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Abstract

The activity of neurons in the visual cortex is often characterized by tuning curves, which are thought

to be shaped by Hebbian plasticity during development and sensory experience. This leads to the

prediction that neural circuits should be organized such that neurons with similar functional preference

are connected with stronger weights. In support of this idea, previous experimental and theoretical work

have provided evidence for a model of the visual cortex characterized by such functional subnetworks. A

recent experimental study, however, have found that the postsynaptic preferred stimulus was defined by

the total number of spines activated by a given stimulus and independent of their individual strength.

While this result might seem to contradict previous literature, there are many factors that define how

a given synaptic input influences postsynaptic selectivity. Here, we designed a computational model

in which postsynaptic functional preference is defined by the number of inputs activated by a given

stimulus. Using a plasticity rule where synaptic weights tend to correlate with presynaptic selectivity,

and is independent of functional-similarity between pre- and postsynaptic activity, we find that this

model can be used to decode presented stimuli in a manner that is comparable to maximum likelihood

inference.

Introduction

Neurons in the visual cortex are selectively driven by specific features of sensory stimuli. This selective

neural activity is proposed to be shaped by Hebbian plasticity (Hebb 1949) during developmental stages

and sensory experience. Hebbian plasticity can be described as the strengthening of synaptic weights in a
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manner dependent on the correlation of the pre- and postsynaptic neurons (Gerstner and Werner M. 2002;

Gerstner and Kistler 2002). Thus, in the development of visual cortical circuits, Hebbian plasticity is thought

to lead to a functional distribution in synaptic weights: weights are larger between pre- and postsynaptic

neurons with similar functional preferences (Clopath et al. 2010) and only a few synaptic inputs are needed to

define postsynaptic sensory feature selectivity (Goetz et al. 2021). In support of this framework, excitatory

pyramidal neurons in layers 2/3 of mice primary visual cortex are shown to form functional subnetworks; the

synaptic weights between neurons and the probability of connectivity between neurons reflect the similarity

in tuning to visual features, such as for example orientation preference (Harris and Mrsic-Flogel 2013; Ko

et al. 2011; Ko et al. 2013; Cossell et al. 2015; Lee et al. 2016).

However, a recent study (Scholl et al. 2021) has shown different results in the visual cortex of ferrets.

Instead of a functionally-defined weight distribution, Scholl et al. 2021 found that preference for orientation

stimuli is derived from the total number of excitatory synaptic inputs activated by a given stimulus. That

is, strong and weak synapses were recruited for all visual stimuli presented. While this result appears to

contradict the previous literature, there are many factors which impact how a given synaptic input might

influence activity at the somatic output and postsynaptic selectivity. Some of these factors include synapse

weight and number, reliability (Branco et al. 2008), location within the dendritic tree (Stuart and Spruston

1998), co-activity with their neighbors (Scholl et al. 2017), and presence of dendritic inhibition (Gidon and

Segev 2012). In fact, given that pairs of cortical neurons tend to be connected through multiple synaptic

contacts (Feldmeyer et al. 1999; Feldmeyer et al. 2002; Feldmeyer et al. 2006; Markram et al. 1997), an overall

stronger weight between pairs of pre- and postsynaptic with correlated activity could be achieved through

many contacts with a mixture of weights. In this case, weights might encode other features of presynaptic

activity. For example, Scholl et al. 2021 also showed that anatomical correlates of synaptic strength correlate

with spine selectivity, i.e. the sharpness of the tuning curve or how selectively a spine responds to specific

orientations.

Here, we explore how synaptic weights based on presynaptic selectivity, rather than functional-similarity

between presynaptic and postsynaptic activity, might be achieved by cortical neurons and what impacts

this distribution has on neuron decoding. We model a feedforward circuit with a plasticity rule leading

to synaptic weights that are correlated with presynaptic selectivity (termed ’variance rule’), independent

of the difference between pre- and postsynaptic preferred orientation (∆PO). We show that this plasticity

rule can lead to postsynaptic neurons selectively tuned to the specific stimuli. Furthermore, we show that

a decoder which uses the weights emerging from the plasticity rule performs comparatively to a decoder

derived based on maximum likelihood inference. Overall, our results suggest a decoding model where the

somatic preference is defined mostly by the number of activated spines given a certain stimulus, while the
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strength of individual spines reflects input selectivity.

Results

Here we study the functional implications of a plasticity rule based on presynaptic variance, rather than

covariance between presynaptic and postsynaptic activity (i.e. classic Hebbian), in a feedforward circuit.

Our circuit is composed of one postsynaptic neuron, modeled as a point neuron (see Methods for details),

which receives input from N presynaptic neurons through plastic weights wi, and from an untuned inhibitory

source (Figure 1A). Presynaptic neurons are orientation selective and their activity is modulated by tuning

curves (Figure 1B). In order to model a diverse population (i.e. differences in orientation preference and

selectivity), the tuning curve of each presynaptic neuron i has its own preferred orientation (PO, θPi ) and

width (κi) (Figure 1B).

A plasticity rule based on presynaptic variance results in weights that correlate

with presynaptic selectivity

In order to build a model where synaptic weights correlate with presynaptic selectivity, we first study how

synaptic plasticity might lead to this correlation. Based on previous studies showing that some forms of

LTP can be induced without the need of postsynaptic depolarization (Urban and Barrionuevo 1996; Ito

and Sugiyama 1991; Katsuki et al. 1991; Zalutsky and Nicoll 1990), we propose a plasticity rule in which

potentiation is based on presynaptic activity only. More specifically, a rule in which potentiation is based

on presynaptic variance (variance rule). In this way, changes in synaptic weight, ∆w, can be summarized as

∆w = η1 (rpre − µ)
2 − η0w, (1)

where rpre is the presynaptic activity, µ is a constant representing the mean presynaptic activity, η1 is the

learning rate and η0 is the weight decay rate. We then stimulate the presynaptic neurons by showing a

stimulus of orientation θ, which changes every 200ms, and observe the evolution of the synaptic weights

(Figure 1C).

Once converged, the synaptic weights have an asymmetric distribution (Figure 1D), and are essentially a

function of the width of the presynaptic tuning curve (Figure 1E, see also ). Since selectivity of a presynaptic

neuron is given by the width of its tuning curve κ (Figure 1F), the converged weights are also correlated

with presynaptic selectivity (Figure 1G). Thus, we show that a feedforward model with a plasticity rule

based on the variance of presynaptic activity, leads to synaptic weights that are correlated with presynaptic
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Figure 1: A plasticity rule based on presynaptic variance results in weights that correlate with
presynaptic selectivity. (A) A postsynaptic point neuron receives input from 50 presynaptic neurons.
Synaptic weights, represented by the spine sizes, are plastic according to a rule based on presynaptic variance.
(B) The activity of presynaptic neurons is moduled by von Mises tuning curves. The tuning of the presynaptic
neuron i is defined by its PO θPi and its selectivity, given by the width parameter κi. (C) Synaptic weights
as a function of time. Each line shows the synaptic weight of a single presynaptic neuron. The vertical
dotted line indicates the moment when the stimulation protocol starts. (D) Distribution of synaptic weights
at the end of the stimulation protocol. (E) Synaptic weights as a function of the width parameter κ. Green
dots show data obtained from simulation and black line from theory. (F) Selectivity of presynaptic neurons
as a function of their width parameter κ. (G) Synaptic weight at the end of simulation as a function of
presynaptic selectivity. (D-G) Shown are data pooled from 100 independent simulation runs.

selectivity.
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Postsynaptic neurons are orientation selective and synaptic weights are uncorre-

lated with the difference in preferred orientation between pre- and postsynaptic

neuron (∆PO)

In the previous simulations, we find that, similar to the presynaptic neurons, the postsynaptic neuron is also

orientation tuned (Figure 2B). Extracting the relevant parameters from the postsynaptic tuning curve across

multiple simulation runs shows that individual postsynaptic neurons respond preferentially to orientations

spread across the full range of stimuli
[
−π

2 ,
π
2

]
and with selectivity values that cover almost the entire range

[0, 1] (Figure 2C). Note that the value of selectivity depends on the mean activity level (Merkt et al. 2019),

which in our simulations is strongly influenced by the amount of inhibition received by the postsynaptic

neuron (Supplementary Figure 1).

Synaptic plasticity rules which are based on the covariance between pre- and postsynaptic activity gener-

ate circuits in which the strength of synaptic weights are anti-correlated with ∆PO (Supplementary Figure 2).

That is, if the pre- and postsynaptic neurons have similar tuning, they typically are connected with a strong

weight. But this is not necessarily the case for a rule based on the variance of presynaptic activity only.

Therefore, we next test whether the synaptic weights are anti-correlated with ∆PO. Similar to experimen-

tal data (Scholl et al. 2021), we find that the synaptic weights are not correlated with ∆PO and depend

mostly on presynaptic selectivity (Figure 2D). Even though there is no clear relationship between the synap-

tic weights and ∆PO, the activity of the postsynaptic neuron is still more correlated with the activity of

presynaptic neurons that have similar POs (Figure 2E).

Postsynaptic neurons inherit preferred orientation from the number of presy-

naptic inputs with similar preference

If it is not true that synaptic weights are stronger when pre- and postsynaptic neurons have similar POs,

what is then defining the postsynaptic orientation preference? While some previous work have proposed that

somatic functional preference is derived from the functional preference of a few stronger presynaptic inputs

(Cossell et al. 2015; Lee et al. 2016), others have proposed that it is actually defined by the number of active

spines with a given PO (Scholl et al. 2021). Since in our model the synaptic weights are not correlated with

∆PO (Figure 2D), we expect that somatic preference will be defined by the number of presynaptic inputs

with similar preferences.

In order to test this, we wanted to know whether all orientations within the interval [−π
2 ,

π
2 ] were equally

represented within presyanptic populations or if there was any bias towards the PO of the postsynaptic

neuron. Even though the PO of the presynaptic inputs were independently drawn from a uniform distribu-
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Figure 2: Postsynaptic neurons are orientation selective and synaptic weights are uncorrelated
with the difference in preferred orientation between pre- and postsynaptic neuron (∆PO). (A)
A postsynaptic neuron receives input from 50 presynaptic neurons. Spine sizes represent synaptic weights
and spine colors represent PO of the presynaptic neurons. The postsynaptic neuron is orientation selective
and its PO is represented by its color. (B) Examples of tuning curves for the postsynaptic neuron from 4
independent simulation runs. Firing rates are normalized by the maximum rate of each individual tuning
curve. (C) Statistics of postsynaptic selectivity. Data pooled from 100 independent simulation runs. Top:
Probability density function (pdf) of the postsynaptic PO. Bottom: Probability density function (pdf) of
the postsynaptic selectivity. (D) Synaptic weights as a function of ∆PO. (E) Pearson’s correlation coefficient
between pre- and postsynaptic neurons as a function of ∆PO. (D-E) Colors indicate presynaptic selectivity.

tion (Figure 3A), we find that there are indeed slightly more presynaptic inputs which are co-tuned than

inputs which are not co-tuned with the postsynaptic neuron (Figure 3B). To further explore this result, we

calculate the total input current to the postsynaptic neuron when different orientations are being shown to

the presynaptic population (Figure 3C). We then split the total input current into two values: the total

number of active inputs and the mean synaptic weight of those active inputs. Inputs are considered to be

active when their firing rate is above a certain threshold during the presentation of a stimulus (see Methods

for details). We find that, similar to the total input current (Figure 3C), the number of active inputs is also

modulated by the shown stimulus such that a larger number is active when the PO is shown (Figure 3D).

Unexpectedly, however, we find that the mean weight of the active inputs is also modulated by the
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Figure 3: Postsynaptic neurons inherit preferred orientation from the number of presynaptic
inputs with similar preference. (A) Histogram of the PO of presynaptic neurons. (B) Histogram of the
difference in PO between pre- and postsynaptic neurons. (C) Total input current to postsynaptic neuron when
different orientations are being shown. (D) Number of active inputs when different orientations are being
shown. (E) Mean weight of active inputs when different orientations are being shown. (F) A postsynaptic
neuron receives inputs from 50 presynaptic neurons. When an orientation is shown to the presynaptic
neurons, only a fraction of them have their activity above a certain threshold (active inputs, represented as
colored spines), while the rest have their activity below the threshold (inactive inputs, represented as grey
spines). When the PO of the postsynaptic neuron is shown (θ = π

2 , left), there are on average more active
inputs than when the orthogonal orientation is shown (θ = 0, right).

difference between the shown stimulus and the postsynaptic preferred stimulus (Figure 3E). This is different

to what was observed in experiments (Scholl et al. 2021) and counter-intuitive given that the plasticity rule

used here is based on presynaptic activity only. However, even though correlated activity between pre- and

postsynaptic neurons does not lead directly to stronger weights, the postsynaptic PO is given by a sum

of the presynaptic POs weighted by their selectivity and by their input weights (Supplementary Figure 3).

Therefore, the postsynaptic PO will be biased by presynaptic neurons with stronger weights, which are also

the ones with higher selectivity (Supplementary Figure 3).
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A decoder based on the variance rule performs comparatively to a decoder based

on maximum likelihood

Hebbian plasticity has been previously shown to enhance orientation selectivity (Sadeh et al. 2015), in

accordance with experimental studies showing an increase in orientation selectivity after visual experience

(Ko et al. 2013; Hoy and Niell 2015). Since Hebbian plasticity shapes circuits in which synaptic weights

are anti-correlated with ∆PO (Supplementary Figure 2), the question emerges of whether there is any

computational advantage of synaptic weights that correlate with presynaptic selectivity instead. Therefore

we next study a feedforward circuit where the synaptic weights are correlated with presynaptic selectivity

in the context of decoding stimuli.

We assume there is a population of input neurons with different tuning curves (Figure 4A). The same

orientation θ is shown to all input neurons and the firing rate of presynaptic neuron i is given by the

shown stimulus and their respective tuning curve, defined by their PO θPi and width κi. A decoder receives

inputs from all neurons in this population and estimates the shown orientation based on their tuning curves

and firing rates (Yates and Scholl 2022). We then derive a decoder, which is based on maximum likelihood

inference (ML decoder, see Methods for details) (Abbott and Dayan 2005). Assuming the input tuning curves

to be modeled as von Mises functions, the ML decoder estimates the shown orientation with (Figure 4B):

θ̂ =
1

2
arctan

(∑
i piκisin

(
2θPi

)∑
i piκicos

(
2θPi

)) , (2)

where pi is the firing rate of neuron i (ri with added Poisson noise, see Methods for details), κi is a parameter

of the von Mises tuning curve defining its width, θPi is the preferred stimulus of input neuron i and θ̂ is the

orientation estimated by the ML decoder.

Similar to Bayesian cue integration, in which inputs are integrated by being multiplied by their uncertainty

(Knill and Pouget 2004; Ma et al. 2006; Echeveste and Lengyel 2018), this decoder is such that the firing

rate pi of input neuron i is being multiplied by the width of its tuning curve κi, which defines its selectivity

(Equation 2). This multiplication piκi could be easily implemented by synaptic weights which are correlated

with presynaptic selectivity (Figure 1). Therefore, we next compare the performance of the ML decoder

with that of a decoder that uses the weights obtained from the variance rule (Figure 1). In order to do this,

we assume that the decoder multiplies the firing rate of each presynaptic neuron i by a weight wi:

θ̂ =
1

2
arctan

(∑
i piwisin

(
2θPi

)∑
i piwicos

(
2θPi

)) , (3)

where wi are the weights used by the decoder and wi = κi in the case of the ML decoder.
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Figure 4: A decoder based on the variance rule performs comparatively to the ML decoder. (A)
A decoder receives input from 50 input neurons and decodes the orientation that was shown to the whole
population using the presented formula. (B) Decoded orientation (θ̂) plotted against the actual orientation
shown to the input population (θ) for a decoder based on maximum likelihood inference (ML decoder,
wi = κi). (C) Weight as a function of the presynaptic width parameter κ for five different decoders. (D)
Performance of 5 decoders. left: Absolute value of bias, middle: variance and right: error. Bars show mean
and standard error of the mean across 100 independent simulation runs.

We then compare the performance of the decoder that uses the weights obtained from the variance rule

(Variance Rule) to other decoders (Figure 4C), namely: (i) to a decoder where wi = κi (ML); (ii) to a

decoder that uses the same weight for all input neurons wi = 1 (Uniform); (iii) to a decoder that uses the

same weights as the Variance Rule decoder but shuffled, and therefore uncorrelated to presynaptic selectivity

(Shuffled); (iv) to a decoder that uses the weights obtained from a simulation using a covariance plasticity

rule (Covariance, see 2). We find that the presynaptic variance decoder performs comparatively to the ML

decoder and better than the others (Figure 4D).

In conclusion, we demonstrate how a plasticity rule based on presynaptic variance can lead to the for-

mation of feedforward circuits where the postsynaptic neurons are selective for specific stimuli. Under this
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framework, we find that postsynaptic neurons can act as decoders whose performance rivals that of maximum

likelihood inference. These results suggest a decoding model where individual inputs received by the post-

synaptic neuron are weighted according to presynaptic selectivity rather than functional-similarity between

pre- and postsynaptic activity.

Discussion

In this work, we simulated a feedforward network in which weights were changing according to a plasticity

rule based on the variance of presynaptic activity. The presynaptic population was composed of neurons with

diverse PO and selectivity. We showed that, by stimulating the input population with different orientations,

synaptic weights converged to values that were a function of presynaptic selectivity. We then showed that a

decoder which used those weights to decode a stimulus had a performance comparable to a decoder based

on maximum likelihood inference.

In the current paper, we focused on the computational implications of synaptic weights that correlate

with presynaptic selectivity. We did not explore, however, the functional advantages of somatic preference

being defined by the number of spines rather than by their strength (Scholl et al. 2021). This could be

interesting to explore in view of recent experimental evidence showing that learning is associated with the

formation of new spines (Hedrick et al. 2022; Fu et al. 2012; Hofer et al. 2009; Xu et al. 2009) and previous

theoretical work suggesting that having multiple synaptic contacts between the same pair of neurons, instead

of having a single strong one, could lead to more robust circuits with stable memories (Deger et al. 2018;

M. Fauth et al. 2015; M. J. Fauth and Rossum 2019). A possible extension to our model, therefore, could

be to include structural plasticity such that multiple contacts between pre- and postsynaptic neurons would

be allowed to form.

Different structural plasticity rules have been proposed to describe activity dependent spine turnover (M.

Fauth and Tetzlaff 2016). In a future study, using a structural plasticity rule forming stronger connectivity

between neurons with similar orientation preference (Gallinaro and Rotter 2018), for example, could lead to

a circuit where more synaptic contacts are formed between the same pair of pre- and postsynaptic neurons

when their activity is correlated (Figure 2E). As a consequence, there could be an even stronger bias in the

number of presynaptic inputs that are co-tuned with the soma (larger number of inputs with |∆PO| = 0 in

Figure 3B). Another possible consequence could be a stronger overall synaptic weight - i.e. synaptic weight

of individual spines summed across all synaptic contacts - between pairs of co-tuned pre- and postsynaptic

neurons. This could be interesting when comparing experimental data derived from measuring synaptic

weights as anatomical features of spines versus measuring synaptic weights as amplitudes of postsynaptic
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potentials. On the other hand, using a structural plasticity rule in which weaker weights are more likely

to be deleted than stronger ones (M. Fauth et al. 2015; Le Bé and Markram 2006) could lead to different

functional circuits.

Previous work has shown that the diversity of synaptic weights found in the visual cortex of ferrets

could be explained by a model where a decoder reads information from a population of diverse PO and

selectivity (Yates and Scholl 2021). In a similar scenario, here we propose that the synaptic weights should

reflect presynaptic selectivity. Such diversity in synaptic weights, therefore, would not be necessary if all

presynaptic inputs had the same selectivity. Why then would there be a population of neurons with diverse

selectivity in the visual cortex? One possibility is that decoding from a population of input neurons with

a range of selectivity provides better discrimination capabilities for natural images (Goris et al. 2015).

Another option, however, is that selectivity could somehow encode presynaptic uncertainty, but how exactly

uncertainty is encoded in neural representation is still unclear (Koblinger et al. 2021).

In our model, if presynaptic selectivity would reflect input uncertainty, there would be the following

consequences. Firstly, according to the rule presented in this paper, synaptic weights would fluctuate as the

selectivity changes. Assuming that selectivity would reflect uncertainty, synaptic weight fluctuations would

also reflect presynaptic uncertainty. This is similar to what has been recently proposed in a theoretical paper

(Aitchison et al. 2021), and in accordance with experimental data showing that synaptic weights fluctuate

over time (Hazan and Ziv 2020; Ziv and Brenner 2018). In contrast to our model, however, these experimental

studies have shown that the weights can also fluctuate in an activity independent manner. Secondly, as the

synaptic weights change according to presynaptic selectivity, or uncertainty, so would the postsynaptic PO.

The postsynaptic PO would therefore change over time, reflecting the reliability of presynaptic inputs.

In conclusion, our results suggest a model of the visual cortex in which postsynaptic preferred orientation

is defined by the number of spines with a given preferred orientation, while synaptic strength is used as a

weight reflecting presynaptic selectivity.

Methods

The code for simulations and figures is available at https://github.com/juliavg/decoding.
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Neuron model

Output neuron

The output neuron is modeled as a rate based neuron. Its firing rate y at time t is given by the equation:

τy
dy (t)

dt
= −y (t) + α

[
N∑
i=1

wrefwi (t) ri (θ) + wIrI

]
+

, (4)

where τy = 1ms is the rate time constant, α = 0.1 nA−1 is the slope of the neuron’s transfer function,

wref = 16nA is a reference weight for the N excitatory inputs, wi and ri are respectively the weight and

firing rate of input neuron i, wI = −1700 pA and rI = 100Hz are respectively the weight and firing rate

of the inhibitory source. The inhibitory source could be understood as a single neuron firing at 100Hz or

multiple neurons firing at a lower rate and adding up to the same value. The sign []+ indicates a rectification

that sets all negative values to 0.

Input neurons

The input neurons are modeled as rate based neurons with von Mises tuning curves, which is a “bump” like

curve with circular boundary conditions. The firing rate of input neuron i at time t is given by:

ri (θ) = rref
eκicos(2(θ−θP

i ))

2πI0 (κi)
, (5)

where rref = 125Hz is a reference firing rate, θ is the stimulus being shown to neuron i at time t, κi is a

parameter defining the width of the tuning curve from neuron i, θPi is the preferred orientation of neuron i

and I0 is the modified Bessel function of order 0.

Plasticity models

Variance (Figures 1 - 3)

The weights from the excitatory inputs are plastic, and evolve according to:

dwi (t)

dt
= η1

(
ri (θ)

rref
− µ

)2

− η0wi (t) , (6)

where η1 = 0.1 and η0 = 0.03 are learning rates and µ = 1
2π is a constant representing the mean activity of

the presynaptic neurons.
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Covariance (Figure S2)

For the simulations with the covariance rule, the excitatory weights evolve according to:

dwi (t)

dt
= η1

(
ri (θ)

rref
− γ

)(
y (t)

rref
− γ

)
− η0wi (t) , (7)

where γ = 0.24 is a constant and the remaining parameters are the same as with the rule based on presynaptic

variance.

Plasticity simulation (Figures 1 - 3)

One output neuron receives input from N = 50 neurons. Each input neuron i has a tuning curve defined

by its width κi, which is drawn randomly and independently for each neuron from a uniform distribution

]0, 1], and by its preferred orientation θPi , which is drawn randomly and independently for each neuron from

a uniform distribution [−π
2 ,

π
2 ].

The firing rate of the input neurons are initially set to ri = 20Hz for a warm up period of 200 s, after which

the stimulation protocol starts. During the stimulation protocol, a new orientation θ is chosen randomly

from a uniform distribution [−π
2 ,

π
2 ] every T = 200ms. The same orientation θ is shown to all input neurons

and the whole stimulation protocol consists of 1 000 stimuli. We run 100 independent simulation runs, and

shown in the figures is the pooled data from all of them.

Orientation selectivity

Preferred orientation and orientation selectivity of neuron i are calculated from the circular mean of neuronal

response Ri:

Ri =

∑
θ ci (θ) e

2iθ∑
θ ci (θ)

, (8)

where ci (θ) is the calculated tuning curve of neuron i. We calculate ci (θ) as the mean response across

stimuli using 20 bins on the interval
[
−π

2 ,
π
2

]
and using data from the last 500 stimuli in the simulation.

Preferred orientation θPi and the selectivity of neuron i are then calculated as the angle and the length of

the resultant Ri, respectively.
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Plasticity weights

The equilibrium weights for the plasticity rule based on presynaptic variance can be calculated by setting

the left hand side of Equation 6 to zero:

wi (t) =
η1
η0

(
ri (θ)

rref
− µ

)2

(9)

Assuming that the weights reach the steady state W within the interval T (how long each orientation is

shown), we substitute θ (t) by the random variable Θ and take expected values:

E [Wi] =
η1
η0

E

[(
ri(Θ)

rref
− µ

)2
]
, (10)

Finding E

[(
ri(Θ)
rref

− µ
)2]

, and substituting it in Equation 10 gives the equilibrium weight from presynaptic

neuron i:

E [Wi] =
η1
η0

[
1

4π2

(
I0 (2κi)

I20 (κi)
− 1

)]
. (11)

Active input analysis (Figure 3)

For the active input analysis, we compare the mean activity of each input neuron during the presentation of

a single stimulus to a threshold β = rref
2π and consider it to be active (not active) when the activity is above

(below) β.

Maximum likelihood decoder

From Abbott and Dayan 2005, the estimated stimulus (θ̂) of a decoder based on maximum likelihood inference

(ML decoder) can be determined by:

N∑
i=1

pi
r′i(θ̂)

ri(θ̂)
= 0, (12)

where pi is the firing rate of neuron i, ri (θ) is the tuning curve of neuron i, and the prime denotes derivative.

Assuming the tuning curves of the simulation input neurons (Equation 5):

ri(θ̂) =
eκicos(2(θ̂−θP

i ))

2πI0 (κi)
, (13)
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then the estimated stimulus θ̂ can be determined by:

N∑
i=1

2piκisin
(
2
(
θPi − θ̂

))
= 0. (14)

Solving for θ̂ gives:

θ̂ =
1

2
arctan

(∑N
i=1 piκisin

(
2θPi

)∑N
i=1 piκicos

(
2θPi

)) . (15)

See also Keemink et al. 2018 for a similar derivation.

Decoder simulation (Figure 4)

A decoder infers the stimulus θ shown to a population of 50 input neurons. The activity of input neuron i

in response to stimulus θ (pi) is given as a sample randomly drawn from the Poisson distribution:

f (k, ri (θ)) =
ri (θ)

k
e−ri(θ)

k!
, (16)

where f (k, ri (θ)) describes the probability of neuron i firing with rate k in response to stimulus θ, and ri (θ)

is the tuning curve of neuron i (Equation 5).

The decoder estimates the shown stimulus according to:

θ̂ =
1

2
arctan

(∑
i piwisin

(
2θPi

)∑
i piwicos

(
2θPi

)) , (17)

where pi is the firing rate of neuron i (obtained from sampling from Equation 16), wi are the weights used

by the decoder and θPi is the preferred orientation of neuron i. The tuning curves and parameters of input

neurons are taken from the 100 independent plasticity simulations.

We compare the performance of 5 different decoders, which differ based on the weights wi they use: (i)

variance: the weights used are obtained from the corresponding plasticity simulation; (ii) ML: wi = κi; (iii)

uniform: wi = 1; (iv) shuffled : the weights are the same as the variance, but shuffled; (v) covariance: the

weights used are obtained from the plasticity simulations using the covariance plasticity rule.

For each independent plasticity simulation, we evaluate the decoder by showing 20 orientations equally

spaced in the interval
[
−π

2 ,
π
2

]
. Each orientation is shown repeatedly for 100 trials, and we calculate the bias

best(θ), variance σ2
est(θ) and error eest(θ) using:

best(θ) = ⟨θ̂⟩ − θ, (18)

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.518203doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.28.518203
http://creativecommons.org/licenses/by-nc-nd/4.0/


σ2
est(θ) = ⟨(θ̂ − ⟨θ̂⟩)2⟩, (19)

eest = σ2
est(θ) + b2est(θ), (20)

where ⟨⟩ indicates the average across trails. For each independent plasticity simulation, we average the bias

best(θ), variance σ2
est(θ) and error eest(θ) across stimuli θ to obtain a single value per simulation.
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Echeveste, Rodrigo and Máté Lengyel (Nov. 2018). “The Redemption of Noise: Inference with Neural Popula-

tions”. In: Trends in Neurosciences 41.11, p. 767. issn: 1878108X. doi: 10.1016/J.TINS.2018.09.003.

url: /pmc/articles/PMC6416224/%20/pmc/articles/PMC6416224/?report=abstract%20https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC6416224/.

Hedrick, Nathan G. et al. (June 2022). “Learning binds new inputs into functional synaptic clusters via

spinogenesis”. In: Nature Neuroscience 2022 25:6 25.6, pp. 726–737. issn: 1546-1726. doi: 10.1038/

s41593-022-01086-6. url: https://www.nature.com/articles/s41593-022-01086-6.

Fu, Min et al. (Feb. 2012). “Repetitive motor learning induces coordinated formation of clustered den-

dritic spines in vivo”. In: Nature 2012 483:7387 483.7387, pp. 92–95. issn: 1476-4687. doi: 10.1038/

nature10844. url: https://www.nature.com/articles/nature10844.

Hofer, Sonja B et al. (Jan. 2009). “Experience leaves a lasting structural trace in cortical circuits”. In: Nature

457.7227, pp. 313–317. issn: 0028-0836. doi: 10.1038/nature07487. url: https://www.ncbi.nlm.nih.

gov/pubmed/19005470.

Xu, Tonghui et al. (Dec. 2009). “Rapid formation and selective stabilization of synapses for enduring motor

memories”. In: Nature 462.7275, pp. 915–919. issn: 0028-0836. doi: 10.1038/nature08389. url: https:

//www.ncbi.nlm.nih.gov/pubmed/19946267.

Deger, Moritz, Alexander Seeholzer, and Wulfram Gerstner (Apr. 2018). “Multicontact co-operativity in

spike-timing-dependent structural plasticity stabilizes networks”. In: Cerebral Cortex 28.4, pp. 1396–

1415. issn: 14602199. doi: 10.1093/cercor/bhx339. url: https://www.ncbi.nlm.nih.gov/pubmed/

29300903.

Fauth, Michael, Florentin Wörgötter, and Christian Tetzlaff (Jan. 2015). “The Formation of Multi-synaptic

Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences”.

In: PLOS Computational Biology 11.1. Ed. by Jeff Beck, e1004031. issn: 1553-7358. doi: 10.1371/

journal.pcbi.1004031. url: http://www.ncbi.nlm.nih.gov/pubmed/25590330%20http://www.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2022. ; https://doi.org/10.1101/2022.11.28.518203doi: bioRxiv preprint 

/pmc/articles/PMC9360921/%20/pmc/articles/PMC9360921/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360921/
/pmc/articles/PMC9360921/%20/pmc/articles/PMC9360921/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360921/
/pmc/articles/PMC9360921/%20/pmc/articles/PMC9360921/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360921/
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tins.2004.10.007
https://pubmed.ncbi.nlm.nih.gov/15541511/
https://doi.org/10.1038/nn1790
https://pubmed.ncbi.nlm.nih.gov/17057707/
https://pubmed.ncbi.nlm.nih.gov/17057707/
https://doi.org/10.1016/J.TINS.2018.09.003
/pmc/articles/PMC6416224/%20/pmc/articles/PMC6416224/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416224/
/pmc/articles/PMC6416224/%20/pmc/articles/PMC6416224/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416224/
https://doi.org/10.1038/s41593-022-01086-6
https://doi.org/10.1038/s41593-022-01086-6
https://www.nature.com/articles/s41593-022-01086-6
https://doi.org/10.1038/nature10844
https://doi.org/10.1038/nature10844
https://www.nature.com/articles/nature10844
https://doi.org/10.1038/nature07487
https://www.ncbi.nlm.nih.gov/pubmed/19005470
https://www.ncbi.nlm.nih.gov/pubmed/19005470
https://doi.org/10.1038/nature08389
https://www.ncbi.nlm.nih.gov/pubmed/19946267
https://www.ncbi.nlm.nih.gov/pubmed/19946267
https://doi.org/10.1093/cercor/bhx339
https://www.ncbi.nlm.nih.gov/pubmed/29300903
https://www.ncbi.nlm.nih.gov/pubmed/29300903
https://doi.org/10.1371/journal.pcbi.1004031
https://doi.org/10.1371/journal.pcbi.1004031
http://www.ncbi.nlm.nih.gov/pubmed/25590330%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4295841%20http://dx.plos.org/10.1371/journal.pcbi.1004031
http://www.ncbi.nlm.nih.gov/pubmed/25590330%20http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4295841%20http://dx.plos.org/10.1371/journal.pcbi.1004031
https://doi.org/10.1101/2022.11.28.518203
http://creativecommons.org/licenses/by-nc-nd/4.0/


pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4295841%20http://dx.plos.org/10.

1371/journal.pcbi.1004031.

Fauth, Michael Jan and Mark CW van Rossum (May 2019). “Self-organized reactivation maintains and

reinforces memories despite synaptic turnover”. In: eLife 8. doi: 10.7554/eLife.43717. url: http:

//www.ncbi.nlm.nih.gov/pubmed/31074745.

Fauth, Michael and Christian Tetzlaff (2016). “Opposing Effects of Neuronal Activity on Structural Plas-

ticity.” In: Frontiers in Neuroanatomy 10, p. 75. doi: 10.3389/fnana.2016.00075. url: http://www.

ncbi.nlm.nih.gov/pubmed/27445713.
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Supplementary Material

A
B

Supplementary Figure 1: The effect of weaker inhibition on the selectivity of the postsynaptic
neuron. The simulations performed for this figure are the same as those performed for Figure 2, except that
the weight from the inhibiory source is 5 times weaker. (A) Examples of tuning curves for the postsynaptic
neuron from 4 independent simulation runs. (B) Statistics of postsynaptic selectivity. Data pooled from
100 independent simulation runs. Top: Probability density function (pdf) of the postsynaptic PO. Bottom:
Probability density function (pdf) of the postsynaptic selectivity.

A B C

ED

Supplementary Figure 2: Relationship between synaptic weights and selectivity of presynaptic
inputs in a simulation using the covariance plasticity rule. The simulations performed for this figure
are the same as those performed for Figures 1-2, except that the plasticity rule used is the covariance rule
(see Methodsfor details). (A) Synaptic weights as a function of time. Each line shows the synaptic weight of
a single presynaptic neuron. The vertical dotted line indicates the moment when the stimulation protocol
starts. (B) Distribution of synaptic weights at the end of the stimulation protocol. (C) Synaptic weights as
a function of presynaptic selectivity. (D) Synaptic weights as a function of ∆PO. (E) Pearson’s correlation
coefficient between pre- and postsynaptic neurons as a function of ∆PO. (D-E) Colors indicate presynaptic
selectivity.
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A B C D

Supplementary Figure 3: Postsynaptic PO is influenced by presynaptic PO, presynaptic selectivity
and synaptic weights. (A) The postsynaptic tuning curve is estimated by adding the presynaptic tuning
curves multiplied by the corresponding synaptic weights. The estimated postsynaptic PO is then extracted
from the estimated postsynaptic tuning curve. (B) Same as in (A) but all weights are considered to be equal
wi = 1. (C) Same as in (A) but all presynaptic tuning curves are considered to have the same width κi = 1.
(D) Same as in (A) but with wi = 1 and κi = 1.
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