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Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and6

societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such7

dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder,8

coexists with synchronization, a classical paradigm of order. We survey the main theory behind complete, generalized9

and phase synchronization phenomena in simple as well as complex networks and discuss applications to secure10

communications, parameter estimation and the anticipation of chaos.11
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1. Introduction47

This survey provides an introduction to the phenomenon of synchronization in coupled chaotic dynamical48

systems. Both chaos and synchronization are important concepts in science, from a philosophical as well49

as a practical point of view.50

Synchronization expresses a notion of strong correlations between coupled systems. In its most ele-51

mentary and intuitive form, synchronization refers to the tendency to have the same dynamical behaviour.52

Scientists also recognize weaker forms of synchronization, where some key aspects of dynamical behaviour53

are the same - like frequencies - or where coupled dynamical behaviours satisfy a specific spatiotemporal54

relationship - like a constant phase lag.55

Synchronization is fundamental to our understanding of a wide range of natural phenomena, from cos-56

mology and natural rhythms like heart beating [123] and hand clapping [78] to superconductors [132].57

While synchronization is often beneficial, some pathologies of the brain such as Parkinson disease [44, 128]58

and epilepsy [39] are also related to this phenomenon. In ecology, synchronization of predators can lead to59

extinction [31, 32] while improving the quality of synchronized behaviour of prey can increase the odds to60

survive [19]. In epidemiology, synchronization in measles outbreaks can cause social catastrophes [43].61

Synchronization is also relevant to technology. Lasers form an important example. The stability of a62

laser generally decreases when its power increases. A successful way to create a high-power laser system63

is by combining many low-power stable lasers. A key challenge is to make sure that the lasers synchronize64

[45, 48, 83, 135], as without synchronization destructive interference diminishes power.65

synchronization can also cause engineering problems. A recent well-publicized example concerns the66

London Millennium Bridge, traversing the River Thames. On the opening day in 2000, the bridge attracted67

90,000 visitors, holding up to 2000 visitors on the bridge at the same time. Lateral motion caused by the68

pedestrians made the bridge lurches to one side, as a result of which the pedestrians would adjust their69

rhythm to keep from falling over. In turn, this led to increased oscillations of the bridge due to the synchro-70

nization between the bridge’s oscillations and pedestrians’ gait [17, 33, 124]. Eventually, the oscillations71

became so extensive that the bridge was closed for safety reasons. The bridge was only opened to the pub-72

lic again after a redesign where dampers were installed to increase energy dissipation and thereby impede73

synchronization between bridge and pedestrians.74

The above examples of synchronization in coupled systems describe a spontaneous transition to order75

because of the interaction. Coupled systems are modelled as networks of interacting elements. We often76

have a detailed understanding about the dynamics of the individual uncoupled elements. For example, we77

have reasonably good models for individual superconducting Josephson junctions, heart cells, neurons,78

lasers and even pedestrians. In the systems we consider here, the coupling between elements is assumed to79

be built up from bilateral interactions between pairs of elements, and a network structure indicating which80

pairs of elements interact with each other. First, the way the individuals talk to each other. For example,81

in the neurons the interaction is mediated by synapses and in heart cells by electrical diffusion. Second,82

the linking structure describing who is influencing whom. So, it is the network structure that provides83

the interaction among individual elements. The collective behavior emerges from the collaboration and84

competition of many elements mediated by the network structure.85

Synchronization can be effectively used to create secure communication schemes [60, 105, 120]. And86

it can help developing new technologies. Synchronization is also used for model calibration, that is, the87

synchronized regime between data and equations can reveal the parameter of the equations [86, 139].88

Chaos in dynamics is one of the scientific revolutions of the twentieth century that has deepened our89

understanding of the nature of unpredictability. Initiated by Henri Poincaré in the late 19th century, the90

chaos revolution took off in the 1980s when computers with which chaotic dynamics can be studied and91

illustrated, became more widely available. Chaos normally arises when recurrent dynamical behaviour has92

locally dispersing characteristics, as measured by a positive Lyapunov exponent. In this review, we will not93

discuss any details of chaotic dynamics in detail. For a comprehensive monograph on this topic, see for94

instance [58].95

At first sight it may appear that the concept of synchronization, as an expression of order, and the concept96
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of chaos, associated with disorder, could not be more distant from one another. Hence, it was quite a surprise97

when physicists realised that coupled chaotic systems also could spontaneously synchronize [2, 38]. Despite98

many years of studies into this phenomenon and its applications, many fundamental problems remain open.99

This survey is meant to provide a concise overview of some of the most important theoretical insights100

underlying our current understanding of synchronization of chaos as well as highlighting some of the many101

remaining challenges.102

In this review, we will discuss the basic results for synchronization of chaotic systems. The interaction103

can make these systems adapt and display a complicated unpredictable dynamics while behaving in a104

synchronous manner. Synchronization in these systems can appear in hierarchy depending on the details of105

the individual elements and the network structure. We will first discuss this hierarchy in two coupled chaotic106

oscillators and latter generalize to complex networks. The review is organised as follows. In Section 2107

we discuss the synchronization scenarious between two coupled oscillators. In Section 3 we discuss such108

applications where the synchronization phenomenon can be used for prediction and parameter estimation.109

In Section 4 we discuss synchronization in complex networks.110

2. Synchronization between two coupled systems111

2.1. Synchronization of linear systems112

Before touching upon more topical and interesting settings in which synchronization is observed in non-113

linear systems, as an introduction we consider the elementary example of synchronization between two114

linearly coupled linear systems. Although simple, this example bears the main ideas of the general case of115

synchronization between two or more nonlinearly coupled systems.116

We consider two identical linear systems

ẋi :=
dxi

dt
= axi, i = 1,2

with a a non-zero constant. The solution of these linear differential equations with initial condition xi(0) is117

xi(t) = eatxi(0) so that the ensuing dynamics is simple and all solutions converge exponentially fast to zero118

if a < 0, or diverge to infinity if a > 0 unless x(0) = 0.119

We now consider these linear systems coupled in the following way120

ẋ1 = ax1 +α(x2 − x1)

ẋ2 = ax2 +α(x1 − x2) (1)

and α is called the coupling parameter.121

In the context of this model, we speak of Complete Synchronization (CS) if x1(t) and x2(t) converge to

each other as t → ∞. In order to study this phenomenon, it is natural to consider the new variable

z := x1 − x2.

In terms of this variable, synchronization corresponds to the fact that limt→∞ z(t) = 0. As ż = ẋ1 − ẋ2, we

find directly by substitution from Eq. (1) that

ż = (a−2α)z,

which has the explicit solution z(t) = z(0)e(a−2α)t . Hence, we find that limt→∞ z(t) = 0 if and only if122

a−2α < 0 (unless the initial condition is already synchronized, i.e. z(0) = 0). Defining the critical coupling123
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value αc as124

αc :=
a

2
(2)

we thus obtain synchronization if the coupling parameter exceeds the critical value: α > αc.125

We finally note that as the system synchronizes, the coupling term converges to zero and the solution of126

each of the components behaves in accordance with the underlying uncoupled linear system: to be precise,127

limt→∞

(

xi(t)−
x1(0)+x2(0)

2
eat

)

= 0 for i = 1,2. It is important to note that the sign of the parameter a here128

determines a difference between synchronization to the trivial equilibrium (if a < 0) or to an exponentially129

growing solution (if a > 0).130

In view of later generalizations, we will go through the above analysis again, exploiting more the linear131

structure of the problem so that we can appreciate synchronization in terms of spectral properties of the132

coupling term.133

With x :=

(

x1

x2

)

, (1) can be written as134

ẋ = [aI−αL]x (3)

where

I =

(

1 0

0 1

)

and L =

(

1 −1

−1 1

)

.

L is known as the Laplacian matrix. In Section 4, we will generalize it to any network. The solution of (3)135

with initial condition x(0) is136

x(t) = e[aI−αL]tx(0), where eAt :=
∞

∑
n=0

tn

n!
An. (4)

To solve (4) we note that since I and L commute,137

e[aI−αL]t = eaIte−αLt

and eaIt = eatI. In order to evaluate e−αLt , it is useful to observe that v1 = (1,1)∗ and v2 = (1,−1)∗ are the138

eigenvectors of L for its corresponding eigenvalues λ1 = 0 and λ2 = 2. As {v1,v2} is a basis of R2, we may139

write any initial condition as x(0) = c1v1 + c2v2 with c1,c2 ∈ R, so that140

e−αLtx(0) = c1v1 + c2e−αλ2tv2

and141

x(t) = e[aI−αL]tx(0) = c1eatv1 + c2e(a−αλ2)tv2. (5)

Synchronization corresponds to the phenomenon that x(t) converges to the synchronization subspace gen-142

erated by v1. This only happens if limt→∞ c2e(a−αλ2)tv2 = 0, i.e. if α > a
λ2

. Thus in view of (2), we define143

the critical coupling value144

αc =
a

λ2
=

a

2
.

5



August 2, 2017 10:59 Contemporary Physics sync˙rev˙final

We note that the critical coupling value is expressed in terms of the gap between the lowest eigenvalue 0145

and smallest nonzero (and positive) eigenvalue of the Laplacian L.146

2.2. Complete synchronization of nonlinear systems147

We now consider two fully diffusively coupled identical nonlinear n-dimensional systems148

ẋ1 = f(x1)+αH(x2 −x1)
ẋ2 = f(x2)+αH(x1 −x2)

(6)

where f : Rn →R
n is in general nonlinear and H : Rn →R

n is a smooth coupling function. We assume that149

H(0) = 0 so that the synchronization subspace x1 = x2 is invariant for all coupling strengths α . Meaning150

that for any synchronized initial condition the entire solution remains synchronized: as in the synchronized151

state the diffusive coupling term vanishes, the dynamics is identical to that of the uncoupled system (with152

α = 0). Consequently, the coupling has no influence on the synchronized motion. In particular, it could be153

the case that the synchronized motion is chaotic, if the uncoupled systems exhibit such behaviour.154

We aim to show that if the coupling is sufficiently strong, the system Eq. (6) will synchronize x1(t)−155

x2(t)→ 0 as t → ∞. We consider H = I (the identity matrix) then the term reads as156

αH(x2 −x1) = α(x2 −x1).

To analyze stability, we consider – as before – the evolution of the difference variable z := x1 − x2 in157

terms of which the synchronization subspace is characterized as z = 0:158

ż = ẋ1 − ẋ2 (7)

= f(x1)− f(x2)−2αz (8)

The aim is to identify sufficient conditions for the coupling parameter α to guarantee that locally near z = 0159

we have limt→∞ z(t) = 0. To this end, we linearize the equations of motion Eq. (8) near z = 0. We note to160

this extent that near x1 = x2 we obtain by Taylor expansion that161

f(x2(t)) = f(x1(t))−Df(x1(t))(x2(t)−x1(t))+O(‖x1(t)−x2(t)‖
2)

= f(x1(t))−Df(x1(t))z(t)+O(‖z(t)‖2).

Here Df(x1(t)) is the derivative (Jacobian matrix of f(x)) at x = x1(t). We use this to write Eq. (8) near162

z = 0 as163

dz

dt
= [Df(x1(t))−2αI]z+O(‖z‖2). (9)

The linear part of this equation, obtained by ignoring the O(|z|2) term in Eq. (9), is commonly known as the164

first variational equation . It should be noted that this equation is nonautonomous as it depends explicitly165

on the reference solution x1(t). In general it is not easy to analyze nonautonomous differential equations,166

not even linear ones. Fortunately, we are able to achieve insights without solving this equation because the167

coupling is rather convenient adding an extra damping term −αz.168

To simplify the analysis, we introduce a new variable169

w(t) = e2αtz(t) (10)

in terms of which the linear part of Eq. (9) becomes precisely the variational equation for the solution x1(t)170
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of the uncoupled equation of motion ẋ = f(x):171

ẇ(t) = 2αe2αtz(t)+ e2αt ż(t)

= 2αw+[Df(x1(t))−2αI]e2αtz

= [Df(x1(t))]w. (11)

Let Φ(x1(t)) be the fundamental matrix for the variational equation, so that any solution of this nonau-172

tonomous equation can be written as z(t) = Φ(x1(t))z(0). Let {λ j((x1(t))}
n
j=1 be the set of positive square173

roots of the eigenvalues of the symmetric matrix Φ(x1(t))
∗Φ(x1(t)) (where ∗ denotes transpose). Then we174

define175

Λ := max
j

lim
t→∞

1

t
λ j(x1(t)). (12)

Λ is known as the Lyapunov exponent of the orbit x1(t) and it measures the infinitesimal asymptotic diver-176

gence rate near this trajectory. We refer to Appendix B for more details about the Lyapunov exponent.177

The assertion now is that if the orbit x1(t) has Lyapunov exponent Λ, then there exists a constant C > 0178

such that179

||w(t)|| ≤CeΛt . (13)

From Eq. (13) and using Eq.(10) we obtain that

‖z(t)‖ ≤Ce(Λ−2α)t .

Hence,

αc :=
Λ

2

is a critical coupling strength for synchronization, above which observe synchronization.180

A complication with the above analysis, is that the Lyapunov exponent Λ and constant C may depend181

on the chosen trajectory x1(t). The probabilistic (ergodic) theory of dynamical systems, which we will not182

dwell on here, asserts that often the Lyapunov exponent is constant for almost all trajectories on a given at-183

tractor. However, the constant C may still vary per trajectory, which leads to non-uniform synchronization,184

implying the potential of large variation of transit times until synchronization occurs. For similar phenom-185

ena, see also [7, 8]. We now proceed to apply the above to the examples of coupled Lorenz and Rössler186

systems.187

Lorenz system. The Lorenz system was introduced by Edward Lorenz in 1963 as a simplified model for188

atmospheric convection:189

ẋ = σ(y− x),
ẏ = x(ρ − z)− y,
ż = −β z+ xy,

(14)

where the three coordinates x, y and z represent the state of the system and σ , ρ , β are parameters. When190

parameter values are chosen as σ = 10, ρ = 28 and β = 8/3, the equations display unpredictable (chaotic)191

dynamics. Lorenz used this choice of parameters in his original paper [66]. We use these parameter values192

as well.193

7



August 2, 2017 10:59 Contemporary Physics sync˙rev˙final

0 5 10 15 20
20
15
10
5
0
5
10
15
20

x
,x̃

0 5 10 15 20
30
20
10
0
10
20
30

y,
ỹ
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(a) Time series of components (b) Trajectory presentation in phase space

Figure 1.: Illustration of the chaotic dynamics of the Lorenz system (14) with parameter values σ = 10,

ρ = 28 and β = 8/3. (a) Two simulations for the Lorenz system starting from two slightly different ini-

tial conditions (x,y,z) = (−10,10,25) and (x̃, ỹ, z̃) = (−10.01,10,25). The Lorenz attractor has a positive

Lyapunov exponent and the trajectories diverge from each other. (b) Representation of the trajectory of

(x,y,z) = (−10,10,25) in the phase space. The shape of the attractor resembles a butterfly.

The Lorenz equations are dissipative and all trajectories eventually enter the absorbing domain

Ω =

{

x ∈ R
3 : ρx2 +σy2 +σ(z−2ρ)2 <

β 2ρ2

β −1

}

,

see Appendix C or Ref. [119]. For the classical parameters, σ = 10,ρ = 28 and β = 8/3, inside Ω, trajectory194

accumulates on the chaotic Lorenz attractor [131], as depicted in Fig. 1b. Close to the attractor nearby195

trajectories diverge. To see this, we simulate two trajectories with nearly the same initial condition. The196

initial 10−2 difference grows to roughly 102 in a matter of only six cycles, see Fig. 1a. Using numerical197

simulations, we estimate the maximal divergence rate of nearby trajectories Λ ≈ 0.906.198

We consider two coupled chaotic Lorenz oscillators, as in Eq. (6). We derived above that the critical199

coupling αc for synchronization depends on the Lyapunov exponent Λ. Using the numerical results for Λ200

we obtain201

αc =
Λ

2
≈ 0.453.

Simulation confirms that this critical coupling is sharp. Indeed, for α = 0.4 there is no synchroniza-202

tion, and trajectories do not move together, see Fig. 2a. On the other hand, when α = 0.5, the trajectories203

synchronize, see Fig. 2b).204

To compare the amount of synchronization at different parameter values, we may consider the average205

deviation from synchronization during a time-interval of length T as206

E =
1

T

∫ T

t=0
‖x1(t)−x2(t)‖dt (15)

In Fig. 3a we present a synchronization diagram where we plot E against the coupling strength α . We207

observe a good correspondence with the derived value of αc. The synchronization error depends on initial208

conditions so that we compute the synchronization diagram via averaging over some realizations.209

8
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(a) No synchronization (b) Synchronization

Figure 2.: Comparison of trajectories of two initial conditions for the system of two coupled Lorenz sys-

tems. The critical transition coupling is αc ≈ 0.453 for the classical parameters. The initial conditions

are selected as (x1,y1,z1) = (3,10,15) and (x2,y2,z2) = (10,15,25). (a) When α = 0.4 < αc, there is no

synchronization. (b) If α = 0.5 > αc one observes synchronization of trajectories.
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(a) Identity coupling
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3.0
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(b) x-coupling

Figure 3.: Synchronization diagram of two coupled Lorenz systems, (a) with coupling matrix H = I and (b)

with coupling matrix H as in Eq. (16). When H = I, the observed critical coupling constant corresponds to

the theoretically derived value αc ∼ 0.453. With coupling matrix (16), sychronisation is observed to set in

for coupling strengths larger than ∼ 3.75. The synchronization error E was averaged over 300 realisations.

Each realisation is simulated by a fourth order Runge-Kutta scheme for 2000 seconds with 0.01 time step.

210

Examples on different coupling functions. It is worth mentioning that this above analysis works when the211

coupling adds a damping term αz in other words when H = I. Indeed, the damping term in general form is212

αHz and in this case the above results can no longer be applied. Therefore the synchronization depends on213
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the coupling function, we here just illustrate the effect on synchronization if H is chosen to be214

H =





1 0 0

0 0 0

0 0 0



 , (16)

implying that the coupling arises only via the first coordinate x. The corresponding synchronization diagram215

shows that the critical coupling αc for x-coupling increases as a result, see Fig. 3b. Importanly, when H216

does not commute with the Jacobian matrix along the trajectory, we cannot use the ansatz of Eq. (10). In217

that case we need a different approach to derive the critical coupling, which will be discussed in Section 4218

that deals with synchronization in complex networks.219

Rössler System. As a final example, we consider a system introduced by Otto Rössler in 1976:220

ẋ = −y− z,
ẏ = x+ay,
ż = b+ z(x− c),

(17)

where a,b and c denote parameters.221

We consider two coupled Rössler systems with identity coupling function H = I and coupling parameter222

α , as in Eq. (6). We consider parameter values a = 0.2, b = 0.2 and c = 5.7. We numerically find that223

the corresponding attractor has a Lyapunov exponent Λ ≈ 0.071. Hence, the expected critical coupling for224

synchronization is225

αc =
Λ

λ2
≈ 0.0355 (18)

This is in excellent agreement with the numerical results is shown in the synchronization diagram Fig.4.226

0.030 0.032 0.034 0.036 0.038 0.040

α

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E

Figure 4.: The synchronization diagram of two coupled Rössler systems with the coupling function H = I.

The theoretical critical coupling constant αc ≈ 0.0355 indeed corresponds to the numerically observed one.

The synchronization error E was averaged over 300 realisations. Each realisation is simulated by a fourth

order Runge-Kutta scheme for 2000 seconds with 0.01 time step.
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2.2.1. CS in driven systems227

Another possibility is that we use certain sets of variables to drive a subsystem. For appropriate choices we228

can observe synchronization [89]. We illustrate this scheme in the Lorenz system where x-component can229

be driving signal of another identical system Fig. 5.230

Master system Slave system

x,y,z
x

y
s 
,z

s

Figure 5.: Master-Slave configuration where, x-variable is made identical to the response and thereby it

drives the response subsystem.

In this scheme we consider the variable x for the master the same as in the slave. That is, the x- variable231

of the master is fully replaced to the x variable in the slave232

ẋ = σ(y− x)
ẏ = x(ρ − z)− y ẏs = x(ρ − zs)− ys

ż =−β z+ xy żs =−β zs + xys

(19)

where (x,y,z) are the states of the master system and (ys,zs) are the states of the slave system. In order to233

check the behaviour of the trajectories, we track the simultaneous variation of the trajectories by ∆y(t) =234

y(t)−ys(t) and ∆z(t) = z(t)−zs(t). For given initial conditions (x,y,z,ys,zs) = (−10.1,10.1,10.1,0.1,0.1),235

∆y and ∆z goes to zero (Fig. 6).236

Figure 6.: Simulation of master-slave type of coupling

For this particular choice of subsystem it is possible to construct a Lyapunov function for the displace-237

ments ∆y = y− ys and ∆z = z− zs for x-driven system (Eq. (19)).We obtain238

∆̇y = −∆y − x∆z

∆̇z = x∆y −β∆z.
(20)
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Next consider the Lyapunov function

V =
1

2

(

∆2
y +∆2

y

)

,

and along solutions of the subsystem we obtain V̇ = ∆y∆̇y +∆z∆̇z, after some manupulation we obtain

V̇ =−∆2
y −β∆2

z .

Since V is positive and V̇ negative ∆y and ∆z will converge to zero. So, the slave subsystem will have the239

same dynamics as the master.240

2.3. Phase synchronization241

If there are small mismatches between the systems another type of synchronization can appear for very

small coupling strengths: Phase Synchronization (PS) – which corresponds to a locking of phases of chaotic

oscillators

|mφ1(t)−nφ2(t)|<C

where φ is the phase of the chaotic oscillators, m,n and C are constants. When this holds we have phase242

synchronization between the two systems [108, 109]. We are considering the phases on the lift, that is,243

diverging steadily as opposed to consider the phase mod 2π . The phase difference won’t be precisely zero244

because of the chaotic nature of the system. We could consider higher relations of phase locking, however,245

the higher the relation m : n more difficult is to observe the phase synchronization. Therefore, our examples246

will be for 1 : 1 phase synchronization.247

Phase synchronization is also vast research periodic oscillators [96, 101, 107, 129, 130]. In this case, the

phases may be perfectly locked. If we are considering periodic oscillators the phase reduction approach

will lead to a description of the interaction in terms of the phases alone [65]. The simplest equation in this

setting is

φ̇1,2 = ω1,2 +α sin(φ2,1 −φ1,2)

where φ is the phase along the periodic orbit. Introducing the phase difference Φ= φ1−φ2 and ∆=ω1−ω2

we obtain

Φ̇ = ∆−2α sinΦ

this equation has a stable fixed point Φ = φ1 −φ2 = constant if α > αc = |∆|/2.248

For a chaotic oscillator if coupling strength is small, the amplitudes will remain chaotic but the phase249

difference will be bounded. Though, it will oscillate as a result of the coupling to the amplitude. In general,250

it is not straightforward to introduce a phase for a chaotic attractor [10, 11, 56, 97, 102]. For a suitable class251

of attractors it is possible to define a phase in a useful way.252

We focus on coupled two nonidentical Rössler oscillators, the equation is given by253

ẋ1,2 = −ω1,2y1,2 − z1,2 +α(x2,1 − x1,2)
ẏ1,2 = ω1,2x1,2 +ay1,2

ż1,2 = b+ z1,2(x1,2 − c)
(21)

where a = 0.165, b = 0.2 and c = 10 are the constants of the Rössler system. ω is the mismatch parameter254

to make the oscillators nonidentical and given as ω1,2 = ω0 ± ∆ where ω0 = 0.97 and ∆ = 0.02. α is255

12
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the coupling constant, the system is coupled over x components (x-coupling). For certain values of the256

parameter a, the projection of the attractor on x−y plane resembles a limit cycle and the trajectories rotates257

around the origin (see Fig. 7), and phase and amplitudes are given by258

φ1,2 = arctan

(

y1,2

x1,2

)

(22)

259

A1,2 =
√

x2
1,2 + y2

1,2. (23)

We consider the phase on the lift (growing in time without taking the mod).

5 0 5 10

x

10

5

0

5

y

Figure 7.: Projection of the Rössler attractor on x− y plane for a = 0.165.

260

To gain insight on the adjustment of rhythm leading to phase synchronization, we analyze the average261

frequencies defined as262

Ω1,2 = lim
T→∞

φ1,2(T )−φ1,2(0)

T
. (24)

And the frequency mismatch is263

∆Ω = Ω2 −Ω1 (25)

When phase synchronization occurs |φ1(t)− φ2(t)| ≤ C, the average frequency is the same ∆Ω = 0. The264

phase difference will not be tend to a constant as the phase nature of the amplitudes acts as a noise in the265

phases causing mismatches. The comparison of the amplitude difference (Eq. (15)) and the phase (Eq. (25))266

is given in Fig. 8. If we increase the coupling constant α .267

An approximate theory of phase synchronization can be obtained by averaging [111]. We write the model268

Eq. (21) in terms of the phase Eqs. (22) as269

φ̇1,2 =
x1,2ẏ1,2 − y1,2ẋ1,2

A2
(26)

In this form, using polar coordinates we have x1,2 = A1,2 cosφ1,2 and y1,2 = A1,2 sinφ1,2, and using this270

representation in Eq. (26), we obtain271

13



August 2, 2017 10:59 Contemporary Physics sync˙rev˙final

(a)

(b)

Figure 8.: For a weak coupling constant: Although there is no synchrony for the difference of the amplitudes

Eq. (15)(top panel), there is a tendency towards to phase synchronization while the coupling constant α
increases Eq. (24) (bottom panel). The synchronization error E and frequency mismatch ∆Ω were averaged

over 300 realisations. Each realisation is simulated by a fourth order Runge-Kutta scheme for 2000 seconds

with 0.01 time step.

φ̇1,2 = ω1,2 +asinφ1,2 cosφ1,2 +
z1,2

A1,2
sinφ1,2 −α

(

A2,1

A1,2
cosφ2,1 sinφ1,2 − cosφ1,2 sinφ1,2

)

(27)

The idea now is that since the mismatch is small, both phases behave nearly the same. So we can split

the dynamics of the phases as an overall increasing trend ω0t and a slow phase dynamics θ . This split is

very clear in Fig. 13. So, we write

φ1,2 = ω0t +θ1,2,

To obtain an equation for θ (simpler than the one for φ ) we use the fact that θ is a slow variable. That272

is, while ω0t grows a lot θ is nearly constant. Hence, we will average out the contribution of ω0t. So we273

average the phases over ω0t over a period 2π
ω0

and keep θ1,2 fixed. After some laborious manipulation we274

obtain275

d

dt
(θ1 −θ2) = 2∆−

α

2

(

A2

A1
+

A1

A2

)

sin(θ1 −θ2) (28)

Both amplitudes A1,2 depend on time and display a chaotic behaviour. Lets assume for a moment that276

they are constant. Then for the phase locking of the Rössler systems, d
dt
(θ1 − θ2) = 0, the equation has a277

stable fixed point,278

θ1 −θ2 = arcsin
4∆A1A2

α(A2
1 +A2

2)
. (29)

This fixed point only exists when the argument of the arcsin has modulus less than 1. Therefore, we obtain

the critical transition coupling

αc ≈ 2∆.
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For the given parameters (∆= 0.02) we find αc ≈ 0.04, in agreement with the numerical analysis Fig. 8. The279

chaotic behaviour of the amplitudes leads to fluctuations of the phases around the stable fixed point, and280

so the phases different will not be identically zero. Close to the critical coupling strength the frequencies281

exhibit a critical behaviour ∆Ω ∝ |α −αc|
1/2 as observed observed in Fig. 8.282

2.4. Generalized synchronization283

When the interacting systems are different, either because of a large parameter mismatch or the systems284

have distinct dynamics, these two can still exhibit synchronization in a generalized sense. Generalized285

Synchronization (GS) can be observed in mutually coupled systems as well as unidirectionally coupled286

system [46, 64, 89, 126]. Surprisingly, GS can be a mapped to a complete synchronization (CS) problem!287

Here we will focus on the dynamics of unidirectionally coupled systems. The master x and the slave y288

systems coupled as289

ẋ = f(x)

ẏ = g(y,h(x)) (30)

where x ∈ R
n, y ∈ R

m and h(x) is the coupling. For certain coupling strengths, the dynamics of system

y is totally determined by the dynamics of system x. That is, the solutions of, say x can be mapped into

solutions of y.

y = ψ(x)

where ψ is a function from the phase space of the system x to the phase space of system y. When this290

happens we have generalized synchronization between these two systems. CS is a particular case of GS291

when ψ is the identity.292

To detect a functional relation between two systems in generalized synchronization, Rulkov and co-293

workers proposed a technique called mutual false nearest neighbours [110]. The main idea is the see how294

nearby points are mapped under the dynamics. By studying the properties of nearby points one can infer295

the existence of the mapping ψ . Here, we focus on another approach that turns the GS problem into a CS296

problem. This is the auxiliary system approach [1, 61]. The master system drives the slave system and an297

auxiliary system (copy of the slave). If the two copies of the slave exhibit CS then the master and slave are298

in GS.[1, 61]. An illustration of this scheme can be found in See Fig. 9.

Master system

Slave system

x

ys

h(x)

ya

Auxiliary system

h(x)

Figure 9.: Scheme of the auxiliary system approach for the generalized synchronization. Originally we

only have the system in the dashed line box which is master-slave system as in Sec. 2.2.1. Then we add an

auxiliary (helper) system ya. If there is CS between ys and ya, then the GS occurs between x and ya,s.

299
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Necessary conditions for the occurrence of GS for the system given by Eq. (31) is introduced by Kocarev

and Parlitz as following: for all (x0,y0) ∈ B, where x0 and y0 are states for the master-slave systems at time

t = 0 and B is the basin where all the trajectories approach to a manifold

Mψ = {(x,y) : y = ψ(x)}.

If Mψ is attractive, different trajectories of the slave system will converge to the trajectory lying in M and

it is determined only by x. In other words, if the master drives a slave ys
0 and an auxiliary (copy of slave) ya

0

systems simultaneously, the driven ones must be completely synchronized ∀ys
0,y

a
0 ∈ By we have

lim
t→∞

‖ys
t − ya

t ‖= 0.

Example: Consider two identical Rössler systems (Eq. (17)) with the parameters (a = 0.2, b = 0.2 and300

c = 5.7) are driven by a Lorenz system (Eq. (14)) with the classical parameters (ρ = 28,σ = 10 and301

β = 8/3) via x-components. We used the auxiliary system approach the detect the critical coupling for GS.302

Indeed, numerical results showed that αc ≈ 0.12 as seen in the synchronization diagram Fig. 10. For given303

α = 0.06 CS is not observed between the slave systems therefore there is no GS between master and slave304

systems as well Fig. 11a. For a coupling constant larger than the critical one α = 0.2 the slave and the305

auxiliary system display CS. Hence GS can be observed between master-slave system Fig. 11b.306

Figure 10.: Generalized Synchronization: Averaged over 300 realisations, time=4000 and time step=0.01

2.4.1. Generalized Synchronization between diffusively coupled oscillators307

To gain some insight on this, we will use some ideas put forward by [51, 52]. This approach allows us to308

obtain a analytical understanding of the critical coupling associated with the transition to GS. Consider a309

master-slave system diffusively coupled.310

ẋ = f(x)

ẏ = g(y)+αH(x− y) (31)

where H is a positive definite matrix. We can write the slave equation as

ẏ = ḡ(y)+αHx

16
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No synchronization

(a) No Synchronization

Synchronization

(b) Synchronization

Figure 11.: Two simulations for the generalized coupling scheme: a Lorenz system x drives two Rössler

systems ys,a. The critical transition coupling is αc ≈ 0.12. (a) For the coupling constant α = 0.06, there is

no synchronization since α < αc (b) for α = 0.2 synchronization is obtained since α > αc.

where ḡ(y) = g(y)−αHy. The equation then splits into contributions solely coming from the slave and the311

driver. Now consider two copies of the slaves y1 and y2. Because we know the system will exhibit GS when312

the copies of the slaves synchronize, we introduce a variable z = y1−y2. The system will undergo GS when313

z → 0. Differentiating we obtain314

ż = U(t)z−αHz, (32)

where we used the mean value theorem [55] to express

U(t)z = g(y1(t))−g(y1(t)+ z(t)) =

(

∫ 1

0
DG(y1(t)+ sy2(t))ds

)

z(t)

Notice that for the difference z the driving term Hx disappears as it is common for both copies of the

slave y1 and y2. The only part of the coupling remaining is the term −αHz, which adds an extra damping

and provides dissipation. The trivial solution of z is globally stable if the coupling is large enough. Indeed,

we can construct a Lyapunov function for z. Indeed, consider

V (z) =
1

2
〈z,z〉,

and differentiating the Lyapunov function along the solution z(t) of Eq. (32) we obtain315

dV (z(t))

dt
= 〈ż(t),z(t)〉 (33)

≤ (‖Dg‖−αλmin(H))‖y‖2 (34)

where λmin(H) is the minimum eigenvalue of H. In this last passage, we used the Cauchy Schwartz inequal-

ity |〈U(t)z,z〉| ≤ ‖U(t)z‖‖z‖ ≤ ‖U‖‖z‖2, and noticed that ‖U‖ ≤ ‖Dg‖1. We also used the fact that H is

1We are using the uniform operator norm ‖U‖= supt≥0 ‖U(t)‖.
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positive 〈Hz,z〉 ≥ λmin(H)‖z‖2. Hence, for

α > αc =
‖Dg‖

λmin(H)

the derivative of the Lyapunov function is negative and every solution of the system sinks to zero.316

What did we learn? When α > αc we have GS. Any two trajectories of the slave y1 and y2 will con-317

verge towards the same asymptotic state. This happens because the coupling terms adds extra dissipation.318

The convergence rate is exponential ‖y1(t)− y2(t)‖ ≤ Ke−ηt because V̇ ≤ ηV and η is uniform on the319

trajectories y1,y2 and x. As a conclusion, there a function ψ such that the dynamics of the slave can be as320

y = ψ(x).321

In the literature, a typical way to estimate whether one has GS is to compute the Lyapunov exponents of322

the slaves. Since we are assuming that the uncoupled systems are chaotic, for α = 0 the slave will have a323

positive Lyapunov exponents. As we increase α the maximum Lyapunov exponent may become negative324

for a value αc. We use this αc as an estimate for the critical coupling for GS.325

2.5. Summary of Synchronization types326

We discuss the three cases commonly found in applications. A schematic representation of the cases is327

found in Fig. 15.328

329

Complete synchronization in identical systems. If the isolated dynamics are identical, f1 = f2 and dif-

fusively coupled, hence, the subspace x1 = x2 is invariant under Eq. (6). Indeed, the coupling vanishes and

both systems will oscillate in unison for all coupling strengths α and all times. Such collective motion is

called complete synchronization (CS). The question is whether CS is attractive, that is, if the oscillators

state are nearly the same x1(0)≈ x2(0), will they synchronize? Meaning that

lim
t→∞

‖x1(t)−x2(t)‖= 0.

See Fig. 12 for an illustration. In Sec 2.2, the CS was discussed in detail.

x
1
= x

2

x
1

x
2

x
1
= x

2

x
1

x
2

(a) synchronization (b) no synchronization

α > α
c

α < α
c

Figure 12.: Illustration of complete synchronization. (a) If the coupling strength is large enough (α > αc),

the systems converge to invariant synchronization manifold (x1 = x2), (b) otherwise (α < αc), they diverge

hence no synchronization.

330

Phase synchronization (PS) when f1 ≈ f2. In this situation the subspace x1 = x2 is not invariant. And331

each system will have its own frequency given by their phase dynamics φ1,2. For small coupling strengths332

the phases can be locked φ1 ≈ φ2 while the amplitudes remain uncorrelated Fig. 13. This phenomenon is333

called phase synchronization. Typically, the critical coupling for PS is proportional to the mismatch f1− f2,334

as illustrated in Fig. 15. Further details were given in Sec. 2.3.335

336
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phases are not locked in

phases are locked in

Figure 13.: Illustration of phase synchronization for two coupled slightly different and chaotic systems

(f1 6= f2). The evolution of the phase differences between the systems for two different coupling constants

α < αc and α > αc.

Generalized synchronization in master slave configurations. If the vector fields are different f1 = f337

and f2 = g, the systems can synchronize, but in a generalized sense. We consider systems coupled in a338

master-slave configuration. For certain coupling strengths, the dynamics of the master x can determine the339

dynamics of the slave y, that is y = ψ(x), see Fig. 14. This is called Generalized Synchronization (GS).340

Further details for GS was given in Sec. 2.4.341

x
1

x
2

y = ψ(x)y = ψ(x)

x
1

x
2

α > α
c

α < α
c

(a) synchronization (b) no synchronization

Figure 14.: Illustration of generalized synchronization. If the coupling strength is large enough, a functional

relationship (y = ψ(x)) exhibits between the dynamical variables x1 and x2. (a) If α > αc, the generalized

synchronization is observed (b) otherwise α < αc, there is no generalized synchronization.
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Figure 15.: Diagram of synchronization types for diffusively coupled systems. The horizontal axis depicts

the mismatch between the isolated dynamics (f1 and f2) and the vertical axis the coupling constant. The

diagram shows the typical balance between mismatch and coupling strength and to achieve a certain kind

of synchronization. Complete synchronization (CS) occurs for identical chaotic systems (f1 = f2) and large

enough coupling strengths. Phase synchronization (PS) is observed between slightly different systems for

small coupling strengths. Generalized synchronization (GS) is a result of master-slave system and can occur

for large mismatch parameters or even between distinct systems when the coupling strength large enough.

2.6. Historical Notes342

Studies on synchronization dates back to Christiaan Huygens who studied coupled pendulums. In this case,343

the pendulums are periodic and have distinct frequencies, but due to interaction they adjust their rhythm.344

In the seventies, thanks to the works of Winfree [134] and Kuramoto [65] the area experienced a boom. In345

early 2000’s many excellent books and reviews were devoted to this subject [5, 6, 9, 57, 101, 107, 123].346

Chaotic synchronization on the other hand is younger. To begin with, the establishment and full accep-347

tance of the chaotic nature of dynamics is fairly new [40]. The role of chaos in nature was object of intense348

debate in the seventies when Ruelle and Takens proposed that turbulence was generated by chaos.349

The chaotic dynamics can be fairly complicated. Typically, the evolution never repeats itself, nearby350

points drift apart exponentially fast, but in the long run the dynamics return arbitrarily close to its initial351

state. Such dynamics is so unpredictable that modern approach tackles it from a probabilistic perspective.352

Given this complexity many researchers thought it is unlikely one could possibly synchronize two chaotic353

systems. How could a system with exponential divergence of nearby trajectories have a state were trajecto-354

ries come together while keeping their chaotic nature? That seemed paradoxal. Chaos and synchronization355

should not come together. This view was proven wrong in the late eighties. In fact, we have come to think356

it as rather natural. Funny enough, before this view was accepted synchronization of chaos had to be redis-357

covered a few times.358

Back in the eighties, Fujisaka and Yamada had the first results on synchronization of chaos [38, 137, 138].359

They publish it in Japan, but their results went fairly unnotice in the west. Just two years later mathe-360

maticians and physicists from Nizhny Novgorod exposed many of the concepts necessary for analyzing361

synchronous chaos [2]. This paper is now famous, but back then it also went largely unnoticed.362

Only some years later the study of synchronization of chaos had its boom, largely as a result of the works363

by Pecora and Carroll [89]. Lou Pecora and co-workers went systematically tackling two coupled systems364

and then moved on to study chaotic systems coupled on periodic lattices [21, 47]. These early results were365

relying on ideas from Nuclear physics to diagonalize the lattice and stability theory (the Lyapunov methods)366

to analyze synchronization.367

The nineties proved prolific for synchronization! Two groups proposed an extension of synchronization,368

the so-called generalized synchronization [1, 61–63, 110]. Generalized synchronization only asked for a369

functional relationship between the states, that is, the dynamics of one system is fully determined by the370

dynamics of the other. Also in the mid nineties, Rosenblum, Pikovsky and Kurths put forward the concept of371
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chaotic phase synchronization. Here two nearly identical chaotic oscillators can have their phase difference372

bounded while the amplitudes remain uncorrelated [108, 109].373

A few years down the road, Pecora and Carroll were able to generalize their approach to undirected374

networks of diffusively coupled systems [91]. They also wrote a review about their approach [92]. These375

results open the door to the understanding of the role of the linking structure on the stability of synchro-376

nization. Barahona and Pecora [14] showed that small-world networks are easier to globally synchronize377

than regular networks. Motter and coworkers [75, 76, 82, 141] showed that heterogeneity in the network378

structure may hinder global synchronization. On the other hand, Pereira showed such heterogeneity may379

enhanced synchronization of highly connected nodes [95].380

3. Applications381

In this section, we discuss the role of synchronization phenomena in various applications including secure382

communication approaches, parameter estimation of a model from data and prediction.383

3.1. Secure Communication Based on Complete Synchronization384

The first approach is to send an analog message [84]. The key idea is the following: the sender adds385

the message m(t) on a chaotic signal x(t) and generate a new signal s(t) = m(t) + x(t) (Fig. 16). The386

assumption is that the amplitude of x(t) is much larger than the amplitude of m(t). This method is called the387

masking information on bearing signals. Because chaotic signals are noise-like and broadband (have many388

frequencies), it is difficult to read the message. One could then retrieve the message using synchronization.389

x, y, z x
r 
,y

r 
,z

r
+

x(t)x(t)

m(t)

s(t)

x
r
(t)

-
s(t)

m
r
(t)

Transmitter

Receiver 

Figure 16.: Illustration of the message masking on bearing signal scheme. Transmitter generates a chaotic

signal x(t) and add the message m(t) on it. This combined two signals s(t) = x(t) +m(t) is sent to the

receiver and both systems synchronize. Discarding the synced signal xr from the s, the message mr ∼ m is

restored.

390

Masking of messages on bearing signals does not require encryption. Here is the keystone is selection391

of the transmitter and receiver systems such that they synchronize. They are also assumed to be identical392

(this means that the receiver knows the parameters of the transmitter). One can retrieve the message if the393

parameters are known. So, the parameters play a role of encryption key.394

We illustrate this communication scheme using the Lorenz system Eq. (14). The Lorenz system has the395

particularity that it divided into subsystems (x,z) and (y,z). We can use the variables x or y of a subsystem396

to drive the other subsystem. In this driving setting the synchronization between driver and slave is expo-397

nentially stable provided that the parameters σ , ρ and β are identical. Here, we have chosen x component398
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to act as a driver. The message s(t) drives the receiver system as399

ẋr = σ(yr − xr)
ẏr = s(ρ − zr)− yr

żr = −β zr + syr.
(35)

Since the synchronization of chaotic systems is exponentially stable for such system [89, 90] under low400

amplitude of noise the synchronization (coherence) still occurs. Then the chaotic signal xr can be obtained401

from Eq. 35. Therefore the message can be regenerated by m(t) = s(t)− xr(t) (Fig. 16).402

as a message we use the signal

m(t) = 0.1
sin(1.2π sin2(t))

π sin2(t)
cos(10π cos(0.9t))+ξ

where ξ is a white noise Fig. 17(a). We attach this message on x-component of the Lorenz system Eq. (14)403

with parameters σ = 16.0, ρ = 45.2 and β = 4.0 then the information is masked on bearing signal s404

Fig. 17(b). By synchronization we restore the message mr ∼ m (Fig. 17(c)). This secure communication ap-405

plication is also experimentally demonstrated by using Chua’s circuits [59, 87] and Lorenz-like circuit [27].406

m
r

m
s

t

(a)

(b)

(c)

Figure 17.: The masking an analog message on bearing chaotic signal. (a) the low-amplitude message, (b)

the message embedded into high-amplitude chaotic signal and (c) restored message from the transmitted

signal.

The second approach is the modulation of the parameters for the digital communication. In this case,407

the message m(t) only carries binary-valued signals. The setup is similar to the masking approach but408

the message is included in the transmitter parameters. The transmitter system has an adjustable parameter409

σa(t) = σ +δm(t) such that we can tune the system into synchronization when m(t) = 0 and out synchro-410

nization when m(t)= 1 Fig. 18. We retrieve the message m(t) by the synchronization and desynchronization411

pattern.412
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Figure 18.: A secure communication scheme: hiding a digital message on a chaotic signal. Changing a

parameter of transmitter causes different level of synchronization errors between the transmitter and the

receiver. The amplitude of the error E brings the message out.

The dynamics of transmitter and the receiver is given by413

ẋ1 = σa(y1 − x1)

ẏ1 = x1(ρ − z1)− y1

ż1 = −β z1 + x1y1

ẋ2 = σ(y2 − x2)

ẏ2 = x1(ρ − z2)− y2

ż2 = −β z2 + x1y2

where σa = σ + δm(t) is the adjustable parameter. Again the key aspect is having mismatch between414

the transmitter and the receiver does not allow systems to synchronize. Modulating the parameter σa by415

the message m(t) we can produce different levels of synchronization errors. Choosing the parameters of416

the transmitter and the receiver identical gives the synchronization error E ∼ 0 (CS), this can be assigned417

binary 0 by m(t) = 0. The large mismatch δ causes a certain amount of synchronization error E > 0, this418

can be assigned binary signal 1 by m(t) = 1. Then the digital communication can be set between sender419

and receiver [26, 27].420

Using same parameters as in the previous application (σ = 16.0, ρ = 45.2 and β = 4.0), we illustrate421

this digital communication. For this example, a digit of the message is set for 10 time units and the message422

is 0101010101 (Fig. 19(a)). For each message time, we change σa from σ to σ + δ and other way round.423

Then the synchronization error E varies according to this change (Fig. 19(b)). Due to change in the E, the424

message is restored (Fig. 19(c)).425

There are more communication applications using the synchronization mechanism e.g. using hyper-426

chaotic systems [21, 29, 62, 94] or volume-preserving maps [22]. The common idea of all these given427

approaches is the CS phenomena, negative conditional Lyapunov exponent between the systems are needed428

to exhibit of the synchronization [89, 90].429

3.2. Secure Communication Based on Phase Synchronization430

Security is an important issue for communication approaches. As might be expected, some methods were431

improved and reported to break the CS based communication schemes [30, 88, 100, 115]. Then more secure432

communication scheme demonstrated by means the PS [23].433

The scheme based on the PS possesses three chaotic Rössler systems (x1,2,3). The transmitter of the434

scheme consists of two weakly coupled identical systems x1 and x2 over their x-components Eq. (36) and435

the receiver x3 has slightly different dynamics. In this case, we couple the systems with using their phases436

Eq. (36) as presented in Ref. [24]. The phase definition for Rössler system is given by Eq. (22). The mean437

of two systems’ phases φ1 and φ2 in transmitter can be used as a spontaneous phase signal φm to couple the438
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(a)

(b)

(c)

Figure 19.: Manipulating the parameter of a transmitter allows digital secure communication. In this appli-

cation 10 time units are used for a single digit. (a) Digital message (0101010101), (b) the synchronization

error and (c) restored message.

third system as in Eq. (36). As distinct from the CS based schemes, we have three systems and the reason439

behind these to improve the security. The return maps of the phase φm is way more complex than φ1 (or φ2),440

this makes to break dynamics not trivial [23].441

x
1 φ

3
(t)

m*(t)

mismatch 
adjuster

synchronization
error classifier

m(t)
x
3

Transmitter

Receiver 

weak 
interaction

x
2

+

noise

φ
1
(t)

φ
2
(t)

average
phase

φ
m

Figure 20.: A secure communication scheme by phase synchronization: hiding a digital message on a

chaotic signal.

We illustrate this application by442

ẋ1,2 = −(ω +∆ω)y1,2 − z1,2 + ε(x2,1 − x1,2)
ẏ1,2 = x1,2 +ay1,2

ż1,2 = b+ z1,2(x1,2 − c)
ẋ3 = −y3 − z3 +α(r3 cosφm − x3)
ẏ3 = x3 +ay3

ż3 = b+ z3(x3 − c)

(36)

where constant ω = 1 and standard parameters of the Rössler system a = 0.15, b = 0.2 and c = 10.0.

Coupling constants ε = 5× 10−3 is between x1 and x2, and α is between the transmitter and the receiver.

r3 is the amplitude of the response system given by Eq. (23). ∆ω is the adjustable mismatch parameter, for
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this illustration we select

∆ω =

{

0.01 if bit digit = 1

−0.01 if bit digit = 0.

Similar to digital communication by the CS (see Section 3.1), the modulation of parameters in the trans-443

mitter would hide a binary message m(t) on φm. The PS will exhibit between φm and φ3. Due to the changes444

on the adjustable control parameters ∆ω , the phase difference between φm and φ3 varies. In other words,445

the phases are locked on different phase shifts. The message can be retrieved from different phase locking446

values (Fig. 20).447

Because of the weak coupling, the CS never occurs Fig. 21(a). Every 10 time unit we switch ∆ω param-448

eter to create a digital message m(t) (010101...) Fig. 21(b). The hidden message on chaotic signal can be449

restored from the receiver using the phase difference between φm and φ3. If the message digit is 0, then the450

phase difference oscillates most time below 0, otherwise above 0 Fig. 21(c). Therefore it is easy to restore451

associated message m∗ Fig. 21(d).

(a)

(b)

(c)

(d)

Figure 21.: An illustration for the secure communication by phase synchronization: hiding a digital message

on a chaotic signal.

452

In real world examples, it is almost not possible to create identical systems, and the noise is always an453

issue to deal. The phase locking can be still preservable under effect of a certain level of noise.454

3.3. Parameter Estimation and Prediction455

Now we have data and we want to learn about the system that generated the data. Thus we will be able to456

predict the future behaviours and critical transitions. The determining equations of the system are known457

however the parameters are not. The goal is to find these unknown parameters with using synchronization458

phenomena. So, we blend the data with equations. The data is then used to drive the equations. If they and459

coupled in a proper way (Sec. 2.2.1), the equations can synchronize with data. The key point is the fol-460

lowing: if the parameters of slave system are identical with the master whose produced driving signal, then461

the CS exhibits (synchronization error E = 0) otherwise no CS (synchronization error E > 0). Therefore,462

it is possible to estimate the parameters by a strategy to minimize the synchronization error E → 0 such as463

POWELL technique [103].464

We assumed that we have a limited data and we want to predict the future of the system. After the465

parameters are estimated, the state of the synchronized slave matches the data. Because the solution of the466

equations are then the same as the data, we can use the equations to predict future dynamics.467
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The second approach is to estimate a slave system’s parameters of a master-slave system. In this case,468

the dynamics of master and slave is distinct. We assume that we have two given datasets: one of them from469

master system and the other one is from the slave. The governing dynamics of the master-slave system is470

given471

ẋ = f(x)

ẏ = g(y)+h(x,y)

where x and y are the states of master and slave systems respectively. We aim to estimate the parameters of472

g. Here we cannot use y data to drive another g system directly as in previous approach since y is driven by473

x. If we know that master-slave system is in the GS and the coupling function h is known, then we can apply474

the auxiliary system approach which is the master system drives an auxiliary (copy of the slave) z Fig. 22.475

We expect that the CS exhibits between the slave y and auxiliary z systems if the parameters are identical.476

Using the GS idea, the problem turned into the CS problem. From now on, minimizing the synchronization

Master system

x y

Slave system
with unknown parameters

data dataknown

h(x)

z
Auxiliary system

parameter estimator

-
0 = CS

0 ≠ No CS{

Figure 22.: Only two data sets are known from a master-slave system, into the dashed rectangle, without

any info about the parameters. An auxiliary system is driven by the data from the master and measure the

amplitude difference between the auxiliary and the data from the slave system. If the difference is 0, then

there is a CS that means the parameters of the slave and the auxiliary are identical.

477

error E → 0 technique can be used to estimate the unknown parameters. Similar to the previous approach,478

the future of the system can be predicted as well.479

Example: Consider a Lorenz system with classical parameters is driven by a Rössler system. We have480

only two data sets, x1-component of the Rössler (Eq. (17)) and y1-component of the Lorenz (Eq. (14)).481

Then we drive an auxiliary system z by x1 as482

ż1 = σe(z2 − z1)+α(x1 − z1)

ż2 = z1(ρe − z3)− z2

ż3 = −βez3 + z1z2.

The goal is to find the parameters of slave system. The spontaneous synchronization error is483

E(t) = ‖z1 − y1‖. (37)
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Adjusting the parameters of z(σe,ρe,βe) we minimize the simultaneous error E(t) by Powell’s algorithm484

[103]. This method allows us to estimate the parameters of the slave system (Fig. 23).

σ
e
=10.0

ρ
e
=28.0

β
e
=8/3

(a)

(b)

(c)

(d)

Figure 23.: Illustration of parameter estimation estimation. Standard parameters of Lorenz system.

485

3.4. Chaos Anticipation486

Chaos is unpredictable but synchronization can help predicting the state of a chaotic system ahead of time.487

Anticipating synchronization (AS) is a good approach for the future prediction since the slave system488

synchronizes with the upcoming states of the master system at time t + τ where τ is a time delay. The489

occurrence of AS depends on the coupling constant α . Therefore it is not dependent on isolated dynamics490

or time delay τ and regarding to type of desired application higher dimensional chaotic systems can be491

used for an arbitrary time delay. This anticipation of chaos can be used or is used in applications such as492

semiconductor lasers with optical feedback, secure communications [70].493

Consider two chaotic systems in a master-slave interaction and the master has a certain delay τ feed-

back Fig. 24. Because of the internal delay feedbacks, it may well happen that the master x and slave y

synchronize but with some time delay

x(t) = y(t − τ)

When this happens we have

y(t) = x(t + τ).

Hence, although the system x is fully chaotic, we can precisely predict its future state from the system494

y. In other words the slave system anticipates the master system. This kind of synchronization is called495

anticipated synchronization (AS).496

Example: We consider two coupled Ikeda equations,497

ẋ = −αx−µ sinxτ

ẏ = −αy−µ sinx
(38)
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Master system Slave system

x y

g(t-τ) : Time delayed

feedback

h(x)

Figure 24.: Scheme of anticipating synchronization with memory in the driver systems

We use the notation yτ = y(t − τ). The scheme of the system is given in Fig. 24. The synchronization error498

for delayed system is given by,499

z = x− yτ

and to show that synchronization is attractive we analyze the first variational equation500

ż = ẋ− ẏτ

= −αx−µ sinxτ − (−αyτ −µ sinxτ)

= −αz. (39)

The solution is z(t) = z0e−αt and for α > 0 the synchronization is globally exponentially stable.501
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(a) Time series of coupled Ikeda equations.
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(b) Phase space and synchronization manifold
for x and yτ .

Figure 25.: Anticipating chaotic synchronization. In the beginning, the systems are not in harmony. After a

transient time both systems are getting into a time-delay τ synchronization. For this illustration τ = 2. (a)

time series of the systems (b) phase space and synchronization manifold of the system. The red circle is the

initial condition for the trajectory of (x,yτ).

To illustrate AS, we simulate Eq. (38) with a fourth order Runge-Kutta integrator for the delay-differential502

equations for the parameters α = 1, µ = 20 and τ = 2. The simulation starts from a random initial condition.503

After enough transient time t, the master x and the slave y systems synchronize with a time delay (τ)504
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Fig. 25(a). The transient time can be observed from the phase space of x and yτ . The initial condition is505

given by a red circle in Fig. 25(b), the trajectory converges to the synchronization manifold (x = yτ ).506

Example: The AS can occur for higher dimensional chaotic system. For such cases the critical coupling507

constant can be positive (αc > 0). The AS can be obtained without delayed state in the master system, that508

is, without memory in the master system. The scheme of this model is given in Fig. 26. We can demonstrate

Master system Slave system

x y
h(x)

Time delayed : g(t-τ) 
feedback 

Figure 26.: Scheme of anticipating synchronization without memory in the driver systems

509

this case with Rössler system, the governing equations are given by510

ẋ1 = −x2 − x3

ẋ2 = x1 +ax2

ẋ3 = b+ x3(x1 − c)
ẏ1 = −y2 − y3 +α(x1 − y1,τ)
ẏ2 = y1 +ay2

ẏ3 = b+ y3(y1 − c)

(40)

where the parameters are a = 0.15, b = 0.2 and c = 10. We simulate Eq. (40) for no AS (α < αc) Fig. 27511

and AS (α > αc) Fig. 27 cases. In this memoryless AS approach, the synchronization is also dependent on512

time delay τ .513

4. Synchronization in complex networks514

Synchronization is commonly found in networks of natural and mankind-made systems such as neural515

dynamics [16, 42, 116], cardiovascular systems [67, 114, 122], power grids [74], superconducting Joseph516

junctions [132]. The theory we presented in the previous chapters can be generalized to understand certain517

aspects of synchronization in these complex systems.518

We will focus on diffusively interacting identical oscillators, so the dynamics of the coupled system reads519

as520

dxi

dt
= f(xi)+α

N

∑
j=1

Ai j[H(x j)−H(xi)], (41)

where f : Rn → R
n describes the dynamics of the isolated system, α is the overall coupling strength, N is521

the number of oscillators, H : Rn →R
n is the coupling function. Finally, Ai j dictates who is interacting with522

whom. Ai j = 1 if i receives a connection from j and 0 otherwise. The matrix A (the dimension is N ×N)523

provides the network linking structure and it is called adjacency matrix. This matrix will play an clear role524

in the analysis.525

The network dynamics of diffusively coupled system in Eq. (4) models many physical systems. A few526

specific examples are:527
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(a) Time series, no synchronization α < αc
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(b) Phase space for x and yτ .
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(c) Time series, synchronization α > αc
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(d) Phase space and synchronization
manifold for x and yτ .

Figure 27.: Anticipating synchronization does not obtain for (α < αc), otherwise (α > αc) the AS exhibits.

For this illustration the delay is selected as τ = 0.2. (a) time series of the systems where α < αc and (b)

phase space. (c) time series of the systems where α > αc and (d) phase space and synchronization manifold

of the system. The red circle is the initial condition for the trajectory of (x,yτ).

Electronic Circuits with Resistive interaction. Electric circuits, e.g., Chua, Roessler-like, Lorenz-like,528

can be coupled over their resistors then Eq. models this system [89]. Another case, only one electric529

circuit can be driven by an external signal as master-slave system (for details, see Sec. 2.2.1)[12].530

Neuron Networks with Electrical Coupling. In brain network, f can be the isolated neuron dynamics531

modelled by differential equations with chaotic or periodic behaviour and having different time-532

scales, that is, the isolated can have burst and single regime [50] and H the electrical synapses H(x1−533

x2) = (x1 − x2,0,0).534

Stable Biological System. In biological systems when the isolated dynamics has a stable periodic motion535

then typically one can rephrase the network dynamics in terms of our model. For instance, the heart536

consists of millions of pacemaker cells. Each cell when isolated has its own rhythm, but when put537

together these cells interact and behave in unison to deliver the strong electrical pulse that make our538

heart beat [123]. The dynamics of the pacemaker cells are modelled by phase oscillators φi with539
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distinct frequencies ωi and the coupling function is a simple sine function H(φ1 − φ2) = sin(φ1 −540

φ2)[112, 114].541

Laser Arrays. Lasers can be arranged arrays or complex networks. In this case, one is interested in the542

electrical field dynamics. Such electrical field is govern by equations with interaction akin to diffusion543

Ref. [77]. So, the approach presented here can be extrapolated to such lasers under slight changes.544

In fact, when we considering periodic oscillators 2 the above model is a normal form for the networked545

system. That is, the isolated system has a periodic exponentially attracting orbit, we couple the system, and546

in the weak coupling regime, the amplitudes will change only slightly but the phases can change by large547

amounts. So the dynamics can be described only in terms of the phases. The phase description will again548

fit in our Eq. (4).549

Our synchronization results given in the previous sections are exponentially stable. In other words, if once550

the trajectories are into the synchronization subset, the solution is robust and persistent to the perturbations.551

For N coupled nonidentical systems (f1 6= f2 6= · · · 6= fN), complete synchronization is not possible. However,552

because of exponentially stable solutions, highly coherent state around the synchronization subset can be553

still observed [99, 127].554

4.1. Interactions in terms of Laplacian555

Because of the diffusive nature of the interaction, it is possible to represent the coupling in terms of the556

Laplacian matrix L. Indeed,557

N

∑
j=1

Ai j[H(x j)−H(xi)] =
N

∑
j=1

Ai jH(x j)−H(xi)
N

∑
j=1

Ai j

=
N

∑
j=1

Ai jH(x j)− kiH(xi)

=
N

∑
j=1

(Ai j −δi jki)H(x j)

where ki = ∑
N
j=1 Ai j is the degree of the ith node, δi j is the Kronecker delta, and recalling that Li j =558

δi jki −Ai j we obtain559

dxi

dt
= f(xi)−α

N

∑
j=1

Li jH(x j). (42)

Our results will depend on this representation and on the spectral properties of L.560

Notice that

x1(t) = x2(t) = · · ·= xN(t) = s(t),

is an invariant state for all coupling strength α , because the laplacian is zero row sum. When α = 0 the

oscillators are decoupled, and Eq. (52) describes N copies of the same oscillator with distinct initial condi-

tions. Since, the chaotic behavior leads to a divergence of nearby trajectories, without coupling, any small

perturbation on the globally synchronized motion will grow exponentially fast, and lead to distinct behavior

between the node dynamics. We wish to address the local stability of the globally synchronized state. That

2Or Roessler type oscillator where the phases are well defined and the coupling between chaotic amplitudes and phases are small

31



August 2, 2017 10:59 Contemporary Physics sync˙rev˙final

is, if all trajectories start close together would become synchronized

lim
t→∞

‖xi(t)−x j(t)‖= 0

The goal of the remaining exposition is to answer this question. Before, we continue with the analysis, we561

will briefly review some examples and constructions of graphs and discuss the relevant aspects necessary562

to tackle for problem.563

4.2. Relation to other types of Synchronization564

We will focus on the transition to complete synchronization, which is mainly related to Sec. 2.2. This is no565

severe restriction as in certain scenarios other types of synchronization can often be formulated in terms of566

our model.567

568

Extension to Phase Synchronization. As we discussed in the introduction of Sec. 4, if the dynamics of f is569

periodic then we can introduce a phase variable which will follow our main system of equations Eq. (4)570

as the phase reduction tells us that generically the interaction between phases are diffusive. Moreover,571

because our results will yield robust transition to synchronization, if the oscillators are nearly identical the572

phase synchronization will persist.573

574

Extension to Generalized Synchronization. Roughy speaking a form of generalized synchronization in net-575

works is the so-called pinning control, where one tries to control the behaviour of synchronized trajectories576

by driving the network with external nodes. One extends the network to include the driver node. Therefore,577

the theory necessary to tackle this problem is the same as presented here. The main question is how to578

connect the driver nodes in such a way that control is effective.579

4.3. Complex Networks580

A network, also called graph G in mathematical literature, is a set of N elements, called nodes (or vertices),581

connected by a set of M links (or edges) Fig. 28. Networks represent interacting elements and are all around582

from biological systems, e.g. swarm of fireflies, food webs or brain networks, to mankind made systems,583

e.g. the world wide web, power grids, transportation networks or social networks.

nodes (or vertices)

links (or edges)

Figure 28.: A network visualisation with eight nodes and ten links.

584

A network is called simple if the nodes do not have self-loops (i.e., nodes have connections to themselfs).585

An illustration of a simple network is found in Fig. 29(a). A nonsimple network, therefore, containing586

connections is depicted in Fig. 29(d). We need a bit of technology from graph theory to make sense587

of our networks. A few basic notions are as follows588
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A network is undirected if there is no distinction between the two nodes associated with each link589

Fig. 29(a).590

A path in a network is a route (sequence of edges) between connected nodes without repeating i.e. a path591

can visit a node only once. The length of a path is the number of links in the path. See further592

details in Ref. [20, 80]. In Fig. 30 we illustrate the paths of two selected (red) nodes in a network.593

Between two red nodes there are five different paths and each path is given in subplots of Fig. 30.594

The length of paths are five for Fig. 30(a), four for Fig. 30(b), three for Fig. 30(c) and (d), and two595

for Fig. 30(e). Therefore the shortest path length, also called geodesic path, between these two red596

nodes is illustrated in Fig. 30(e).597

The network diameter d is the longest length of the shortest path between all possible pairs of nodes. In598

order to compute the diameter of a graph, first we find the shortest path between each pair of nodes.599

The longest length of all these geodesic paths is the diameter of the graph. If there is an isolated600

node (a node without any connections) or disconnected network components, then the diameter of601

the network is infinite. A network of finite diameter is called connected (Fig. 29(a)), otherwise dis-602

connected (Fig. 29(b)).603

A network is directed if the links transmit the information towards only associated direction Fig. 29(c). If604

the graph is directed then there are two connected nodes say, u and v, such that u reachable from v,605

but v is not reachable from u. See Fig. 29(c) for an illustration.606

A network is weighted if links have different importance from each other or the links may be carry different607

amount of information. Such graphs are called weighted networks Fig. 29(d). Moreover, a network608

may have self-loops, that is, a node can affect itself as well Fig. 29(d).609

(a) (d)(c)(b)

Figure 29.: Visualization of network types: (a) an unweighted simple network, (b) a disconnected network,

(c) a directed network, (d) a weighted network with self-loops.

(d)(a) (c) (e)(b)

Figure 30.: Visualization of paths (red dashed) between two selected nodes (red) in a network: path length

of (a) is five, (b) is four, (c) and (d) are three and (e) is two. Therefore the shortest path length for these two

red nodes is two.

A graph can be described by its adjacency matrix A with N ×N elements Ai j. The adjacency matrix

A encodes the topological information, and is defined as Ai j = 1 if i and j are connected, otherwise 0.

Therefore, the adjacency matrix of an undirected network is symmetric, Ai j = A ji. The degree ki of the ith

node is the number of edges belongs to the node, defined as

ki = ∑
j

Ai j.
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The Laplacian matrix L is another way to represent the network, defined as610

Li j =







ki if i = j

−1 if i and j are connected

0 otherwise .
(43)

There is a direct relationship between the Laplacian L and the adjacency matrix A. In a compact form it

reads

Li j = δi jki −Ai j

where δi j is the Kronecker delta, which is 1 if i= j and 0 otherwise. We demonstrate some example network611

sketches with their adjacency A and Laplacian L matrices in Fig. 31.612

complete graph

A =

















0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

















L =

















5 −1 −1 −1 −1 −1

−1 5 −1 −1 −1 −1

−1 −1 5 −1 −1 −1

−1 −1 −1 5 −1 −1

−1 −1 −1 −1 5 −1

−1 −1 −1 −1 −1 5

















ring (cycle) graph

A =

















0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

















L =

















2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2

















star graph

A =

















0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

















L =

















5 −1 −1 −1 −1 −1

−1 1 0 0 0 0

−1 0 1 0 0 0

−1 0 0 1 0 0

−1 0 0 0 1 0

−1 0 0 0 0 1

















Figure 31.: Various network examples with six nodes. Their adjacency A and Laplacian L matrices.

The networks we encounter in real applications have a wilder connection structure. Typical examples are613

cortical networks, the Internet, power grids and metabolic networks [79, 80]. These networks don’t have a614

regular structure of connections such as the ones presented in Fig. 31. We say that the network is complex615

if it does not possess a regular connectivity structure.616

One of the goals is the understand the relation between the topological organization of the network and617

its relation functioning such as its collective motion.618
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2k Regular Graph is a standard graph model where each node has 2k links then the total number of links619

is M = kN where N is total number of nodes Fig. 32 (a). This model is rather important one since620

the connections of spatiotemporal graphs, in general, connected to the nearest neighbours. 2k regular621

graph is an alternative representation of such models. It is important to mention that the graph model622

is fixed with given k and N therefore all properties of the graph is known analytically.623

Erdös-Rényi network is generated by setting an edge between each pair of nodes with equal probability624

p, independently of the other edges Fig. 33 (a). If p ≫ lnN/N, then a the network is almost surely625

connected, that is, as N tends to infinity, the probability that a graph on n vertices is connected tends626

to 1. The degree is pretty homogeneous, almost surely every node has the same expected degree [25].627

Small World network is a random graph model which possesses the small-world properties; i.e the average628

path length is short and clustering is large. The network is generated from a 2k regular graph, each629

link of the graph is rewired with a probability p. Therefore if p = 0 then the there is no rewiring and630

the graph is 2k regular. For p = 1 then each link is rewired i.e the graph is approaching to Erdös-631

Rényi network with p = kN

2(N
2)

. The small-world properties come true between 0 < p < 1 Fig. 32. In632

many real world networks, the properties of small-world topology can be obtained.633
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(a) 2k-regular graph
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(b) Small-World
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Figure 32.: Watts - Strogatz random network approach

The Barabasi-Albert network possesses a great deal of heterogeneity in the node’s degree, while most634

nodes have only a few connections, some nodes, termed hubs, have many connections Fig. 33 (a).635

These networks do not arise by chance alone. The network is generated by means of the cumulative636

advantage principle – the rich gets richer. According to this process, a node with many links will have637

a higher probability to establish new connections than a regular node. The number of nodes of degree638

k is proportional to k−β . These networks are called scale-free networks [79, 80]. Many graphs arising639

in various real world networks display similar structure as the Barabasi-Albert network [3, 4, 13].640

Hypercube graph Qm is a m-dimensional hypercube formed regular graph (Fig. 33 (b)). It is a regular641

graph since each node has m neighbours and total number of nodes is 2m and edges is 2m−1.642

Random networks serve as a proxy to many applications as well as a surrogate. There are many nice643

ways to construct random network644

Configuration Model is a random network model created by the degree distribution P(k). If the degree645

distribution of a graph is known, then the nodes with associated number of links are known how-646

ever the connection structure between nodes is unknown. The nodes can be drawn with their stubs647

(half links) Fig. 34 (a), then randomly these stubs can be linked and two stubs create a proper link648

Fig. 34 (b). This process is a random matching, obviously different network structures can arise from649

this random process.650
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Figure 33.: Some examples of complex networks.

(a) stubs with associated nodes (b) randomly matched stubs

Figure 34.: Configuration model.

Expected degrees. Fix a network of N nodes and consider a vector

w = (w1,w2, · · · ,wN),

In this model, each link Ai j between nodes i and j is an independent Bernoulli variable taking value

1 with success probability

pi j = wiw jρ,

and 0 with probability 1− pi j, where

ρ =
1

∑
N
i=1 wi

.

To ensure that pi j ≤ 1 it assumed that w = w(N) is chosen so that651

∆2ρ ≤ 1. (44)

The degree ki = ∑ j Ai j of the ith is a random variable. An interesting property of this model is that
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under this construction wi is the expected value of ki, that is,

Ew(ki) = ∑
j

Ew(Ai j) = wi

So, the different to the configuration model is that we do not fix the node degree, but rather obtain the652

degree probabilistically. This model also have many desirable concentration properties in the large N limit.653

4.4. Spectral Properties of the Laplacian654

The eigenvalues and eigenvectors of A and L tell us a lot about the network structure. The eigenvalues of L655

for instance are related to how well connected is the graph and how fast a random walk on the graph could656

spread. In particular, the smallest nonzero eigenvalue of L will determine the synchronization properties657

of the network. Since the graph is undirected the matrix L is symmetric its eigenvalues are real, and L has658

a complete set of orthonormal eigenvectors [41]. The next result characterizes important properties of the659

Laplacian660

Theorem 1: Let G be an undirected network and L its associated Laplacian. Then:661

a) L has only real eigenvalues,662

b) 0 is an eigenvalue and a corresponding eigenvector is 1 = (1,1, · · · ,1)∗, where ∗ stands for the trans-663

pose.664

c) L is positive semidefinite, its eigenvalues enumerated in increasing order and repeated according to

their multiplicity satisfy

0 = λ1 ≤ λ2 ≤ ·· · ≤ λN

d) The multiplicity of 0 as an eigenvalue of L equals the number of connect components of G.665

Therefore, λ2 is bounded away from zero whenever the network is connected. The smallest non-zero666

eigenvalue is known as algebraic connectivity, and it is often called the Fiedler value. The spectrum of the667

Laplacian is also related to some other topological invariants. One of the most interesting connections is its668

relation to the diameter, size and degrees.669

Theorem 2: Let G be a simple network of size N and L its associated Laplacian. Then:670

(1) [71] λ2 ≥
4

Nd
671

672

(2) [36] λ2 ≤
N

N −1
k1673

We will not present the proof of the Theorem here, however, they can be found in references we provide674

in the theorem. We suggest the reader to see further bounds on the spectrum of the Laplacian in Ref. [72].675

Also Ref. [73] presents many applications of the Laplacian eigenvalues to diverse problems. One of the676

main goals in spectral graph theory is the obtain better bounds by having access to further information on677

the graphs.678

For a fixed network size, the magnitude of λ2 reflects how well connected is graph.679

5. Stability of Synchronized Solutions680

We will state two results on network synchronization. The first assumes that the coupling function H is681

linear and the network is undirected. This assumption facilitates the discussion of the main ideas. Then, we682
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will discuss the case where the coupling is nonlinear. Basically, the results are the same with an additional683

complication as the latter involves the theory of Lyapunov exponents.684

Theorem 3: Consider the diffusively coupled network model

xi = f(xi)−α
N

∑
j=1

Li jH(x j),

on an undirected and connected network. Assume that the H is a positive definite linear operator. The reason

of the assumption will appear in Step 5 of the theorem. Then, there is Γ = Γ(f,H) such that for any

α >
Γ

λ2
,

the global synchronization is uniformly asymptotically stable. Moreover, the transient to the globally syn-

chronized behavior is given the spectral gap λ2, that is, for any i and j

‖xi(t)−x j(t)‖ ≤Ce−(αλ2−Γ)t ,

where C is a constant.685

The above result relates the threshold coupling for synchronization in contributions coming solely from686

dynamics Γ, and network structure λ2.687

Definition 1 (Synchronization Threshold): We call

αc(f,H,G) =
Γ(f,H)

λ2(G)

the critical synchronization coupling.688

Therefore, for a fixed node dynamics f and coupling H we can analyze how distinct network facilitates689

or inhibits global synchronization. To continue our discussion we need the following690

Definition 2 (Better Synchronizable): We say that the network G1 is more synchronizable than G2 if for

fixed f and H we have

αc(G1)< αc(G2)

Likewise, we say that G1 has better synchronizability than G2.691

5.1. Which networks synchronize best692

In this setting, the coupling function H is positive definite and the network is undirected, the synchroniz-693

ability depends only on the spectral gap. Using the previous study on the properties of various networks694

presented in Sec. 4.4. We consider networks of N nodes then695

• A complete graph is the most synchronizable. In fact, αc ≈ 1/N. So, the larger the graph the less696

coupling strength is necessary to synchronize the network.697

• A path or ring are poorly synchronizable. For these networks, αc ≈ N2.698

• 2k-regular graphs share the same properties for also poorly synchronizable when k ≪ N.699

• Erdös-Renyi graphs the synchronization properties depend only on the mean degree αc ≈ 1/ < k >700

39



August 2, 2017 10:59 Contemporary Physics sync˙rev˙final

• Small world networks are better than regular but worse than random graphs. In the limit of large701

graphs αc ≈ 1/s where s is the fraction of added random links. In general, adding links to a network702

favours synchronization.703

704

705

5.2. Proof of the Stable Synchronization706

Now we present the proof of Theorem 3. We omit some details that are not relevant for the understanding707

of the proof. A full discussion of the proof can be found in [98]. We will show that whenever the nodes708

start close together they tend to the same future dynamics, that is, ‖xi(t)−x j(t)‖ → 0, for any i and j. For709

pedagogical purposes we split the proof into five main steps.710

Step 1: Kronecker Form. We have N coupled equations each has dimension n. Because of the nice

structure of the interaction we can use the Kronecker product to write them as a single block. Given two

matrices A ∈ R
p×q and B ∈ R

r×s, the Kronecker Product of the matrices A and B and defined as the matrix

A⊗B =







A11B · · · A1qB
...

. . .
...

Ap1B · · · ApqB






,

we introduce the following notation

X = col(x1, · · · ,xN),

where col denotes the vector formed by stacking the columns vectors xi into a single vector. Similarly

F(X) = col(f(x1), · · · , f(xN)).

Then Eq. (52) can be arranged into a compact form711

dX

dt
= F(X)−α(L⊗H)X, (45)

where ⊗ is the Kronecker product. The easiest way to check that this is correct is to compute the ith block712

of dimension n and compare with the equation for the ith node.713

Step 2: Tranversal Laplacian Eigenmodes. The Kronecker product has many nice properties such as714

(A⊗B)(C⊗D) = AC⊗BD. (46)

And this holds whenever the matrix multiplication make sense. A nice consequence of the multiplication

result in Kronecker form is that if

Avi = λivi and Bu j = µ ju j then A⊗B(vi ⊗u j) = λiµ jvi ⊗u j

Since we are assuming that L is undirected and H is positive definite the eigenvectors {vi}
N
i=1 of L form715

a basis of RN . Likewise, the eigenvectors of H form a basis of Rn. This implies that the eigenvectors of716

L⊗H form a basis of RNn. Using this fact we can represent X as717

X =
N

∑
i=1

vi ⊗ yi
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where yi is the coordinates of X in the Kronecker basis. For sake of simplicity we call y1 = s, and remember

that v1 = 1 is an eigenvector. Hence

X = 1⊗ s+U,

where

U =
N

∑
i=2

vi ⊗ yi.

In this way we split the contribution in the direction of the global synchronization and U, which accounts for

the contribution of the transversal. Note that if U converges to zero then the system completely synchronize,

that is X converges to 1⊗ s which clearly implies that

x1 = · · ·= xN = s

The goal then is to obtain conditions so that ‖U‖→ 0.718

719

Step 3: Variational equations for the Transversal Modes. The equation of motion in terms of the720

Laplacian modes decomposition reads721

1⊗
ds

dt
+

dU

dt
= F(1⊗ s+U)−α(L⊗H)(1⊗ s+U) ,

We assume that U is small and perform a Taylor expansion about the synchronization manifold.

F(1⊗ s+U) = F(1⊗ s)+DF(1⊗ s)U+R(U),

where R(U) is the Taylor remainder ‖R(U)‖ = O(‖U‖2). Using the Kronecker product properties Eq. 46722

and the fact that L1 = 0, together with 1⊗ ds
dt

= F(1⊗ s) = 1⊗ f(s) and we have723

dU

dt
= [DF(1⊗ s)−α(L⊗H)]U+R(U) (47)

and likewise DF(1⊗s)U = [IN ⊗Df(s)]U, therefore, the first variational equation for the transversal modes724

reads725

dU

dt
= [IN ⊗Df(s)−αL⊗H]U. (48)

Step 4: Decoupling of Transversal Modes. Instead of analyzing the full set of equations, we can do much726

better by projecting the equation into subspace Wi = span{vi ⊗ I}. Let Pi : RN ⊗R
n → Wi be a projection727

operator given by Pi = viv
∗
i ⊗ I, it follows that Pi is an orthogonal projection since vi’s are orthonormal.728

Using Eq. (48) and the identity Eq. 46 we obtain729

Pi
dU

dt
= [viv

∗
i ⊗Df(s)−α(viv

∗
i L)⊗H]U, (49)

= [viv
∗
i ⊗Df(s)−αλi(viv

∗
i )⊗H]U (50)

where in the last passage we used that the network is undirected implying vi ∗L = λiv
∗
i . Using and the fact

that v∗jvi = δi j, where is δi j the Kronecker delta, we have that (viv
∗
i ⊗ I)U = ∑

N
j=2 viδi j ⊗yi. Moreover, since
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Pi does not depend on time PiU̇ = ˙(PiU)

N

∑
j=2

viδi j ⊗
dyi

dt
=

N

∑
j=2

viδi j ⊗ [Df(s)−αλiH]yi

the nonzero coefficients give the dynamics in Wi. Hence,

dyi

dt
= [Df(s)−αλiH]yi

All blocks have the same form which are different only by λi, the ith eigenvalue of L. We can write all730

the blocks in a parametric form731

du

dt
= K(t)u, (51)

where

K(t) = Df(s(t))−κH

with κ ∈R. Hence if κ = αλi we have the equation for the ith block. This is just the same type of equation732

we encounter before in the example of the two coupled oscillators, see Eq. (9).733

Step 5. Stability. Because H is positive definite we can first solve the homogeneous equation u̇=−κHu.

This equation has an globally attracting trivial solution. Then, we incorporate Df in terms of the variation

of constants formula. So, first notice that

u(t) = e−κHtu0 ⇒ ‖u(t)‖ ≤ K‖u0‖e−κλmin(H)

where λmin(H) is the smallest eigenvalue of H. So, by the variation of constants formula

u(t) = e−κHtu0 +
∫ t

0
e−κH(t−τ)Df(s(τ))dτ

taking norms

‖u(t)‖= K‖u0‖+
∫ t

0
e−κλmin(H)(t−τ)‖Df(s(τ))‖dτ

where K is a constant and defining M f = supt ‖Df(s(t))‖ by Gronwal inequality

‖u(t)‖= K1‖u0‖e(−κλmin(H)+M f )t .

The trivial solution will be exponentially stable when

−κλmin(H)+M f < 0 ⇒ κ > Γ =
M f

λmin(H)

Recall that taking κ = αλi > Γ we are stabilizing the equation for the ith block. But, once we stabilize

the second block all blocks will be stable (because λ2 is the smallest nonzero eigenvalue)

αλN ≥ ·· · ≥ αλ3 ≥ αλ2 ≥ Γ
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Hence, the stability condition so that all blocks have exponentially stable trivial solution is

α >
Γ

λ2

Using the bounds for the blocks it is easy to obtain a bound for the norm of the evolution operator. Indeed,734

in view of the previous estimates, we note that735

‖U(t)‖2 ≤
N

∑
i=2

Ki‖vi‖‖ yi(s)‖e−(αλi−Γ)(t−s)

≤ K2e−η(t−s)

with η = αλ2 −Γ for any t ≥ s.736

Because the trivial solution is exponentially stable (uniformly in s(t)) by the principle of linearization, we

conclude that the nonlinearities coming Taylor remainder does not affect the stability of the trivial solution,

which correspond to the global synchronization. The claim about the transient is straightforward, because

all norms are equivalent in finite dimensions we can take

‖X(t)−1⊗ s(t)‖∞ ≤ K3e−η(t−s)‖U(s)‖∞

implying that maxi ‖xi(t)− s(t)‖2 ≤ K3e−η(t−s)‖U(s)‖∞ and in virtue of the triangular triangular inequality

‖xi(t)−x j(t)‖∞ ≤ ‖xi(t)− s(t)‖∞ +‖xi(t)− s(t)‖∞

and using the previous bound, we concluding the proof. �737

6. General Diffusive Coupling and Master Stability Function738

Until now we have considered linear coupling functions which are positive definite. This assumption can be

relaxed and thereby we are generalize our previous results. The statement will then become rather technical

and will be beyond the scope of our review. So, here we will discuss the main ideas but will not give much

details on the technical issues. Consider the function g : Rm ×R
n → R

n. We say that g is diffusive if

g(x,x) = 0 and g(x,y) =−g(y,x)

Hence, we can extend the model to a general diffusive coupling739

ẋi = f(xi)+α
N

∑
j=1

Ai jg(x j,x j). (52)

We perform the analysis close to synchronization xi = s+ξi so

g(x j,x j) = g(s+ξ j,s+ξi) = g(s,s)+D1g(s,s)ξ j +D2g(s,s)ξi

but because the coupling is diffusive

D2g(s,s) =−D1g(s,s)
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we obtain

g(x j,xi) = G(s)(ξ j −ξi)+R(ξi,ξ j)

where G(s) = D1g(s,s) and R(ξi,ξ j) contains quadratic terms. So, the first variational equation about the740

synchronization manifold741

ξ̇i = Df(s(t))ξi +α
N

∑
j=1

Ai jG(s)(ξ j −ξi) (53)

= Df(s(t))ξi −αG(s)
N

∑
j=1

Li jξ j. (54)

Now we can perform the same steps as before. In fact, Steps 1 − 4 remain unchanged. The change

difference is Step 5, which concerns the stability of the modes. Performing all the steps 1 to 4 we obtain

the parametric equation for the modes

u̇ = [Df(s(t))−κG(s(t))]u

And we can no longer apply the trick of using the coupling function H to solve the equation. Here, G(s(t))742

depends on time and this generality tackling the stability of the trivial solution is challenging.743

The main idea is to fix κ compute the maximum Lyapunov exponent Λ(κ) as

‖u(t)‖ ≤CeΛ(κ)t

see Appendix B. The map744

κ 7→ Λ(κ) (55)

is called Master Stability Function. Notice that if Λ(κ)< 0 when κ ∈ (α1
c ,α

2
c ) then ‖u‖→ 0.745

The stability condition then become

α1
c ≤ αλ2 ≤ ·· · ≤ αλN ≤ α2

c

Or746

α2
c

α1
c

≥
λN

λ2
(56)

This is a well studied condition. Much energy has been devoted to study the master stability function Eq.747

55, see e.g., [53, 113].748
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6.1. Examples of Master Stability Functions749

Now let us consider coupled Rössler systems which are coupled through their x–coordinates:

ẋi =−yi − zi +α
N

∑
j=1

Ai j(x j − xi) (57)

ẏi = xi +ayi

żi = b+ zi(xi − c) .

In order to compute Λmax(κ), we find that Df and DH are given by750

Df(s) =





0 −1 −1

1 a 0

z∗ 0 x∗− c



 and DH = H =





1 0 0

0 0 0

0 0 0



 , (58)

x and z are the components of s. The constants are a = 0.2, b = 0.2 and c = 5.7.751

To compute Λ(κ), we first simulate the isolated dynamics ṡ = f(s) and obtain the trajectory s(t), then we752

feed this trajectory to u̇ = [Df(s(t))−κH]u and then for each κ estimate the maximal Lyapunov exponent753

Λ(κ). The result is depicted in Fig. 35.

α
c
≈ 4.4

α
c
≈ 0.131

2

Figure 35.: Master stability function for x-coupled Rössler attractors on a network structure.

754

Stability region where Λ is negative is bounded between α1
c ≈ 0.13 and α2

c ≈ 4.4. So, if the network is a

complete graph then λ2 = · · ·= λN = N, so the network synchronization when

α2
c

N
> α >

α1
c

N

6.2. Synchronization conditions and Synchronization Loss755

In Sec .5.1, we discussed the synchronizability of network types when there is only one critical threshold756

in other words α2
c → ∞. This case is true when H is a positive matrix. In the general case, there are two757

finite critical couplings Eq. 56 and the master stability function has a finite stability region between these758

critical points (as discussed in the above section). Now we discuss this synchronization scenario for various759

network types. To quantify the synchronizability, we will use the network properties given in Table. 1.760
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2k-regular graphs – Diameter driven synchronization loss. When k ≪ N, the mean geodesic distance761

(shortest path length) between nodes are increasing very fast as N increasing. Hence, while the di-762

ameter of the network is increasing d = 2N/k, speed of information exchange between the nodes is763

decreasing drastically. In this case, the complete synchronization is not stable and it is visible from764

the Laplacian spectrum of the graph. For N →∞ and k ≪N, the extremal eigenvalues given in Table 1765

can be extended to Taylor expansion and major role playing part can be rewritten as766

λ2 =
4π2(k+ 1

2
)3

3N2
and λN = 2k

N

N −1

The ratio between the largest λN and second smallest eigenvalue λ2 of the Laplacian is not growing

in the same scale,

λN

λ2
≈ N2/k2

and the condition in Eq. (56) is never satisfied.767

ER graphs – Optimal Synchronization. In this case, the extremal eigenvalues λ2 and λN of the Laplacian768

matrix increase in the same scale. The diameter of the network increases very slowly d ≈ logN when769

the network size N increases Table 1. Therefore the synchronization is stable for any scale of size.770

BA networks – Heterogeneity driven synchronization loss. When the network is too heterogeneous the771

complete synchronization is unstable, this is because the extremal eigenvalues λ2 and λN grow in772

different scales and the condition in Eq. (56) is never met. For instance, consider a BA network.773

Then, the eigenvalues satisfy774

λ2 ≈ m0 and λN ≈ m0N1/2

where m0 is the mean degree. Hence, the eigenration becomes775

λN

λ2
≈ N1/2

this should be compared to the stability interval given by the master stability function. Lets consider

the example in the above section with the Rössler Eq. (58). The master stability function gives (as

seen in Figure 35) an stability interval α2
c /α1

c ≈ 34. The stability conditions Eq. (56) reads as

N1/2 < 34

So, when the BA network is large enough it is not possible to synchronize the system. In particular

the critical system size to be able to synchronization a network of Rössler as in Eq. (58) is, therefore,

N ≈ 103.

6.2.1. Extensions776

There are a few extensions of the model. Here we discuss a few directions.777

Directed Networks. The major problem considering directed networks is that they may not be diagonal-778

izable. So, the decoupling of transversal modes by projection is a nontrvial steps. There are a few779

ways to overcome this. The first, using Jordan decomposition of the Laplacian. The other possibility780

is to perturb the Laplacian to make the eigenvalues simples. This must be done in such a way that781
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the perturbation does not spoil the stability. In both cases, the stability condition remain unchanged.782

Only the transients may be longer.783

When the network is nondiagonalizable, small perturbations in the network may lead to large784

perturbations in the eigenvalues (the eigenvalues in this case are not differentiable functions of the785

perturbations) [81]. Moreover, structural improvements in the network may lead to desynchronization786

[85].787

Nonidentical Nodes Here we consider f(x) 7→ f(x)+ ri(x, t), where ri is either a perturbation of the vector

field or a signal playing the role of noise. When ri is very small synchronization will persist [15]. For

general networks, Bollt and co-workers [127] extended the master stability function approach when

ri is a perturbation of the vector field. Pereira and co-workers [99] study the effect of general pertur-

bations ‖ri‖ ≤ δ and the role that the network structure plays in suppressing the fluctuations. In the

case where H is positive definite and the network is undirected, they showed that the synchronization

error

E =
1

n(n−1) ∑
i j

‖xi −x j‖

behaves as

E ≤ K
δ

αλ2 −αc

For example, if the oscillators where uncoupled and ri independent noise then the Central Limit788

theorem would yield E = O(N−1/2). For complete networks, the interaction and synchronization789

yields E = O(N−1) which is a large improvement over the naive application of the Central Limit790

theorem. In certain sense, this shows that interacting maybe better then isolation.791

Nonidentical Coupling Functions In many applications the coupling function are not identical and has

fluctuating components [69, 121]. Consider an undirected networks of identical oscillators and cou-

pling function

Hi j(xi −x j, t) = Hi j(xi −x j)+Pi j(xi −x j, t)

where ‖Pi j(xi − x j, t)‖ ≤ η . In this case, the network structure will play a major on the size of per-792

turbation η . If the network is random and the degree distribution homogeneous, then even for large793

perturbations δ synchronization is stable. If the network is heterogeneous degrees such as Barabasi-794

Albert then typically δc =O(N−β ) is the critical perturbation size. If δ > δc synchronization becomes795

unstable, solely because of the interaction between network structure and perturbations in the cou-796

pling function.797

Cluster Synchronization According to similarities in coupled systems, such as symmetries in network798

topology or identical dynamics in a diverse population or equally time-delayed nodes in differently799

distributed feedbacks, the partial or cluster synchronization can emerge. In order to enlighten the800

reason of these cluster synchronization cases, many techniques are developed and experimental ob-801

servations are analyzed[18, 28, 37, 117, 125, 133, 140].802

The symmetries are easy to detect for some network geometries for instance Bethe lattice is a803

regular graph which grows from a root (parent) node by p-nodes for ℓ-levels, an example of Bethe804

lattice given in Fig. 36 for p = 3 and ℓ= 3. The nodes in the same level of the Bethe graph, they all805

symmetric to each other. In Fig. 36, the levels of the graph are given in the same color and the cluster806

synchronization occurs for each level.807

Recently, Pecora et al. put forward that all the symmetries in network structures are not visible di-808

rectly. They developed a computational group theory based method to reveal these hidden symmetries809

and predicted possible synchronization patterns [93, 118].810
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Figure 36.: Bethe lattice graph: an example of symmetries in network structure. Nodes in the same level of

the Bethe graph are exactly symmetric to each other. Therefore same color nodes constitute a cluster.

Time Delay Coupling Simultaneous coupling is not always possible for real world applications in other811

words some time delays can occur in the interaction process. Therefore it is important to investigate812

synchronizability and stability of coupled time-delayed systems. The necessary conditions for time813

delayed synchronization is analytically shown by Pyragas [104]. The finding of time-delay synchro-814

nization is used as an application for the anticipating synchronization (see Section 3.4).815

7. Conclusions816

In this article, we have surveyed the phenomenon of synchronization in coupled chaotic dynamical systems817

and some of its applications. Synchronization of chaos may be a counter-intuitive surprise at first sight.818

From where does coherence arise through coupling for chaotic systems, the trajectories of which are sen-819

sitive to initial conditions and diverge from each exponentially fast? We have discussed basic results for820

synchronization of two coupled chaotic systems and more advanced ones concerning synchronization in821

complex networks, as well as various applications.822

In Sec. 2, we have started discussing synchronisation of coupled linear systems. Even though it is el-823

ementary and straightforward, this example harbors the principal ideas behind synchronization and we824

presented all carefully in all mathematical detail. In the setting of two coupled nonlinear systems, three825

types of synchronization have been identified: complete, phase and generalized synchronization.826

In Sec. 3 we have proceeded to discuss applications of all of these types of synchronization: secure com-827

munication by complete and phase synchronization, parameter estimation and prediction by generalized828

synchronization and anticipation by complete synchronization in delayed systems.829

In Sec. 4 synchronization on complex networks has been discussed with a focus on diffusively interacted830

chaotic oscillator networks, since such models are relevant to problems of interest, such as neural networks831

in the brain, arrays of coupled lasers and interacting pacemaker cells.832

In Sec. 5, stability results from the theory of nonautonomous differential equation have been used to833

establish conditions for stable global synchronization in networks of diffusively linearly coupled dissipa-834

tive dynamical systems. There are two microscopic conditions concerning the isolated dynamics and one835

macroscopic condition in terms of eigenvalues of the Laplacian matrix of the network. Stable synchro-836

nization is important and our detailed and rigorous discussion of the stability of synchronization cannot be837

found elsewhere in the literature. Stability conditions for general coupling functions and master stability838

function have been analyzed in Sec. 6.839
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Synchronization remains a topic of active research. Many important questions remain open, such as840

putting the theory phase synchronization on a solid mathematical foundation. Section 6.2.1 discusses topi-841

cal research questions. We hope to have succeeded preparing the reader to appreciate some of the challenges842

and opportunities in this exciting field of research and a basis to contribute to future developments.843
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Appendix A. List of frequently used notions and abbreviations851

Table of notions852

| · | absolute value

‖ · ‖ norm

δi j Kroneker delta

G graph

L Laplacian matrix

A adjacency matrix

I identity matrix

H coupling function

1 vector whose every components is 1

α coupling strength

αc critical coupling strength for synchronization

f isolated dynamics (vector field)

Λ Maximum Lyapunov exponent

λ2 spectral gap: the second minimum eigenvalue of Laplacian matrix

Df Jacobian matrix of f

φ phase

t time

a,b and c parameters of Rössler system

σ ,ρ and β parameters of Lorenz system

n dimension of vector fields

i and j natural numbers

N system size of networks

M total number of links

ki degree of i-th node

d diameter of a network

853

Table of abbreviations854

CS complete synchronization

PS phase synchronization

GS generalized synchronization

AS anticipating synchronization

ER Erdös - Renyi network

SF Scale-free network

SW Small world network

BA Barabasi - Albert network

855

Appendix B. Lyapunov exponent856

Sensitive dependence on initial conditions is one of the main characteristics of chaotic systems. The main857

idea is that nearby orbits diverge at an exponential rate. This rate is called Lyapunov exponents. In this858

Appendix, we provide the basic notions on the theory of Lyapunov exponents.859

If we have a nonlinear equation we can study the properties of a given solution s by linearizing the860

dynamics around the orbit, as we have done in Sec 2.2. This procedure leads to a linear nonautonomous861

equation862
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v′ = A(t)v

where A is continuous and bounded matrix function. The goal is to study the behaviour of solutions. Typ-863

ically solving the equation explicitly is impossible. So the theory of Lyapunov exponents plays a major864

role.865

Let v : R→ R
n be a solution v′ = A(t)v and T(t,s) is the fundamental matrix. The Lyapunov exponent866

of the solution is defined as867

λ (v) = lim
t→∞

1

t
ln‖T(t,s)v(s)‖

We also define λ (0) =−∞. The largest Lyapunov exponents is our main object of study and is given by868

Λ = lim
t→∞

1

t
ln‖Π(t,s)‖ .

The maximum Lyapunov exponent Λ determines the behaviour of solutions asymptotically because869

‖v(t)‖<Cεe(Λ+ε)t

If Λ < 0, the trivial solution v(t) = 0 is asymptotically stable. Lyapunov exponents generalizes stability870

criteria for autonomous (given by eigenvalues) and periodic equations (given by Floquet exponents).871

Lemma B.1: Let A ∈ Mat (n) and v be an eigenvector of Av = βv. Then λ (v) = β .872

If all λ (v) < 0, we have maxv {λ (v)} = Λ < 0, and the trivial solution is asymptotically stable. The873

Lyapunov exponent also generalizes the Floquet exponents.874

Lemma B.2: Let A(t) be a periodic matrix by the Floquet representation we have T(t,s) =875

P(t,s)e(t−s)Q(s). Let v be an eigenvector of Q(s), then λ (v) is an eigenvalue of Q(s).876

Hence, Lyapunov exponents are the eigenvalues of the monodromy matrix Q. Although, for the synchro-877

nization analysis we care about the maximal Lyapunov exponents, it is important to know that there are at878

most n distinct Lyapunov exponents because the set X = {v(t) |λ (v)≤ α} is a vector space.879

Appendix C. Lyapunov Function880

One of the main techniques to tackle stability of nonlinear system is the Lyapunov function method. The881

method by Lyapunov allows us to obtain the stability without finding the trajectories by studying properties882

of the Lyapunov function. We consider a dynamical system is modelled by a differential equation883

ẋ =
dx

dt
= f(x) (C1)

We will study notions relative to connected nonempty subsets Ω of Rm. A function V : Rm → R is said

to be positive definite with respect to the set B if V (x)> 0 for all x ∈ R
q\Ω. It is radially unbounded if

lim
‖x‖→∞

V (x) = ∞.
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Note that this condition guarantees that all level sets of V are bounded. This fact plays a central role in the

analysis. We also define V ′ : Rm → R as

V ′(x) = ∇V (x) · f(x).

where · denotes the Euclidean inner product. This definition agrees with the time derivative along the

trajectories. That is, if x(t) is a solution of Eq. (C1), then by the chain rule

V ′(x(t)) = ∇V (x(t)) · f(x(t))

This has a nice geometric interpretation. Since ∇V (x(t)) is perpendicular to the level set of V if V ′(x(t))< 0884

it means that the vector field is point inwards the level set and trajectories will enter the level set and never885

leave it. Repeating the argument we obtain stability as the following statement shows886

Theorem 4 (Lyapunov): Let V : Rn → R be radially unbounded and positive definite with respect to the

set Ω ⊂ D. Assume that

V ′(x)< 0 for all x ∈ R
n\Ω

Then all trajectories of Eq. (C1) eventually enter the set Ω, in other words, the system is dissipative.887

There are also converse Lyapunov theorems [68]. Typically if the system is dissipative (and have nice888

properties) then there exists a Lyapunov function.889

Appendix D. Chaos in Lorenz system890

In order to understand the behaviour of a continuous system, we can use the concept of a Poincaré section891

– a transversal surface to the flow. This method was developed by Henri Poincaré in 1890s. The crossing892

points are a set of discrete numbers and this number sequence is called Poincaré map. We can study the893

structure of the crossings of the trajectory to the surface. This reduces the dimension of the system by 1. The894

structure of crossing points between the plane and the trajectory determines the behaviour of the system.895

For example, if the trajectory cross the section always at same k-coordinate points and repeat these points896

in the same order then the system is periodic so-called period-k.897

The maxima of z-component of the Lorenz system, which is Poincaré section of velocities, graphically898

show the chaotic regime clearly. The governing equation of the Poincaré map ({zn}) can be plotted as zn vs899

zn+1 (Fig. D1 (a)) which resembles the tent map function (Fig. D1 (b)). The tent map is given by900

f (xn) = xn+1 =

{

2xn 0 ≤ xn ≤ 1/2

2−2xn 1/2 < xn ≤ 1.

Lyapunov exponent of the tent map901

Λ = lim
t→∞

1

t
ln‖D f (x)‖ (D1)

where D f is the Jacobian of f and ‖D f (x)‖ = 2 for all x 6= 1/2 since the function is not differentiable at902

x = 1/2. Therefore the Lyapunov exponent is Λ = ln2 and according to the positive Lyapunov exponent,903

the behaviour of the system is chaotic.904

The definition of chaos given by Devaney is the the following let X be a metric space and a continuous905

map f : X → X is chaotic if906
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(b) Tent map

Figure D1.: Similarity between Poincaré map of Lorenz system and the tent map.

(1) f is transitive (indecomposability); that is any non-empty intervals U,V ⊂ X there exist a natural907

number k such that f k(U)∩V . The transitivity condition means that X cannot be split into two open908

invariant sets.909

(2) the periodic trajectories of f are dense in X . So, a subset contains infinitely many periodic points.910

(3) f has sensitive dependence on initial conditions (unpredictability); that is if there is an infinitesimal911

distance δ0 between any two point x,y ∈ X and there exists a nonnegative number k such that after912

n iterations the distance between f n(x) and f n(y) is larger than δn > δ0. These nearly started orbits913

diverge from each other at a rate Λ (see Appendix B).914

More details can be found in the reference [49].915

Appendix E. Mathematical Structure of Generalized Synchronization916

For completeness, we include this brief discussion of the mathematical structure of GS and it may be

skipped without harm to the remaining sections. Again lets consider the ψ : Rm → R
n and the manifold

M = {(x,y) ∈ R
n ×R

m : y = ψ(x)} ⊂ R
n+m.

GS corresponds to the case where M is normally attracting. Lets review the notion of normally attracting917

invariant manifold (NAIM). M is normally attracting if it is invariant under the flow Φ (of the full system)918

and the dynamics in the directions normal to M is contracting stronger than in direction tangential to M.919

If M is a NAIM for the system F . Then there exist locally invariant stable manifolds W s
loc(M) such that920

W s
loc(M) is tangent to T M ⊕Es at M and Ws(M) ∈ Cr. Moreover, W s

loc(M) consists of all points near M921

whose forward orbit converges to M at rate e−ηt . For each y ∈ Ws(M) shadows a point x ∈ M such that922

y ∈W s
loc(x) and923

‖Φt(y)−Φt(x)‖ ≤Ce−ηt‖y−x‖ (E1)

Since the orbits of points x0,x1 ∈ M cannot approach each other that fast, we can characterize points

y ∈W s
loc(x) precisely as those that satisfy Eq. (E1). Lets consider consider the straithening of the manifold.
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That is, we introduce new coordinates

u = y−ψ(x)

in this coordinates the manifold corresponds to the x axis and u are the normal directions to M. Lets take

two points u1,u0 ∈W s
loc(x) then

ui = yi −ψ(x)⇒ u1 −u0 = y1 − y0

Hence, if

‖y1 − y0‖ ≤ Ke−ηt

and η is larger than the smallest Lyapunov exponents of the driver in modulus the manifold M will be924

normally attracting, according to condition (3). In fact, ψ will be differentiable. Another important fact to925

the mention is that NAIM persist under small perturbations. For us this means that once we obtain GS small926

perturbations such as increasing the coupling strength will be destroy GS [34, 35]. If the condition is not927

satisfied then ψ won’t be a NAIM. However, it may still happen that when r = 0 and M is attracting. In this928

case, ψ is only continuous. This is called strong and weak generalized synchronization [54].929

Back to our Diffusively driven oscillator. In Sec. 2.4.1 we showed the contraction rate between two

nearby trajectories is

η = αλmin −‖Dg‖

On the other hand, the smallest Lyapunov exponent of the driver is at most −‖Df‖, hence the condition

for normal attraction is

η > ‖Df‖⇒ α >
‖Df‖+‖Dg‖

λmin

This gives the bound for M to be NAIM.930
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