in adjacency matrix A being the

sum of f Aik;Ajk

� �

over all connected partners k. C1 and C2 are variables that determine how similar

two vertices have to be and how negatively a dissimilarity is punished. Values used were: C1 ¼ 0:5

and C2 ¼ 1. To simplify graphical representation, we normalized the overall similarity score to the

minimal (sum of �C1max Aik;Ajk

� �

over all k) and maximal (sum of max Aik;Ajk

� �

over all k) achievable

values, so that the similarity score remained between 0 and 1. Self-connections (Aii;Ajj) and Aij con-

nections were ignored.

Synapse similarity score
To calculate similarity of synapse placement between two neurons, we calculated the synapse simi-

larity score (Figure 6D):

f is; jkð Þ ¼ e
�d2

sk

2s2 e

jn isð Þ�n jkð Þj
n isð Þþn jkð Þ

With the overall synapse similarity score for neurons i and j being the average of f is; jkð Þ over all

synapses s of i. Synapse k being the closest synapse of neuron j to synapses s [same sign (pre-/post-

synapse) only]. dsk being the linear distance between synapses s and k. Variable s determines which

distance between s and k is considered as close. n jkð Þ and n isð Þ are defined as the number of synap-

ses of neuron j/i that are within a radius ! of synapse k and s, respectively (same sign only). This

ensures that in case of a strong disparity between n isð Þ and n jkð Þ, f is; jkð Þ will be close to zero even if

distance dsk is very small. Values used: s =!= 2000 nm.

Clustering
Clusters for dendrograms were created based on the mean distance between elements of each clus-

ter using the average linkage clustering method. Clusters were formed at scores of 0.2 for synapse

similarity score (Figure 6B,E) and 0.4 for connectivity similarity score (Figure 7D).
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Percentage of synaptic connections
Percentage of synaptic connections was calculated by counting the number of synapses that consti-

tute connections between neuron A and a given set of pre- or postsynaptic partners (e.g. sensory

neurons) divided by the total number of either incoming or outgoing synaptic connections of neuron

A. For presynaptic sites, each postsynaptic neurite counted as a single synaptic connection.

Statistics
Statistical analysis was performed using custom Python scripts; graphs were generated using Sigma

Plot 12.0 (www.sigmaplot.com) and edited in Adobe Corel Draw X5 (www.corel.com).

Generation of hugin receptor CG8784 promoter lines
The CG8784-GAL4::p65 construct (Figure 8) was created using recombineering techniques

(Warming et al., 2005) in P[acman] bacterial artificial chromosome (BAC) clone CH321-45L05

(Venken et al., 2009) (obtained from Children’s Hospital Oakland Research Institute, Oakland, CA),

containing CG8784 within ~80 kb of flanking genomic context. A generic landing-site vector was cre-

ated by flanking the kanamycin-resistance/ streptomycin-sensitivity marker in pSK+-rpsL-kana

(Wang et al., 2009) (obtained from AddGene.org, plasmid #20871) with 5 ‘and 3’ homology arms

(containing GAL4 coding sequences and HSP70 terminator sequences, respectively) amplified from

pBPGUw (Pfeiffer et al., 2008). CG8784-specific homology arms were added to this cassette by

PCR using the following primers (obtained as Ultramers from Integrated DNA Technologies, Inc.,

Coralville, Iowa; the lower case portions are CG8784-specific targeting sequences, and the capital-

ized portions match the pBPGUw homology arms):

CG8784::p65-F tggcgtggcgtggagtggatagagtccacaattaatcga

cgacagctagtATGAAGCTACTGTCTTCTATCGAACAAGC

CG8784::p65-R tttgccgcattacgcatacgcaatggtgtccctcaaaaa

tgccatctcacGATCTAAACGAGTTTTTAAGCAAACTCACTCCC

This cassette was recombined into the BAC, replacing the coding portion of the first coding

exon, and then full-length GAL4::p65-HSP70 amplified from pBPGAL4.2::p65Uw (Pfeiffer et al.,

2010) was recombined into the landing site in a second recombination. Introns and exons following

the insertion site were retained in case they contain expression-regulatory sequences, although they

are presumably no longer transcribed. Correct recombination was verified by sequencing the recom-

bined regions, and the final BAC was integrated into the third-chromosome attP site VK00033

(Venken et al., 2006) by Rainbow Transgenic Flies, Inc. (Camarillo, CA).

The CG8784-6kb-GAL4 (Figure 8—figure supplement 1) was created using standard restriction-

digestion/ligation techniques in pCaSpeR-AUG-Gal4-X vector (Vosshall et al., 2000). An approxi-

mately 6 kb promoter fragment 5’ of the first coding exon was amplified using the following primers

and inserted into a pCaSpeR vector (Addgene.org, plasmid #8378) containing a start codon (AUG)

and the GAL4 gene (Figure 8—figure supplement 1).

CG8784-6kb-F AATATCTTGGCAACGAAGTCC

CG8784-6kb-R AGCTGTCGTCGATTAATTGTG

This construct was integrated into the genome via P-element insertion.

Immunohistochemistry
For antibody stainings of CG8784-GAL4::p65, larvae expressing JFRC2-10xUAS-IVS-mCD8::GFP

(Pfeiffer et al., 2010) driven by CG8784-GAL4::p65 were dissected in PBS. Brains were fixed in 4%

formaldehyde in PBS for 1 hr, rinsed, blocked in 5% normal goat serum, and incubated overnight at

4˚C with primaries: sheep anti-GFP (AbD Serotec #4745–1051), 1:500; rabbit anti-DH44

(Cabrero et al., 2002) (gift of Jan Veenstra), 1:1000; rabbit anti-DILP2 (Veenstra et al., 2008) (gift
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of Jan Veenstra), 1:1000; 1:1000; and rabbit anti-DMS (Schoofs et al., 1993; Park et al., 2008) (gift

of Luc van den Bosch and Liliane Schoofs), 1:500. Tissues were rinsed and incubated overnight at

4˚C in secondaries: Alexa Fluor 488 donkey anti-sheep (Jackson ImmunoResearch, #713–545-147)

and rhodamine red-X donkey anti-rabbit (Jackson ImmunoResearch #711–296-152), both 1:500.

Brains were rinsed and dehydrated through an ethanol-xylene series, mounted in DPX, and scanned

on a Zeiss LSM 510 confocal microscope.

For antibody stainings of CG8784-6kb-GAL4, larvae expressing 10XUAS-mCD8::GFP (Blooming-

ton, #32184) driven by CG8784-6kb-GAL4 were dissected in PBS. Brains were fixed in 4% parafor-

maldehyde for 30 min, rinsed, blocked in 5% normal goat serum, and incubated overnight at 4˚C
with primaries: goat anti-GFP-FITC (abcam, ab26662), 1:500; rabbit anti-DH44 (Cabrero et al.,

2002) (gift of Jan Veenstra), 1:1000; guinea pig anti-Dilp2 (Bader et al., 2013) (Pankratz lab), 1:500

and rabbit anti-DMS (Schoofs et al., 1993; Park et al., 2008) (gift of Luc van den Bosch and Liliane

Schoofs), 1:500. Tissues were rinsed and incubated overnight at 4˚C in secondaries: anti-rabbit Alexa

Fluor 633 (Invitrogen, A-21070) and anti-guinea pig Alexa Fluor 568 (Invitrogen, A-11075), both

1:500. Brains were rinsed, mounted in Mowiol (Roth, 0713), and scanned on a Zeiss LSM 710 confo-

cal microscope.

For antibody stainings against choline acetyltransferase (ChAT), larvae expressing a YFP-tagged

halorhodopsin (UAS- eNpHR-YFP; Bloomington, #41753) driven by HugS3-GAL4 (Melcher and Pan-

kratz, 2005) as marker were prepared following the above protocol for CG8784-6kb-GAL4 stain-

ings. Primary antibodies used: goat anti-GFP-FITC (abcam, ab26662), 1:500; mouse anti-ChAT

(Developmental Studies Hybridoma Bank, ChAT4B1) (Takagawa and Salvaterra, 1996), 1:1000. Sec-

ondary antibodies used: anti-mouse Alexa Fluor 633 (Invitrogen, A-21046).

For investigation of ChAT promoter activity in hugin neurons, larvae expressing UAS-cd8a::mRFP

(Bloomington, #27399) under the control of ChAT-GAL4 7.4 kb (Bloomington, #6798) and YFP

directly under the control of the hugin promoter (hug-YFP; (Melcher and Pankratz, 2005) were pre-

pared following the above protocol for CG8784-6kb-GAL4 stainings. Primary antibodies used: goat

anti-GFP-FITC (abcam, ab26662), 1:500; mouse anti-RFP (abcam, ab65856), 1:500. Secondary anti-

bodies used: anti-mouse Alexa Fluor 633 (Invitrogen, A-21046).

For quantification of ChAT antibody signals/ChAT promoter activity, samples were scanned on a

Zeiss LSM 710 confocal microscope using a 63X objective (Zeiss). Settings were kept the same over

all scans. Regions of interest were placed through the center of each hugin neuron’s soma, and the

mean intensity was measured using ImageJ (https://imagej.nih.gov/ij/index.html) (Schneider et al.,

2012). Hugin-PC and hugin-RG neurons were identified based on soma position and morphology.

Hugin-VNC and hugin-PH could not be unambiguously discriminated as they were usually too tightly

clustered. They were thus treated as a single group. For background normalization, an approxi-

mately 10�10 mm rectangle from the center of the image stack was chosen.

RNAi experiments
To investigate the role of acetylcholine as transmitter of hugin neurons, food intake and electrophys-

iological experiments were performed. Experimental procedures, materials and setups used in these

assays been described extensively in Schoofs et al. (2014). The hugin and ChAT RNAi experiments

presented in Figure 3 were performed together as part of a larger screen on neuronal populations

and genes involved in larval feeding behavior. A portion of this screen, which did not include the

ChAT RNAi data that we are now presenting here, was published previously in Schoofs et al.

(2014). In the following, we briefly summarize procedures of Schoofs et al. (2014) for reader conve-

nience. Please see that reference for more detailed description.

The following GAL4 driver and UAS effector lines were used: HugS3-GAL4 (Melcher and Pan-

kratz 2005), UAS-dTrpA1 (Bloomington, #26263), UAS-LacZRNAi (gift from M. Jünger), UAS-HugR-

NAi1A (Schoofs et al., 2014) and UAS-ChAT-RNAi (TriP.JF01877) (Bloomington, #25856)

(Barnstedt et al., 2016; Plaçais et al., 2013). OregonR and OregonR x UAS-dTrpA1 were used as

control.

For the food intake assay, third instar larvae were first washed and starved for 30 min on RT. They

were then transferred on yeast paste colored with crimson red and allowed to feed for 20 min.

Experiments were performed at 32˚C for dTrpA1-induced activation of hugin neurons and at 18˚C as

control condition. Afterwards larvae were photographed and the amount of food ingested was cal-

culated as the area of the alimentary tract stained by the colored yeast divided by body surface area
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using ImageJ (https://imagej.nih.gov/ij/index.html) (Schneider et al., 2012). Data are represented as

fold change between control condition (18˚C) and dTrpA1-induced activation (32˚C) normalized to

the control.

For the electrophysiological assay, semi-intact preparations of third instar larvae were made in

saline solution (Rohrbough and Broadie, 2002). En passant extracellular recordings of the antennal

nerve (AN) were performed following previously described protocol (Schoofs et al., 2014). During

the recordings, temperature of the CNS was alternated between 18˚C (control condition) and 32˚C
(dTrpA1 activation). For analysis, fictive motor patterns of the pharyngeal pump (also: cibarial dilator

musculature, CDM) were analyzed: fold change in cycle frequency between pairs of successive 18˚C
and 32˚C sections of a recording was calculated.

Pharmacological experiments and calcium (Ca2+) imaging
Hugin-derived pyrokinin 2 (hug-PK2) was synthesized by Iris Biotech (Marktredwitz, Germany) using

the amino acid sequence SVPFKPRL-NH2. The C terminus was amidated. The effect of hug-PK2 on

calcium activity in median neurosecretory cells (mNSCs) was investigated using the calcium integra-

tor CaMPARI (Fosque et al., 2015). To drive expression of CaMPARI in mNSCs, CG8784-6kb-GAL4

flies were crossed to UAS-CaMPARI (Bloomington #58761). Larval brains were dissected and placed

in saline solution (Rohrbough and Broadie, 2002) containing either no, 100 nM, 1 mM or 10 mM

hug-PK2. After 1 min of incubation, 405 nm photoconversion light was applied for 15 s. Afterwards,

brains were placed on a poly-l-lysine-coated (Sigma-Aldrich, P8920) cover slide and scanned using a

Zeiss LSM 780 confocal microscope. Settings were kept the same over all scans. Calcium activity was

calculated as the ratio of the fluorescence of photoconverted (red) to unconverted (green) CaMPARI

using ImageJ.
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