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Abstract

When a transmission delay occurs in the interconnection of linearly coupled systems de-

scribed by ordinary differential equations (LCODEs), both synchronization and the final

synchronized state will vary. In this paper, mathematical analysis is presented on the syn-

chronization phenomena of LCODEs with a single coupling delay. Criteria are derived for

both local and global synchronization. It is known that addition to the dynamical behaviors

of the underlying uncoupled system and the coupling configuration, the coupling strength

and the coupling delay also play key roles on the stability of synchronization. Both theoret-

ical and numerical analysis indicate that under some conditions, if the coupling strength is

large enough, the coupled system can be completely synchronized for any coupling delays.

On the other hand, in some case, the coupled system can be synchronized if the coupling

delay is small enough.
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synchronization, Global synchronization
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1 Introduction and model description

Models of complex networks have been widely used to describe systems in science, en-

gineering, and nature. As an implicit assumption, these systems are regarded as a set of

interconnected individuals, in which a node is a fundamental unit with specific contents.

For each node, its behavior is determined by two factors: its own characteristics and the

influence of other nodes interconnecting it. Typical examples of complex networks include,

the Internet, World Wide Web (WWW), food webs, cellular and metabolic networks, etc

[1–3].

Linearly coupled ordinary differential equations (LCODEs) provide a large class of mod-

els that can be used to describe coupled systems with continuous time and state values, as

well as discrete spatial states. This class of dynamical systems have been intensively inves-

tigated as theoretical models of spatiotemporal phenomena in complex networks [4,5]. The

dynamical behavior of a network is governed by the following two mechanisms: the intrin-

sic nonlinear dynamics of each node and the diffusion due to the spatial coupling among

nodes. The LCODEs can be described as follows:

dxi(t)

dt
= f(xi(t)) + c

m
∑

j=1,j 6=i

aijΓ

[

xj(t) − xi(t)

]

, i = 1, · · · ,m, (1)

where xi(t) ∈ R
n denotes the state variable vector of the i-th node, i = 1, · · · ,m, f(·) :
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R
n → R

n is a differentiable function denoting the intrinsic dynamics of the uncoupled

system at each node, the scalar c is the coupling strength, aij ≥ 0 denotes the coupling

coefficient from node j to node i for i, j = 1, · · · ,m, i 6= j, and the n-dimensional diagonal

matrix Γ = diag{γ1, · · · , γn} denotes the inner connection at each node with γi ≥ 0, for all

i = 1, · · · , n (see [3,6,7]). It means that two nodes are connected by their i-th component

where γi > 0.

Many complicated dynamical behaviors of coupled oscillators have been studied [8], where

the synchronization phenomenon has been a focal topic for research [9]. In mathematics,

there are various concepts of synchronization, for example, phase synchronization, lag syn-

chronization, partial synchronization, generalized synchronization (see [9,10]). In this pa-

per, we only consider complete synchronization, defined as follows: if lim
t→∞

|xj(t)−xi(t)| =

0 holds for all i, j = 1, · · · ,m, where | · | denotes some norm, then the coupled system is

said to be completely synchronized. For simplicity, this is referred to synchronization in this

paper.

Recently, synchronization of coupled dynamical networks has attracted increasing attention

in various research fields. In [11–13], the authors presented the master stability function

based on the transverse Lyapunov exponents to study local synchronization. In [14–16],

the authors investigated global synchronization of coupled nonlinear dynamical systems by

introducing a distance to synchronization with some structural matrix. In [17], the authors

presented an approach to define Lyapunov function by the distance from [x1, x2, · · · , xm] to

its projection on the synchronization space. Synchronization of randomly connected com-

plex networks such as small-world and scale-free networks were studied in [6,7].

Due to the finiteness of signal transmission and switching speeds, coupling delay in a real

network is inevitable [18,19]. Synchronization of two chaotic systems in the master-slaver

configuration with coupling delays has been widely studied in the last two decades [20–25].

In [26], the authors studied synchronization of three bidirectionally globally coupled hyper-

chaotic systems. In [27,28], the authors extended the master stability function methodology
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to investigate synchronization of the following coupled oscillators with coupling delays:

dxi(t)

dt
= f(xi(t)) + c

m
∑

j=1

aijH(xj(t− τ)). (2)

where H(·) can be some coupling function and τ denotes the coupling delay. Moreover, in

[27], the authors revealed the phenomenon that delay can enhance synchronization with a

small coupling strength.

With a coupling delay, the synchronization must be considered as a problem no longer in

a finite dimensional space. Instead, it should be studied in the infinite dimensional Banach

space C([−τ, 0],Rn). Attracting invariant manifold of delayed differential equations has

been studied in [29–31]. The authors proved that the differential equations with small delays

have Lipschitz inertial smooth manifolds under some mild conditions. General references

for invariant manifold of delayed differential equations can be referred to [32,33].

As formulated in [26], in this paper, we consider the case that a coupling delay occurs when

the signals from the each nodes are transmitted to its interconnected nodes. In this case, the

LCODEs with a coupling delay are described as follows:

dxi(t)

dt
= f(xi(t)) + c

m
∑

j=1,j 6=i

aijΓ

[

xj(t− τ) − xi(t)

]

. (3)

We define the set S =

{

x = [x1⊤(θ), · · · ,

xm⊤

(θ)]⊤ : xi(θ) ∈ Cτ , x
i(θ) = xj(θ), i, j = 1, 2 . . . , and θ ∈ [−τ, 0]

}

as the syn-

chronization space for the LCODEs with a coupling delay τ , where ⊤ denotes the matrix

transpose and Cτ denotes the Banach space C([−τ, 0],Rn).

In case that the LCODEs reach synchronization, i.e., x1(t) = x2(t) = · · · = xm(t) = s(t),

we have the following synchronized state equation:

ds(t)

dt
= f(s(t)) + caiΓ

[

s(t− τ) − s(t)

]

, i = 1, · · · ,m (4)
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where ai =
m
∑

j=1,j 6=i
aij . Obviously, the synchronized state s(t) is uniform, i.e., the synchro-

nization space S is invariant for the coupled system (3), if and only if a1 = a2 = · · · = am.

Therefore, to realize complete synchronization of the coupled system (3), the assumption

a1 = a2 = · · · = am must be imposed.

By these explanations, in the sequel, we study the following coupled system:

dxi(t)

dt
= f(xi(t)) + c

m
∑

j=1,j 6=i

aijΓ

[

xj(t− τ) − xi(t)

]

, i = 1, · · · ,m (5)

where xi(t) = [xi
1(t), · · · , x

i
n(t)]⊤ ∈ R

n denotes the n-dimensional state variable of the

i-th node, i = 1, · · · ,m, f : R
n → R

n is a differential function of the intrinsic system, c is

the coupling strength, Γ = diag{γ1, · · · , γn} is the inner connection diagonal matrix with

γi ≥ 0, t = 1, · · · ,m, aij ≥ 0, for all i, j = 1, · · · ,m, i 6= j, is the coupling coefficient from

node j to node i, and τ ≥ 0 is the coupling delay. We assume that
m
∑

j=1,j 6=i
aij = 1, for all i =

1, · · · ,m and put the uniform row sum ai into the coupling strength c. We should point out

here why parameters c and Γ are necessary. First, since on each node, the dynamical system

is also high dimensional, γj > 0 indicates that each node is connected to its neighbors by

the i-th component. Second, we separate the row sum aside aij to emphasize the sense of the

coupling strength c. As the coupling matrix A = (aij) denotes the coupling configuration

of the dynamical network, c denotes the coupling strength which can be adjusted out of

the structure of the network. Thus, c has important engineering and physical sense if we

consider the control and physical problem of synchronization [6,11].

Let aii = −1 for all i = 1, · · · ,m and we have the following equivalent form of the coupled

system (5):

dxi(t)

dt
= f(xi(t)) + c

m
∑

j=1

aijx
j(t− τ) + c

[

xi(t− τ) − xi(t)

]

, i = 1, · · · ,m (6)

Without assuming symmetry and irreducibility for the coupling configuration, we study

the synchronization problem of the LCODE systems (6) with a coupling delay. In the syn-
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chronization space S, we define a suitable manifold, which is different from the intrinsic

invariant manifold studied in [29–31]. We extend the master stability function methodology

to infinite dimensional Banach space. The corresponding transverse Lyapunov spectra can

be utilized to analyze local synchronization. Also, we derive qualitative criteria guarantee-

ing local synchronization. From these criteria, one can see that a large coupling strength and

a small coupling delay may often imply synchronization easily. However, it is not always

so since the dynamical behaviors of the synchronized state also depend on the parameters c

and τ .

Furthermore, we extend the methodology introduced in [17] to the delayed coupled systems.

With the left eigenvector of the coupling matrix associated with eigenvalue 0, we define a

projection of the spatial states on the synchronization space and some special functionals

of the difference between the spatial states and its projection. These functionals can be re-

garded as potentials of the spatial states to the synchronization space. If this functional is a

Lyapunov functional, then we can obtain global synchronization. Based on these ideas, for

some class of functions f(·), we present criteria guaranteeing global synchronization. Some

criteria are independent of the coupling delay τ . That is, under some conditions, the cou-

pled system can be globally synchronized no matter how large the coupling delay is. Other

criteria depend on τ . That is, for some smaller c, the coupled system can be globally syn-

chronized for a small enough τ . These two phenomena can also be observed by numerical

examples.

We organize this paper in the following way. In section 2, we present some definitions,

lemmas, and denotations that will be useful throughout the paper. We then investigate the

local and global synchronization in section 3 and 4, respectively. We present some numerical

illustrations in section 5 to verify the theoretical results and conclude the paper in section 6.

6



2 Preliminaries

In this section, we present some definitions, notations and lemmas, which will be useful

throughout the paper. The vector-valued function x(t, φ) = [x1⊤(t), · · · , xm⊤

(t)]⊤ ∈ R
nm

is used to denote the solution of system (6) satisfying initial conditions

xi(θ) = φi(θ), for i = 1, 2, . . . ,m θ ∈ [−τ, 0] (7)

where φ = [φ1(θ), · · · , φm(θ)] with φi(θ) ∈ Cτ . Sometimes, x(t, φ) is denoted by x(t). Cτ

denotesCτ ×Cτ ×· · ·×Cτ , the Cartesian product ofmCτ . And, xt(θ) = x(t+θ) denotes an

element in Cτ . |v| denotes some norm of a vector v; especially, |v|2 denotes the 2-norm of v

by |v|2 =

√

n
∑

k=1
v2

k. Then, the norm of matrix |A| can be induced by vector norm. ‖φ‖ denotes

the maximum norm of a vector-value function belonging to Cτ by ‖φ‖ = sup
θ∈[−τ,0]

|φ(θ)|.

And, In denotes the identity matrix with dimension n and Cτ denotes Cτ ×Cτ × · · · ×Cτ ,

the Cartesian product of m Cτ .

Definition 1 The coupled system (6) is locally exponentially synchronized, if there exist

a compact set A ⊂ Cτ , δ > 0, α > 0, T > 0, M > 0 such that for any φ = [φ1, · · · , φm]

satisfying dist(φi,A) ≤ δ, where dist(·, ·) denotes the Hausdorff distance, and ‖φi−φj‖ ≤

δ for all i, j = 1, · · · ,m, we have

‖xi
t − xj

t‖ ≤Me−αt, for all i, j = 1, · · · ,m, t > T. (8)

Definition 2 The coupled system (6) is globally exponentially synchronized, if there exists

α > 0 such that for any initial condition φi ∈ Cτ , i = 1, · · · ,m, there exists M > 0

satisfying

‖xi
t − xj

t‖ ≤Me−αt (9)

for all t ≥ 0 and i, j = 1, · · · ,m.

Definition 3 Function class Quad(P,D, α): We say f ∈ Quad(P,D, α), where P =

diag{p1, · · · , pn} is a positive definite diagonal matrix, D = diag{d1, · · · , dn} is a diago-
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nal matrix, and α > 0, if and only if

(x− y)⊤P [f(x) − f(y) −Dx+Dy] ≤ −α(x− y)⊤(x− y)

holds for any x, y ∈ R
n.

Definition 4 Function class H(M): We say f ∈ H(M), where M > 0, if and only if

[

f(x) − f(y)

]⊤[

f(x) − f(y)

]

≤M2(x− y)⊤(x− y)

holds for any x, y ∈ R
n.

For the coupling matrix A in system (6), we give the following constraints.

Definition 5 We say A ∈ A1, if matrix A = (aij) ∈ R
m,m satisfies: (1). aij ≥ 0, for all

i 6= j; aii = −1; (2).
m
∑

j=1
aij = 0, for all i = 1, · · · ,m; (3). rank(A) = m− 1.

As indicated in [15], the coupling matrix A can be regarded as a directed weighted graph

G = [V,E,W ]. V denotes the node set which can be ordered by 1, 2, · · · ,m; edge e(i, j) ∈

E denotes the edge from node j to i which is supposed to be simple (without loops and

multiple edges); W = (wij) denotes the weight set: wij = aij , for all i 6= j. Thus, the

coupling matrix A can be regarded the Laplacian of weighted graph G. For example, nor-

malized Laplacian of a graph: I −D−1B where D denotes the degree diagonal matrix and

B denotes the adjacent matrix of a graph. And, A ∈ A1 if and only if the corresponding

graph must have a spanning tree [15].

Definition 6 We say A ∈ A2, if matrix A = (aij) ∈ R
m,m satisfies: (1). aij ≥ 0, for all

i 6= j; aii = −1; (2).
m
∑

j=1
aij = 0, for all i = 1, · · · ,m; (3). A is irreducible.

It can be seen that A1 ⊃ A2. For the matrix class A1, by Gershgorin disc theorem [34] and

Perron-Frobenius theory [35], we have the following lemma.

Lemma 1 Suppose A ∈ A1. Then

(1) [1, 1, · · · , 1]⊤ is the right eigenvector of A corresponding to eigenvalue 0 with multi-
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plicity 1, and the other eigenvalues λi satisfy Re(λi) < 0 and |1 + λi| ≤ 1;

(2) the left eigenvector ofA corresponding to eigenvalue 0: ξ = [ξ1, ξ2, · · · , ξm] ∈ R
m has

the following properties: it is non-zero (without loss of generality, assume
m
∑

i=1
ξi = 1)

and its multiplicity is 1; all ξi ≥ 0, i = 1, · · · ,m; more precisely,

(a) A is irreducible if and only if ξi > 0 for all i = 1, · · · ,m;

(b) A is reducible if and only if for some i, ξi = 0, and in this case, by suitable rear-

rangement, one can assume that ξ⊤ = [ξ⊤+ , ξ
⊤
0 ], where ξ+ = [ξ1, ξ2, · · · , ξp]

⊤ ∈ R
p

with all ξi > 0, i = 1, · · · , p; ξ0 = [ξp+1, ξp+2, · · · , ξm]⊤ ∈ R
m−p with all ξj = 0,

p + 1 ≤ j ≤ m, and A can be rewritten as













A11 A12

A21 A22













, where A11 ∈ R
p,p is

irreducible and A12 = 0.

Let ξ = [ξ1, · · · , ξm] ∈ R
m be the left eigenvector of the coupling matrix A ∈ A1 cor-

responding to eigenvalue 0, and satisfy
m
∑

i=1
ξi = 1, ξi ≥ 0, for all i = 1, · · · ,m. We de-

fine a weighted average x̄(t) =
m
∑

i=1
ξix

i(t) for {x1(t), · · · , xm(t)} with ξ. We also denote

∆xi(t) = xi(t) − x̄(t) and

x̂(t) = [x̄⊤(t), x̄⊤(t), · · · , x̄⊤(t)]⊤ ∈ R
nm, ∆x(t) = [∆x1⊤(t), · · · ,∆xm⊤

(t)] ∈ R
nm

It can be seen that x(t) = x̂(t) + ∆x(t) and x̂(t) ∈ S. By the definition of x̄(t), we have
m
∑

i=1
ξi∆x

i(t) = 0. Thus, we define the transverse space: L =

{

[φ1⊤ , · · · , φm⊤

]⊤ : φi ∈

Cτ and
m
∑

i=1
ξiφ

i(θ) = 0 holds for all i = 1, · · · ,m and θ ∈ [−τ, 0]

}

, which is used to

describe the distance between xt and the synchronization space S. It is clear that ∆xt ∈

L. This implies that Cτ = S + L. If we can prove ∆xt converges to zero when t →

∞ (equivalently ∆x(t) → 0), then the synchronization is guaranteed. This is the main

methodology for analyzing the synchronization used in this paper. In particular, for R
m, we

denote L =

{

[u1, u2, · · · , um]⊤ ∈ R
m :

m
∑

i=1
ξiui = 0

}

as a subspace of R
m.
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3 Local Synchronization

In this section, we discuss local synchronization of the LCODEs with a coupling delay. Let

xi(t) = s(t), i = 1, · · · ,m, and we can write a synchronized state as

ds(t)

dt
= f(s(t)) + cΓ

[

s(t− τ) − s(t)

]

(10)

Suppose system (10) has an attractor A ∈ Cτ . Equivalently,

(1). A is a compact set in the Banach space Cτ ;

(2). A is attracting, i.e, for any initial φ ∈ Cτ near A enough, the trajectory will converge

into A;

(3). A is invariant, i.e, any trajectory with initial condition in A will never go out of A;

(4). A is minimal, i.e., A does not have any non-trivial closed attracting set.

Generally, A can be a fixed point, a limit circle, or a chaotic attractor defined for infinite

dimensional systems [36]. Here, we extend this concept to the synchronization space S by

defining the (diagonal) synchronization manifold U = {[φ⊤, φ⊤, · · · , φ⊤]⊤ : φ ∈ A}.

Hence, the local synchronization can be defined by the way that the synchronization mani-

fold U is asymptotically stable for the space Cτ .

First, we present following proposition, which guarantees the existence of a global attractor

for the delayed system (10).

Proposition 1 Suppose Γ = In. If there exists K > 0 such that for any ǫ > 0, there there

exists δ(ǫ) > 0 such that

x⊤f(x) < −δ(ǫ) (11)

holds for all |x| > K + ǫ, then the system (10) has a global compact attractor.

This proposition comes from theorem 18 in [37] and the proof will be given in Appendix 1.
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Suppose that system (10) has an attractor and s(t) is a solution of (10) located in this at-

tractor. By the linearization technique, the variational equation with δxi = xi(t) − s(t) is

written as follows:

dδxi(t)

dt
= Df(s(t))δxi(t) + c

m
∑

j=1

aijΓδx
j(t− τ) + cΓ

[

δxi(t− τ) − δxi(t)

]

, (12)

where Df(s(t)) is the Jacobian matrix of f at s(t) and i = 1, · · · ,m. Denote δX(t) =

[δx1(t), · · · , δxm(t)] ∈ R
n,m. Then

dδX(t)

dt
= Df(s(t))δX(t) + cΓδX(t− τ)A⊤ + cΓ

[

δX(t− τ) − δX(t)

]

(13)

Let A⊤ = V JV −1 be the Jordan decomposition of A, where

J =

































J1

J2

. . .

Jl

































and Jordan blocks, J1, J2, · · · , Js are associated with the eigenvalues λ1 = 0, λ2, · · · , λm of

A. Let δY (t) = δX(t)V = {δy1(t), · · · , δym(t)}. Then, the variational equation of δY (t)

is

dδY (t)

dt
=

[

Df(s(t)) − cΓ

]

δY (t) + cΓδY (t− τ)(J + Im) (14)

Since the first column of V is the left eigenvector of A, δy1(t) can be regarded as variation

near the synchronization manifold U . Extending from the concept of the master stability

function introduced in [11], here the transverse Lyapunov exponents of the following varia-

tional systems in Banach space Cτ :
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dϕ(t)

dt
=

[

Df(s(t)) − cΓ

]

ϕ(t) + c(λk + 1)Γϕ(t− τ), k = 2, · · · ,m (15)

are utilized to analyze the local stability of the synchronization manifold.

Similar to the Lyapunov exponents defined in finite dimensional systems, we embed Cτ to

Hilbert space L2([−τ, 0],Rn). Let T t
k,sϕ0 = ϕ(t + θ), ϕ ∈ Cτ , be the flow through the

variational system (15) associated with eigenvalue λk with initial value ϕ(θ) = ϕ0(θ) ∈

Cτ ,θ ∈ [−τ, 0], and s(θ) ∈ A. Define lim
t→∞

(T t∗
k,sT

t
k,s)

1/2t = Λk,s, where ∗ denotes the

conjugate of a linear operator in the Hilbert space L2([−τ, 0],Rn). Then, the spectra of

the operator Λk,s denote the Lyapunov spectra of the variational system (15). Since Cτ

is separable, it was shown in [38] that under some conditions, Λk,s has discrete spectra

µk
1,s > µk

2,s > · · · > µk
pk(s),s, where pk(s) depends on the trajectory s(t) and can be +∞.

For k = 1, the corresponding Lyapunov spectra are just those of the synchronized state

system (10). Let mle = sup
s∈A

sup
k≥2

log{µk
1,s} denote the largest Lyapunov exponent of the

variational system (15) in the transverse space. The negativity of mle guarantees that all the

transverse eigenmodes are stable. In other words, the coupled system (6) is locally synchro-

nized if mle < 0. It is clear that mle is a function of λk, k = 2, · · · ,m, the coupling delay

τ , and the coupling strength c and can be regarded as the master stability function of the

LCODEs with a coupling delay (6).

In [36], the author presented a numerical method to compute the Lyapunov spectra of a de-

layed variational system by splitting function φ ∈ Cτ into a vector [φ(t− (N−1)∆t), φ(t−

(N − 2)∆t), · · · , φ(t)], where ∆t = τ/(N − 1). Thus, the evolution of the infinite dimen-

sional system can be transformed into a difference system with high dimension. By this way,

we can compute the Lyapunov exponent of a delayed system.

Despite that transverse Lyapunov exponents provide a viable numerical method to study

stability of the synchronization manifold, it is difficult qualitatively to show how synchro-

nization depends on parameters c, τ . Here, we introduce the following qualitative analysis

to explore this dependence.
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Theorem 1 Suppose that system (10) has an asymptotically stable attractor A and s(t) is

a solution of the coupled system (10) included in A. LetDf(s(t)) be the Jacobian of f(s(t)),

µ = lim
t→∞

|Df(s(t))|2, where < · > denotes the time average, k1 = lim
t→∞

|Df(s(t)) − cIn|2,

and k2 = cmax
k≥2

|1 + λk|. If the following inequality holds:

c>
µ

1 − max
k≥2

|1 + λk|
(16)

or the following two inequalities























β = cmin
k≥2

|Re(λk)|− < |Df(s(t))|2 >> 0

e2βττ < β
c(k1+k2)max

k≥2

|1+λk|

(17)

hold. Then the coupled system (6) is locally synchronized.

Proof is given in Appendix 2.

In our previous work [17], we pointed out that if s(t) is not included in A, the reasoning

above might fail. So, generally, without knowing the existence of the asymptotically stable

attractor A for the synchronized state system (10), we can replace s(t) by the weighted

average x̄(t) defined in section 2. Then, we have

Theorem 2 Suppose Df(x̄(t)) is the Jacobian of f at x̄(t), where x̄(t) is defined in

section 2. Let µ′ = lim
t→∞

|Df(x̄(t))|2, k′1 = lim
t→∞

|Df(x̄(t))− cIn|2, and k2 = cmax
k≥2

|1 + λk|.

If the following inequality holds:

c>
µ′

1 − max
k≥2

|1 + λk|
(18)

or the following two inequalities
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





















β′ = cmin
k≥2

|Re(λk)|− < |Df(x̄(t))|2 >> 0

e2β′ττ < β′

c(k′
1
+k2)max

k≥2

|1+λk|

(19)

hold. Then the coupled system (6) is locally synchronized.

In fact, by the definition, we have

dx̄(t)

dt
=

m
∑

k=1

ξk
dxk(t)

dt
=

m
∑

k=1

ξkf(xk(t, t)) + cΓ

[

x̄(t− τ) − x̄(t)

]

Since
∑m

i=1 ξi∆xi = 0, we have

m
∑

i=1

ξif(xi, t) − f(x̄, t) =
m
∑

i=1

ξi[f(xi, t) − f(x̄, t)]

=
m
∑

i=1

ξi[f
′(x̄, t) + o(1)]∆xi = f ′(x̄, t)

m
∑

i=1

ξi∆xi + o(‖∆x‖) = o(‖∆x‖)

Then, by the linearization technique, the variational equation of ∆xi can be written as fol-

lows:

d∆xi(t)

dt
= Df(x̄(t), t)∆xi(t) + c

m
∑

j=1

aijΓ∆xj(t− τ) + cΓ

[

∆xi(t− τ) − ∆xi(t)

]

(20)

which is of the same form with (13). The remaining is just a repetition of the proof of

theorem 1.

Remark 1

(1) In case A ∈ A1. By lemma 1, we have |1 + λk| ≤ 1 for all k ≥ 2. If f(·) is a globally

Lipschitz function, which implies µ can be estimated independent on c and τ , then for

sufficient large strength c, the coupled system can be synchronized with an arbitrary

coupling delay τ .

(2) From the inequality (16), one can use the quantity

cap := 1 − max
k=2,m

|1 + λk|

14



as an index to measure the synchronizability of a coupling configuration with an ar-

bitrary delay. The larger the cap is, the smaller the coupling strength c is needed to

synchronize the coupled system (6) no matter how large the coupling delay τ is.

(3) Because |1 + λk| ≥ 1 − |Re(λk)| holds for all k ≥ 2, the first inequality of (17) is

easier to be satisfied than (16). Furthermore, if τ = 0, one can see that inequalities

(17) can hold if c is large enough because of the existence of synchronized compact

attractor. According to the continuous dependence (see [32] for details), despite that c

could not guarantee the synchronization for any delays, it can synchronize the coupled

system with a small delay.

Remark 2 In fact, the synchronization of the coupled system (6) is of more complexity.

For example, as reported in [27], a large coupling delay might enhance synchronization in

coupled Hindmarsh-Rose (HR) neurons with coupling delay. This phenomenon is because

the synchronized state system (10) itself depends on parameters c and τ . Different delays

indicate different possible dynamics of the synchronization manifold. Further discussions

will be given in section 5 by the numerical way.

4 Global Synchronization

In section 3, we studied the local synchronization, i.e., the trajectory x(t) initiated near

the synchronization manifold U will move to U . Here, we should consider the case that

the trajectory will converge to the synchronization space S from any initial position. This

is named by global synchronization. First, we consider the case A ∈ A2, which implies

that the left eigenvector ξ = [ξ1, ξ2, · · · , ξm] of A associated with the eigenvalue 0 can be

assumed ξi > 0 for all i = 1, · · · ,m as well as
m
∑

i=1
ξi = 1, as mentioned in lemma 1.
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4.1 Irreducible coupling matrix

In this section, we assume that the coupling matrix is irreducible. The equation of ∆xi(t) =

xi(t) − x̄(t) can be written without linearlization as follows:

d∆xi(t)

dt
= f(xi(t)) − f(x̄(t)) −

m
∑

k=1

ξk

[

f(xk(t)) − f(x̄(t))

]

+ c
m
∑

j=1

aijΓ∆xj(t− τ) + cΓ

[

∆xi(t− τ) − ∆xi(t)

]

, i = 1, · · · ,m. (21)

Let

∆x(t) =























∆x1(t)

...

∆xm(t)























, ∆F (t) =























f(x1(t)) − f(x̄(t))

...

f(xm(t)) − f(x̄(t))























, Ξ =























ξ1 · · · ξm

...
...

...

ξ1 · · · ξm























P = diag{p1, · · · , pn} be some positive definite diagonal matrix, D = diag{d1, · · · , dn}

be a diagonal matrix, Λ = diag{ξ1, · · · , ξm}, and ⊗ be the Kronecker product. Moreover,

let

Ξ = Ξ ⊗ In A = A⊗ Γ Λ = Λ ⊗ In

P = Im ⊗ P D = Im ⊗D, I = Im ⊗ In, Γ = Im ⊗ Γ.

The equation (21) can be rewritten in the following matrix form:

d∆x(t)

dt
= (I − Λ)∆F (t) + cA∆x(t− τ) + cΓ

[

∆x(t− τ) − ∆x(t)

]

. (22)

Next, we introduce another expression for components of ∆x(t).

Let ∆xi(t) = [∆xi
1, · · · ,∆x

i
n(t)]⊤ ∈ R

n and define
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∆x̃j(t) = [∆x1
j(t), · · · ,∆x

m
j (t)]⊤ ∈ R

m, ∆x̃(t) =























∆x̃1(t)

...

∆x̃n(t).























It should be emphasized that ∆xt ∈ L, which implies ∆x̃j(t) ∈ L, holds for all j =

1, · · · ,m, where L and L are defined in section 2. Thus, the discussion of synchronization

can be focused on the component ∆x̃j(t) in the transverse subspace L. We will investigate

under which conditions it converges to zero.

Now, define a linear operator C mapping R
m−1 to L by

C =













Im−1

− ξ1
ξm

· · · − ξm−1

ξm













∈ R
m,m−1.

Then, we have CR
m−1 = L. The following theorem concerns the global synchronization

with an arbitrary delay τ .

Theorem 3 Suppose A ∈ A2. If there exist a positive definite diagonal matrix P =

diag{p1, · · · , pn}, a diagonal matrix D = diag{d1, · · · , dn}, and a positive constant α,

such that f ∈ Quad(D,P, α), and for any j = 1, · · · , n, there exists a positive definite

matrix Qj respectively such that the following linear matrix inequalities (LMIs)













2(dj − cγj)C
⊤ΛC + C⊤QjC cγjC

⊤Λ(A+ Im)C

cγjC
⊤(A⊤ + Im)ΛC −C⊤QjC













≤ 0 (23)

holds for all j = 1, · · · , n, then the coupled system (6) is globally exponentially synchro-

nized.

The Proof is given in Appendix 3. In particular, we have
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Corollary 1 Assume that there exist a positive definite diagonal matrix P = diag{p1, · · · , pn}

and a diagonal matrix D = diag{d1, · · · , dn} such that f ∈ Quad(D,P, α). Suppose σ is

a constant such that the following linear matrix inequality

(Im + A⊤)Λ(A+ Im) ≤ σ2Λ. (24)

holds on the subspace L. And























dj ≤ 0 if γj = 0

c ≥ dj

γj(1−σ)
if γj > 0

(25)

Then, the coupled system (6) is globally exponentially synchronized.

Proof: From theorem 3 and the Shur complement [39], the LMIs (23) are equivalent to

the following linear matrix equalities holding on the transverse subspace L:

Nj = 2(dj − cγj)Λ +Qj + γ2
j c

2(Im + A⊤)ΛQ−1
j Λ(A+ Im) < 0, j = 1, · · · , n

If γj = 0 and dj ≤ 0, then letting Qj = 0 we can obtain inequality (23) holds. Instead, if

γj > 0, we let Qj = ρjΛ. Then,

Nj = 2(dj − cγj)Λ + ρjΛ + ρ−1
j c2γ2

j (Im + A⊤)Λ(A+ Im)

≤

[

2(dj − cγj) + ρj + ρ−1
j c2γ2

jσ
2

]

Λ =

[

2dj − 2cγj(1 − σ)

]

Λ

picking ρj = cσγj . Therefore, if c ≥ dj

γj(1−σ)
, then the LMI (23) can hold. The corollary is a

direct consequence from theorem 2.

Remark 3 From corollary 1, one can see that if σ < 1, then the coupled system can be

globally exponentially synchronized for any coupling delays if c is large enough.

Next, we address how the global synchronization depends on the delay τ .

Rewrite equation (21) as follows:
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d∆x(t)

dt
= (I − Ξ)∆F (t) + cA∆x(t) + c(A + I)

∫ t

t−τ

d∆x(s)

ds
ds. (26)

Theorem 4 Suppose A ∈ A2. If there exist a positive definite diagonal matrix P =

diag{p1, · · · , pn}, a diagonal matrix D = diag{d1, · · · , dn}, α > 0, and M > 0, such that

(1) f ∈ Quad(D,P, α);

(2) f ∈ H(M);

(3)























dj ≤ 0 if γj = 0

c > max
u∈L, u6=0

dj |Λ
1/2u|

−γju⊤ΛAu
if γj > 0

;

(4) the delay τ <
√

a3

a1+a2a3

, where

a1 = 3c2|Λ|22|A+ Im|
2
2|P |

2
2

(

M2|Im − Ξ|22 + c2|A|22

)

a2 = 3c2|A+ Im|
2
2 a3 = α2(min

i
ξi)

2.

Then, the coupled system (6) is globally exponentially synchronized.

The proof is given in Appendix 4.

Remark 4 It can be seen (see [15]) that ΛA + A⊤Λ is negative definite in the subspace L

since A ∈ A2. Therefore, if A ∈ A2 and dj, γj > 0, then max
u∈L u6=0

dj |Λ
1/2u|

−γju⊤ΛAu
is a positive

number .

The following proposition explores that the conditions required in theorem 3 is stronger

than the third item in theorem 4.

Proposition 2 If the linear matrix inequalities (23) satisfy, then the inequalities in item

3 of theorem 4 hold.

Proof: By the Shur complement, the linear matrix inequalities (23) are equivalent to that

the following matrix inequalities hold on the subspace L:

Wj = 2(dj − cγj)Λ +Qj + c2γ2
j (Im + A⊤)ΛQ−1

j Λ(A+ Im) ≤ 0, j = 1, · · · , n(27)
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Also, by matrix inequality 0 ≤ (Q1/2 −Q−1/2Z)⊤(Q1/2 −Q−1/2Z), where Z = cγjΛ(A+

Im), we have Qj + c2γ2
j (Im + A⊤)ΛQ−1

j Λ(A + Im) ≥ 2cγj

[

Λ(A + Im)

]s

. Hence, Wj ≥

2(dj−cγj)Λ+2cγj

[

Λ(A+Im)

]s

= 2

[

Λ(cγjA+djIm)

]s

, whereM s = 1
2
(M+M⊤) denotes

the symmetric part of the matrix M . Therefore, the inequalities in item 3 of theorem 3 hold.

Remark 5 Proposition 2 implies that it is possible that the coupled system may not be

globally synchronized with any coupling delay but can be synchronized for a small coupling

delay.

4.2 Reducible coupling matrix

In many cases, the reducible coupling matrix should be investigated, for example, the master

slave system. For any reducible A ∈ A1, with a proper permutation, we can rewrite A in

the following upper-block-triangular matrix form (Frobenius form):

A =

































A1 A12 · · · A1m

0 A2 · · · A2m

...
...

. . .
...

0 0 · · · Aq

































(28)

where Aq is irreducible and −Aj , for j = 1, 2, · · · , q − 1, are all M -matrices (see [15]).

Denote the subsystem with respect to coupling matrix Al by subsystem Nl which has ml

nodes, l = 1, 2, · · · , q.

Noticing that subsystem Nq can be globally synchronized if the conditions in theorem 3

or 4 are satisfied. Synchronization of the whole coupled system with a reducible coupling

matrix is equivalent to that each subsystem with respect to coupling matrix Al, for l < q,

synchronizes with system Nq. More precisely, by induction, suppose that
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(1) subsystem Nq can be exponentially globally synchronized,

(2) for each 1 ≤ l ≤ q − 1, the collection of subsystems:

{

Nj : j = l + 1, l + 2, · · · , q

}

,

are all exponentially globally synchronized,

Then, we can conclude that the whole coupled system (5) can be globally exponentially

synchronized. In the following, we present some criteria for global synchronization of a

coupled system with a reducible coupling matrix. For subsystem Nl, assuming s(t) is the

synchronized state of subsystem Nj , j = l + 1, l + 2, · · · , q, satisfying

ds(t)

dt
= f(s(t)) + cΓ

[

s(t− τ) − s(t)

]

+O(e−ǫt)

for some positive constant ǫ. Then, we have

d

[

xi(t) − s(t)

]

dt
= f(xi(t)) − f(s(t)) + c

∑

j 6=i

aijΓ[xj(t− τ) − xi(t)]

−cΓ

[

s(t− τ) − s(t)

]

+O(e−ǫt)

=

[

f(xi(t)) − f(s(t))

]

+ c
∑

j∈Nl,j 6=i

aijΓ

[

xj(t− τ) − s(t− τ)

]

−cΓ

[

xi(t) − s(t)

]

+O(e−ǫt), i ∈ Nl. (29)

Define an ml ×ml matrix Âl as follows: (Âl)ij =























(Al)ij i 6= j

0 i = j

.

Theorem 5 Suppose that the coupling matrix A ∈ A1 has the form of (28), and the

following conditions are all satisfied:

(1) there exist a positive definite diagonal matrix P = diag{p1, · · · , pn}, a diagonal ma-

trix D = diag{d1, · · · , dn}, and a positive constant α, such that f ∈ Quad(D,P, α);

(2) for each j = 1, · · · , n, there exists a positive definite matrix Qq
j such that
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











2(dj − cγj)C
q⊤ΛqCq + Cq⊤Qq

jC
q cγjC

q⊤Λq(Aq + Im)Cq

cγjC
q⊤(A⊤

q + Im)ΛqCq −Cq⊤Qq
jC

q













< 0

where Λq = diag{ξq
1, · · · , ξ

q
mq

} is the positive definite diagonal matrix composing

of the components of the left eigenvector ξq = [ξq
1, · · · , ξ

q
mq

] of Aq associated with

eigenvalue 0, satisfying
mq
∑

i=1
ξq
i = 1 and ξq

i > 0, i = 1, 2, · · · ,mq, and

Cq =













Imq−1

−
ξq
1

ξq
mq

· · · −
ξq
mq−1

ξq
mq













∈ R
mq ,mq−1

is a linear operator transforming R
mq−1 to the transverse subspaceLq =

{

[v1, · · · , vmq ]
⊤ ∈

R
mq :

mq
∑

i=1
ξq
i vi = 0};

(3) for each l = 1, 2, · · · , q − 1, and each j = 1, · · · , n, there exist a positive definite

symmetric matrixQl
j and a positive definite diagonal matrixGl = diag{Gl

1, · · · , G
l
ml
}

such that the following LMIs hold:













2(dj − cγj)G
l +Ql

j cγjG
lÂl

cγjÂ
⊤
l G

l −Ql
j













< 0.

Then, the coupled system (6) with the reducible coupling matrix A is global exponentially

synchronized.

The proof is given in Appendix 5.

Remark 6 (1) All the conditions in item 2 guarantee that the subsystemNl can be globally

exponentially synchronized;

(2) The condition in item 3 guarantees the subsystemNl can be synchronized to subsystems

Nq step by step globally and exponentially.
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Futhermore, equation (45) can be rewritten as:

d∆xi(t)

dt
=

[

f(xi(t)) − f(s(t))

]

+ c
∑

j∈Nl,j 6=i

aijΓ∆xj(t) − cΓ∆xi(t)

−c
∑

j∈Nl,j 6=i

aijΓ
∫ t

t−τ

d∆xj(s)

ds
ds, i ∈ Nl.

Define an ml ×ml matrix Ăl by

(Ăl)ij =























(Al)ij i 6= j

−1 i = j

.

Similar to theorem 4, we give the following criteria for global synchronization depending

on the coupling delay τ .

Theorem 6 Suppose the reducible matrix A ∈ A2 has the form of (28). Assume that the

following conditions are satisfied:

(1) there exists a diagonal matrix D = diag{d1, · · · , dn}, a positive definite diagonal ma-

trix P = diag{p1, · · · , pn}, and a positive constant α, such that f ∈ Quad(D,P, α);

(2) there exists an M > 0 such that f ∈ H(M);

(3) for each j = 1, · · · , n,

C⊤{Λ(cγjAq + djImq)}
sC < 0

where Λ = diag{ξq
1, · · · , ξ

q
mq

},

C =













Imq−1

− ξ1
ξmq

· · · −
ξmq−1

ξmq













∈ R
mq ,mq−1

and ξq = [ξq
1, · · · , ξ

q
mq

]⊤ ∈ R
mq satisfying

mq
∑

j=1
ξq
j = 1, ξq

j > 0, for j = 1, · · · ,mq, and
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ξq⊤Aq = 0;

(4) for each l = 1, 2, · · · , q − 1 and j = 1, · · · , n, there exists a positive definite diagonal

matrix Gl = diag{Gl
1, · · · , G

l
ml
} such that

{Gl(cγjĂl + djIml
)}s < 0;

(5) the coupling delay τ is small enough.

Then, the coupled system (6) with the reducible coupling matrix A is globally exponentially

synchronized.

Since the proof is similar to that of theorems 4 and 5, it is omitted here and the delay

boundedness can be estimated in the way similar to that used in the proof of theorem 4.

5 Numerical Examples

In this section, we present several simulations to show how to apply the theoretical results

obtained above to judge whether a coupled system with coupling delay can be synchronized

and how the coupling delay and coupling strength influence the synchronization.

Example 1: Final synchronized state

The synchronized state equation is described as follows:

ds(t)

dt
= f(s(t)) + cΓ

[

s(t− τ) − s(t)

]

(30)

This is quite different from the case without coupling delay, where the synchronized state

equation is

ds(t)

dt
= f(s(t))
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One can see that both the coupling strength and the coupling delay heavily influence the

final state if the coupled system is synchronized.

Here, we use Lorenz system [40]











































dx1

dt
= σ[x2 − x1], σ = 16.0

dx2

dt
= (r − x3)x1 − x2, r = 40

dx3

dt
= −bx3 + x1x2, b = 4.0

(31)

Rössler system [41]











































dx1

dt
= (x2 + x3)

dx2

dt
= x1 + 1

5
x2

dx3

dt
= 1

5
+ x3(x1 − µ), µ = 5.7

(32)

and Chua’s circuit [42]











































dx
dt

= 9[y − 2
7
x− 3

14
(|x+ 1| − |x− 1|)]

dy
dt

= x− y + z

dz
dt

= −2
7
y

(33)

as the uncoupled system on each node and pick Γ = I3.

Figures 1, 2, and 3 show the dynamical behaviors of the coupled system (30) with different

coupling strength and delays. One can see that the dynamical behaviors of the coupled

system (30) depend heavily on the parameters c and τ . Some of these attractors are first

observed and need further investigation.
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Example 2: Local synchronization

In this simulation, we couple three nodes globally with a coupling delay as follows:

dxi(t)

dt
= f(xi(t)) +

c

2

3
∑

j=1,j 6=i

Γ[xj(t− τ) − xi(t)] i = 1, 2, 3 (34)

where xi(t) = [xi
1(t), x

i
2(t), x

i
3(t)]

⊤ ∈ R
3, i = 1, 2, 3, f(·) is defined in equation (31), (32),

or (33), respectively, and Γ = I3. We use the largest transverse Lyapunov exponent mle to

investigate how the local synchronization depends on the parameters c and τ .

In figures 4, 5, and 6, we use different colors to indicate the values of mle with different

coupling strengths and delays, where the intrinsic system is Lorenz system (31), Rössler

system (32), or Chua’s circuits (33), respectively.

It can be seen in figures 4 and 5 that a larger coupling strength c does not always indicate

synchronization. In figure 4 and more clearly in figure 5, one can see that mle < 0 only for

small delays in case c ≥ 10. If f(·) is global Lipschitzian like Chua’s circuits, a larger c

might imply synchronization easier as indicated in figure 6. Moreover, if c is large enough

as c ≥ 2 shown in figure 6, the coupled system can be synchronized in a large region of

the coupling delays. Interaction delay means communication asymmetry between connected

nodes. Intuitively, delay might prevent synchronization. However, the phenomena that delay

enhances synchronization occur in the region c ∈ [0, 1.5] and τ ∈ [9, 10] as indicated in

the figure 5, which was also reported in [27]. This should be also tightly connected to the

dynamical behaviors of the synchronized state (30). In figure 4, in the region c ∈ [10, 18],

synchronization and de-synchronization intersect, which might imply that synchronization

is very sensitive with respect to parameters. As our actual computation, the mle is very near

zero in these regions.
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Example 3: Global synchronization with an arbitrary delay for an irreducible coupling

In this part, we will illustrate how to apply theorem 3 to judge whether the coupled system

can be globally synchronized with any delays.

Consider four coupled Chua’s circuits with a coupling delay:

dxi(t)

dt
= f(xi(t)) + c

∑

j=1,j 6=i

aijΓ[xj(t− τ) − xi(t)], i = 1, 2, 3, 4 (35)

where xi(t) = [xi
1(t), x

i
2(t), x

i
3(t)]

⊤ ∈ R
3, i = 1, 2, 3, 4, Γ = I3, f(·) is defined in (33), and

the coupling matrix A ∈ R
4,4 is

A =

































−1 0.2046 0.4560 0.3394

0.5761 −1 0.1636 0.2603

0.2204 0.4171 −1 0.3625

0.2945 0.3636 0.3418 −1

































.

Its left eigenvector of A associated with eigenvalue 0 is (after normalization) ξ = [0.2668,

0.2452, 0.2449, 0.2431]⊤.

First, for the function f(·) defined in (33), we have

[Df⊤(x) +Df(x)]/2 ≤ R =























1.2857 5.0000 0

5.0000 −1.0000 −6.6429

0 −6.6429 0























of which eigenvalues are −8.6325, 0.8107, 8.1075. Therefore, letting P = I3, D = d · I3,

where d > 8.1075, we conclude that f ∈ Quad(I3, D, α) for some positive constant α.
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Next, we search the low bound of the coupling strength ccr such that the coupled system (35)

can be synchronized by verifying the linear matrix equalities (23). It is equivalent to solve

the following Linear Matrix Inequalities (LMIs) (for more details about LMIs, see [39]):

minimize c

subject to











































there exists a positive definite matrix Q

Z1 =













2(d− c)C⊤ΛC + C⊤QC cC⊤Λ(A+ Im)C

cC⊤(A⊤ + Im)ΛC −C⊤QC













< 0

where Λ = diag{ξ}, and

C =

































1 0 0

0 1 0

0 0 1

− ξ1
ξ4

− ξ2
ξ4

− ξ3
ξ4

































=

































1 0 0

0 1 0

0 0 1

−1.0974 −1.0082 1.0071

































.

By the Matlab LMI and Control Toolboxes, we obtain ccr = 14.1150 and

Q = 1.0 × 103

































1.5047 1.3810 1.3793 1.3696

1.3810 1.2698 1.2674 1.2585

1.3793 1.2674 1.2676 1.2570

1.3696 1.2585 1.2570 1.2497

































.

Thus, the eigenvalues of Z1 are −11.1226,−3.8707,−2.7903,−0.9655,−0.0113,−0.0003,

which implies that the conditions of theorem 3 are satisfied. Therefore, if c > ccr fixed, the

coupled Chua’s circuits (35) can be globally synchronized with any coupling delay. We use
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the following quantity

err(t) =
1

t

∫ t

0

m
∑

j=1

log |xj(θ) − x̄(θ)|2dθ

to measure the synchronization, where x̄(t) is the weighted average as defined before and

the integration is computed by discrete method. Picking c = 14.1200 > ccr, figure 7 shows

the values of err(t). One can see that err(t) converges to zero for any delay τ ∈ [0, 15].

That is, the coupled system (35) can be synchronized for any delay τ ∈ [0, 15].

Example 4: Global synchronization depending on the coupling delay

In this simulation, the coupled system (35) is used here to verify the effectiveness of The-

orem 4. We will show that for some coupling strength c, the coupled system (35) can be

globally synchronized for small coupling delays.

By careful estimations, we have f ∈ Quad(P,D, α) with P = I3, D = 10 · I3 and α =

0.6218. Moreover, f ∈ H(M) with M = 16.9754.

To apply Theorem 4, we need to solve the following LMI:

min c

subject to C⊤{Λ(cA+D)}C < 0.

By the Matlab LMI and Control Toolboxes, we obtain cmin = 7.9335, which is much less

than ccr obtained in example 3. This implies that we can estimate the delay upper-bound by

Theorem 4. Figure 8 indicates the variance of theoretically permitted delay upper-bounds

for different coupling strength c obtained by Theorem 3. We use the following quantity to

measure global synchronization:

syn = err(T ), T = 200

The initial data are randomly chosen in a ball of radius 10. Figure 9 indicates that for some
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smaller c, the coupled system (35) can be globally synchronized only for a small delay τ .

Theorem 4 explores some aspects how the global synchronization depends on the parame-

ters c and τ . However, it is inaccurate as shown in the figures 8 and 9. The region, where

synchronization can be realized is much bigger than that given by Theorem 4. It is an inter-

esting open problem to give more accurate estimation of the region rigorously.

Example 5: Global synchronization with reducible coupling matrix

In this part, we show how to apply theorem 5 for a reducible coupling matrix B. The cou-

pling matrix is assumed as

B =













A11 A22

0 A













where A is the same as that examples 3 and 4, and

A11 =













−1 0.0368

0.1285 −1













A12 =













0.1651 0.3459 0.4360 0.0162

0.3035 0.5043 0.0390 0.0247













.

The corresponding terms in theorem 4 are given by Gl = I2 and

Â =













0 0.0368

0.1285 0













.

The uncoupled systems are Hopfield neural networks, which can be modelled as follows:

dv

dt
= f(v) = −Dv + Tg(v) (36)

where v = [v1, v2, v3]
⊤ ∈ R

3,
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T =























1.2500 −3.200 −3.200

−3.200 1.1000 −4.4000

−3.200 4.4000 1.000























.

D = I3, and g(v) = [g(v1), g(v2), g(v3)] where g(s) = (|s + 1| − |s − 1|)/2. As indicated

in [43], system (36) has a double-scrolling chaotic attractor with initial condition: x1(0) =

x2(0) = x3(0) = 0.1000. Based on a result in [17] (simulation 4 in [17]), we have f ∈

Quad(I3, D, α) with D = 5.5685 · I3 and some α > 0.

To apply theorem 4, we solve the following LMIs:

min c

subject to







































































































Q > 0

Z1 =













2(δ − c)C⊤ΛC + C⊤QC cC⊤Λ(A+ Im)C

cC⊤(A⊤ + Im)ΛC −C⊤QC













< 0

Q1 > 0

Z2 =













2(δ − c)I2 +Q1 cγjÂ

cÂ⊤ −Q1













< 0

.

Using Matlab LMI and Control Toolboxes, we obtain the minimal value c∗ = 9.7259. That

is, the coupled system can be globally synchronized with the reducible coupling matrix B

if c > 9.7259. Figure 10 shows that err(t) converges to zero with the coupling strength

c = 9.7260 and coupling delay τ ∈ [0, 15].
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6 Conclusions

In this paper, we provide a methodology based on theoretical analysis to judge whether a

coupled system with a coupling delay can be synchronized. These methodologies can be

realized by numerical way. For local synchronization, the largest transverse Lyapunov ex-

ponents in the transverse directions can be computed numerically by the method introduced

in the previous work. For global synchronization, the LMI tools of mathematical software

such as Matlab are useful to verify these obtained criteria. These theoretical analysis also

provides some aspects how synchronization depends on the coupling strength c and the

coupling delay τ . In case that the function f(·) is global Lipschitzian, the coupled system

can be synchronized for any delay if the coupling strength c is large enough; on the other

hand, if the coupled system can not be synchronized for any delay, it still can be synchro-

nized at least for some small delays. These theoretical results are validated by numerical

illustrations.

Furthermore, illustrations also reveal some unexpected phenomena. Large coupling strength

c might not enhance synchronization. Instead, for some small coupling strength c, large

delays might enhance synchronization The theoretical analysis of these phenomena is one

of our future research topics.
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Appendices

Appendix 1.

Proof of proposition 1: Firstly, we prove that for any M > K, the bounded set M =

{φ ∈ Cτ : ‖φ‖ = φ⊤φ ≤ M} is invariant through the dynamical system (10). Here, the

norm | · |2 denotes the 2-norm.

Suppose φ ∈ M, i.e. φ⊤φ ≤ M . Denote the solution s(t) = s(t, φ) is a solution of the

delayed system (10) with the initial value φ.

We claim that under the conditions of Proposition 1, |s(t)| ≤M holds for all t > 0. In fact,

‖s(t)‖ = ‖φ‖ ≤ M at t = 0, which means |s(t)| ≤ M for −τ ≤ t ≤ 0. Now, suppose that

|s(t)| ≤M for all t < t1 and |s(t1)| = M . Then, we have

1

2
{
d

dt
s⊤(t)s(t)}t=t1 = s⊤(t1)f(s(t1)) + c

[

s⊤(t1)s(t1 − τ) − s⊤(t1)s(t1)

]

≤ s⊤(t1)f(s(t1)) + c

[

1

2
s⊤(t1)s(t1) +

1

2
s⊤(t1 − τ)s(t1 − τ) − s⊤(t1)s(t1)

]

≤ s⊤(t1)f(s(t1)) ≤ −δ (37)

which implies that ‖s(t)‖ is non-increasing at point t1. Therefore, s(t) never exceeds M ,

i.e. |s(t)| ≤M for all t > 0 and M is invariant through the evolution.

Secondly, we will prove that the set K = {φ ∈ Cτ , ‖φ‖ ≤ K} is globally attractive.

Define V (st) = 1
2
s(t)⊤s(t) + c

2

∫ t
t−τ s

⊤(θ)s(θ)dθ. Then, we have
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dV (st)

dt
= s⊤(t)f(s(t)) + c

[

s⊤(t)s(t− τ) − s⊤(t)s(t) +
1

2
s⊤(t)s(t) −

1

2
s⊤(t− τ)s(t− τ)

]

= s⊤(t)f(s(t)) −
c

2

[

s(t) − s(t− τ)

]⊤[

s(t) − s(t− τ)

]

≤ s⊤(t)f(s(t))

By LaSalle principle [32], we conclude that the trajectory s(t) converges to the maximum

invariant set of {z ∈ R
n : z⊤f(z) = 0} ⊂ K. This implies that st will converge to the set

K. Proposition 1 is proved.

Appendix 2.

Proof of theorem 1: We will prove that under the assumptions of theorem 1, all the follow-

ing systems

dϕ(t)

dt
=

[

Df(s(t)) − cIn

]

ϕ(t) + c(λk + 1)ϕ(t− τ), k ≥ 2 (38)

are globally asymptotically stable.

Define µ = lim
t→∞

|Df(s(t))|2 and w(t) = ϕ(t)⊤ϕ(t), w(t− τ) = ϕ(t− τ)⊤ϕ(t− τ). Then,

for a sufficient large t,

1

2
ẇ(t) =ϕ⊤(Df(s(t)) − cIn)ϕ+ c(1 + λk)ϕ

⊤ϕτ

≤ (−c+ µ+
c

2
|1 + λk|)w(t) +

c

2
|1 + λk|w(t− τ)

By the similar arguments used in the proof of the previous theorems (or the Lyapunov-

Krasovskii theorem [32,33]), we conclude that if

c >
µ

1 − max
k≥2

|1 + λk|
, (39)

then all the coupled systems in (38) are stable, which implies that the coupled system (6) is
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locally synchronized.

On the other hand, we rewrite the variational system (15) as

dϕ(t)

dt
=

[

Df(s(t))) + cλkIn

]

ϕ(t) + c(1 + λk)
∫ t−τ

t
ϕ̇(θ)dθ, k ≥ 2 (40)

First, consider the following system:

dψ

dt
=

[

Df(s(t)) + cλkIn

]

ψ. (41)

One of its solution is

ψ(t) = ecλktψ(0) +
∫ t

0
ecλk(t−θ)Df(s(θ))ψ(θ)dθ.

This implies:

|ψ(t)| ≤ |ecλktψ(0)| + |ecλkt|
∫ t

0
|e−cλkθ||Df(s(θ))||ψ(θ)|dθ.

By Gronwall’s inequality [44], we obtain

|ψ(t)| ≤ C|ψ(0)|e
∫ t

0
[|Df(s(θ))|+cRe(λk)]dθ

where C is some positive constant. So, let U(t, 0) be the basic solution matrix of system

(41). Then, we have |U(t, 0)| ≤Me−βt where

β ≥ cRe(λk) − lim
t→∞

1

t

∫ t

0
|Df(s(θ))|dθ = cRe(λk)− < |Df(s(t))| > .

Here, Re(·) denotes the real part of a complex number and < · > denotes the supper-limit

of time average. So, we write the solution of the system (40) as follows:

ϕ(t) =U(t, 0)ϕ(0) + c(1 + λk)
∫ t

0
dθU(t, θ)

∫ θ−τ

θ
ϕ̇(α)dα
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Then, noting that |ϕ̇| ≤ k1|ϕ(t)| + k2|ϕ(t − τ)|, where k1 = lim
t→∞

|Df(s(t))| = µ and

k2 = cmax
k≥2

|1 + λk|, we have

|ϕ(t)| ≤ |U(t, 0)||ϕ(0)| + c|1 + λk|τ
∫ t

0
|U(t, θ)|(k1 + k2)χ(θ)dθ

where χ(t) = max
θ∈[−2τ,0]

|ϕ(t+ θ)|. This implies that

χ(t) ≤ C1e
−βt + C2e

−βt
∫ t

0
eβθχ(θ)dθ

where C1 = |ϕ(0)|e2βτ and C2 = c|1 + λk|τ(k1 + k2)e
2βτ . By Gronwall’s inequality, we

can conclude that

χ(t) ≤ Ce(−β+C2)t

holds for some constant C > 0. In other words, if

β = cmin
k≥2

Re(λk)− < |Df(s(t))| >> 0,

e2βττ <
β

c(k1 + k2) max
k≥2

|1 + λk|
, (42)

Appendix 3.

Proof of theorem 3: Because of the matrix inequality (23), there exists a positive constant

ǫ satisfying −2αIn + ǫP < 0 and

Zj =













2(dj − cγj)Λ +Qje
ǫτ cγjΛ(A+ Im)

cγj(A
⊤ + ImΛ) −Qj













< 0

holds on the transverse subspace L× L.

Define
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L(t) = ∆x⊤(t)PΛ∆x(t)eǫt +
n
∑

j=1

∫ t

t−τ
pj∆x̃

j⊤(s)Qj∆x̃
j(s)eǫ(s+τ)ds

Differentiating L(t), we have

dL(t)

dt
= ǫeǫt∆x⊤(t)PΛ∆x(t) + 2eǫt∆x⊤(t)PΛ

[

(I − Ξ)∆F (t) − D∆x(t)

+

(

D − cI

)

∆x(t) + c

(

I + A

)

∆x(t− τ)

]

+
n
∑

j=1

pj∆x̃
j⊤(t)Qj∆x̃

j(t)eǫ(t+τ)

−
n
∑

j=1

pj∆x̃
j⊤(t− τ)Qj∆x̃

j(t− τ)eǫt

= eǫtǫ
m
∑

i=1

ξi∆x
i⊤(t)P∆xi(t)

+ 2eǫt
m
∑

i=1

ξi∆x
i⊤(t)P

[

f(xi(t), t) −Dxi(t) − f(x̄(t), t) +Dx̄(t)

]

+ 2eǫt∆x⊤(t)PΛ(D − cΓ)∆x(t) + 2ceǫt∆x⊤(t)PΛ(I + A)∆x(t− τ)

+
n
∑

j=1

pj∆x̃
j⊤(t)Qj∆x̃

j(t)eǫ(t+τ) −
n
∑

j=1

pj∆x̃
j⊤(t− τ)Qj∆x̃

j(t− τ)eǫt

= eǫt
m
∑

i=1

ξi∆x
i⊤(t)

(

− 2αIn + ǫP

)

∆xi(t)

+ eǫt
n
∑

j=1

pj

{

∆x̃j⊤(t)

[

2(dj − cγj)Λ +Qje
ǫτ

]

∆x̃j(t)

+ 2cγj∆x̃
j⊤(t)Λ(A+ Im)∆x̃j(t− τ) + ∆x̃j⊤(t− τ)Qj∆x̃

j(t− τ)

}

= eǫt
m
∑

i=1

ξi∆x
i⊤(t)

(

− 2αIn + ǫP

)

∆xi(t)

+ eǫt
n
∑

j=1

pj[∆x̃
j⊤(t),∆x̃j⊤(t− τ)]Zj













∆x̃j(t)

∆x̃j(t− τ)













≤ 0

since ∆x̃j(θ) ∈ L. Therefore, L(t) ≤ L(0), which implies that ∆x(t)⊤PΛ∆x(t) ≤

L(0)e−ǫt. Hence, ∆x(t) converges to zero exponentially with rate O(e−
ǫ
2
t). Theorem 3 is

proved.
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Appendix 4.

Proof of theorem 4: It follows from the conditions listed in item 4 that there exists an

ε > 0 such that

(ε‖P‖2 − 2α) min
i
ξi + σ

(

cτ‖Γ‖2‖P‖2‖Λ‖
2
2‖A+ Im‖

2
2

)

+3ηk

(

M2‖Im − Ξ‖2
2 + c2‖A‖2

2‖Γ‖
2
2

)

σ−1 < 0 (43)

k >
c‖Γ‖2‖P‖2

1 − 3c2ητ‖A+ Im‖2
2‖Γ‖

2
2

(44)

where

η=
eετ − 1

ε

σ=

√

√

√

√

√

√

3M2‖Im − Ξ‖2
2 + 3c2‖A‖2

2‖Γ‖
2
2

‖Λ‖2
2‖A+ Im‖2

2

(

1 − 3c2τη‖A+ Im‖2
2‖Γ‖

2
2

)

Denote

L1(t) = eεt∆x⊤(t)ΛP∆x(t)

L2(t) = k
∫ t

t−τ
eε(s+τ)ds

∫ t

s

d∆x(t)

dθ

⊤d∆x(t)

dθ
dθ

L̄(t) =L1(t) + L2(t)

we have
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dL1(t)

dt
= εeεt∆x⊤(t)ΛP∆x(t) + 2eεt

ΛP

[

(I − Ξ)∆F (t)

−D∆x(t) + (cA + D)∆x(t) + c(A + Γ)
∫ t

t−τ

d∆x(s)

ds
ds

]

≤ eεt(ε‖P‖2 − 2α)(min
i
ξi)∆x

⊤(t)∆x(t)

+ 2eεt
n
∑

j=1

pj∆x̃
j⊤(t)Λ(cAγj + djIm)∆x̃j(t)

+ 2ceεt
∫ t

t−τ
∆x⊤(t)ΛP(A + Γ)

d∆x(s)

ds
ds

By item 3, we know that

{

Λ(cAγj + djIm)

}s

is negative definite in the transverse space L,

i.e.,

∆x̃j⊤(t)

{

Λ(cAγj + djIm)

}s

∆x̃j(t) ≤ 0

Therefore,

dL1(t)

dt
≤ eεt(ε‖P‖2 − 2α)(min

i
ξi)∆x

⊤(t)∆x(t)

+ cτ‖Λ‖2|P‖2

(

σ‖A + Γ‖2
2∆x

⊤(t)∆x(t) + σ−1
∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds

)

= eεt(ε‖P‖2 − 2α)(min
i
ξi)∆x

⊤(t)∆x(t)

+ cτ‖Λ‖2|P‖2

(

σ‖Γ‖2
2‖A+ Im‖

2
2∆x

⊤(t)∆x(t) + σ−1
∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds

)

Differentiating L2(t), we have
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dL2(t)

dt
=−keεt

∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds+ kηeεtd∆x(t)

dt

⊤d∆x(t)

dt

=−keεt
∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds+ kηeεt

[

(I − Ξ)∆F (t) + cA∆x(t)

+c(A + Γ)
∫ t

t−τ

d∆x(s)

ds
ds

]⊤[

(I − Ξ)∆F (t) + cA∆x(t)

+c(A + Γ)
∫ t

t−τ

d∆x(s)

ds
ds

]

≤−keεt
∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds+ 3kηeεt

[

∆F⊤(t)(I − Ξ)⊤(I − Ξ)∆F (t)

+c2∆x⊤(t)A⊤
A∆x(t)

+c2
∫ t

t−τ

d∆x(s)

ds

⊤

ds(A + Γ)⊤(A + Γ)
∫ t

t−τ

d∆x(θ)

dθ
dθ

]

Since

∫ t

t−τ

d∆x(s)

ds

⊤

ds
∫ t

t−τ

d∆x(θ)

dθ
dθ =

∫ t

t−τ
ds
∫ t

t−τ

d∆x(s)

ds

⊤d∆x(θ)

dθ
dθ

≤
1

2

(

∫ t

t−τ
ds
∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
dθ +

∫ t

t−τ
ds
∫ t

t−τ

d∆x(θ)

dθ

⊤d∆x(θ)

dθ
dθ

)

= τ
∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds

we have

dL2(t)

dt
≤ −keεt

∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds+ 3kηeεt

[

M2‖Im − Ξ‖2
2∆x

⊤(t)∆x(t)

+ c2‖A‖2
2‖Γ‖

2
2∆x

⊤(t)∆x(t) + c2τ‖A+ Im‖
2
2‖Γ‖

2
2

∫ t

t−τ

d∆x(s)

ds

⊤d∆x(s)

ds
ds

]

Therefore,
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dL̄(t)

dt
≤ eεt

[

(ε‖P‖2 − 2α)(min
i
ξi) + cστ‖Λ‖2‖P‖2‖A+ Im‖

2
2‖Γ‖

2
2

+3kηM 2‖Im − Ξ‖2
2 + 3kηc2‖A‖2

2‖Γ‖
2
2

]

∆x⊤(t)∆x(t)

+eεt

[

c‖Λ‖2‖P‖2σ
−1 − k + 3kητc2‖A+ Im‖

2
2‖Γ‖

2
2

]

From inequalities (44), we have

dL̄(t)

dt
≤ 0

which implies that L(t) ≤ L(0). Therefore, ∆x(t) converges to zero exponentially with rate

O(e−
ε
2
t). The theorem is proved.

Appendix 5.

Proof of theorem 5: In view of the comments in section 4.2, letting ∆xi(t) = xi(t)−s(t),

we only need to prove that for system (29), ∆xi(t) will globally exponentially converge to

zero. Omitting the term O(e−ǫt), we have

d∆xi(t)

dt
=

[

f(xi(t), t) − f(s(t), t)

]

+ c
∑

j∈Nl,j 6=i

aijΓ∆xj(t− τ) − cΓ∆xi(t), i ∈ Nl(45)

Let

L3(t) =
∑

i∈Nl

eǫtGl
i∆x

⊤
i (t)P∆xi(t) +

n
∑

j=1

pj

∫ t

t−τ
∆x̃j⊤(s)Ql

j∆x̃
j(s)eǫ(s+τ)ds

where ǫ satisfies

Z l
j =













2(dj − cγj)G
l +Ql

je
ǫτ cγjG

lAl

cγjA
⊤
l G

l −Ql
j













< 0
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on the corresponding transverse subspace Lq =

{

(v1, · · · , vmq)
⊤ ∈ Rmq :

mq
∑

i=1
ξq
i vi = 0

}

,

with ǫP − 2αIn < 0. Let ∆x̃j(t) = [∆x1
j(t), · · · ,∆x

ml
j (t)]⊤ ∈ R

ml .

Differentiating L3(t), we have

dL3(t)

dt
= ǫeǫt

∑

i∈Nl

Gl
i∆x

⊤
i (t)P∆xi(t) + 2eǫt

∑

i∈Nl

Gl
i∆x

i(t)P

{[

f(xi(t), t) − f(s(t), t)

−D∆xi(t)

]

+ c
∑

j∈Nl,j 6=i

aijΓ∆xj(t− τ) +D∆xi(t) − cΓ∆xi(t)

}

+eǫt
n
∑

j=1

pj∆x̃
j⊤(t)Ql

j∆x̃
j(t)eǫτ − eǫt

n
∑

j=1

pj∆x̃
j⊤(t− τ)Ql

j∆x̃
j(t− τ)

≤ eǫt
∑

i∈Nl

eǫtGl
i∆x

⊤
i (t)(ǫP − 2αIn)∆xi(t)

+eǫt
n
∑

j=1

pj

{

∆x̃j⊤(t)

[

2(dj − cγj)G
l +Ql

je
ǫτ

]

∆x̃j(t)

+2cγj∆x̃
j⊤(t)Â∆x̃j(t− τ) − ∆x̃j⊤(t− τ)Ql

j∆x̃j(t− τ)

}

≤ eǫt
n
∑

j=1

pj[∆x̃
j⊤(t),∆x̃j⊤(t− τ)]Z l

j













∆x̃j(t)

∆x̃j(t− τ)













≤ 0

By induction and theorem 4, we conclude the global exponential synchronization of the

coupled system (6) with the reducible coupling matrix A. The theorem is proved.
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Fig. 1. The attractors of Lorenz system with a delay term c[s(t − τ) − s(t)]: (1) c = 5, τ = 0.5; (2)

c = 5, τ = 5; (3) c = 5, τ = 15; (4) c = 10, τ = 0.5; (5) c = 10, τ = 5; (6) c = 10, τ = 15.
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Fig. 2. The attractors of Rossel system with a delay term c[s(t − τ) − s(t)] : (1) c = 5, τ = 0.5; (2)

c = 5, τ = 5; (3) c = 5, τ = 15; (4) c = 10, τ = 0.5; (5) c = 10, τ = 5; (6) c = 10, τ = 15.
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Fig. 3. The attractors of Chua’s circuits with a delay term c[s(t − τ) − s(t)]: (1) c = 5, τ = 0.5; (2)

c = 5, τ = 5; (3) c = 5, τ = 15; (4) c = 10, τ = 0.5; (5) c = 10, τ = 5; (6) c = 10, τ = 15.
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Fig. 4. Variance of mle of coupled Lorenz systems with respect to various coupling strength c and

coupling delay τ .
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Fig. 6. Variance of mle of coupled Chua’s circuits with coupling delay for various coupling strength

c and coupling delay τ .
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Fig. 7. Variance of err(t) indicated by color-grayness for coupled Chua’s circuits (35) with respect

to the logarithm of time and the coupling delay, picking c=14.1200.
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Fig. 8. Synchronization region obtained by theorem 4 in the plane (c, τ).
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Fig. 9. Variance of syn with respect to τ and c for coupled Chua’s circuits (35).

Fig. 10. Variance of err(t) indicated by color grayness with respect to the logarithm of time and the

coupling delay τ , picking c = 14.1150.

50


