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The synchronization and bundling process of bacterial flagella is investigated by mesoscale

hydrodynamic simulations. Systems with two to six flagella are considered, which are anchored at one

end, and are driven by a constant torque. A flagellum is modelled as a linear helical structure composed

of mass points with their elastic shape maintained by bonds, bending, and torsional potentials. The

characteristic times for synchronization and bundling are analyzed in terms of motor torque,

separation, and number of flagella. We find that hydrodynamic interactions determine the bundling

behavior. The synchronization time is smaller than the bundling time, but their ratio depends strongly

on the initial separation. The bundling time decreases with increasing number of flagella at a fixed

radius in a circular arrangement due to multi-helix hydrodynamics.

1 Introduction

Peritrichous bacteria, such as E. coli, are covered by multiple

flagella, which are essential for their locomotion. An individual

flagellum is of helical shape and driven by a rotary motor that is

attached to the bacteria’s cell body.1,2 When all the left- (right-)

handed flagella turn counterclockwise (clockwise), they form

a single helical bundle and the bacterium moves forward.3–10

Fundamental to the concerted motion of the bundle is the

synchronized and in-phase rotation of the various flagella.11,12

The bacteria’s steady forward motion, denoted as ‘‘running’’

phase, is interrupted by short periods of ‘‘tumbling’’. 13–15 The

alternate running and tumbling allows the bacteria to change the

direction of motion and to perform a biased random walk by

adjusting the duration of the running phase to the environmental

conditions. This enhances the search efficiency for favorable

locations like highly concentrated regions of chemical

compounds (chemotaxis).2,16 Tumbling is initiated by rotation of

one of the flagella in the opposite direction.17,18 Then, this

flagellum leaves the bundle and the bacterium changes the

swimming direction. When the reversely rotating motor changes

its rotation back to its initial direction, the separated flagellum

joins the bundle again.5,15 During bundling, tumbling, and re-

bundling, the helical pitch and the radius of a flagellum changes;

it undergoes ‘‘polymorphic transformations’’.19–27

Locomotion of bacteria has been studied for many

years.1–26,28–34 Experimentally, dark-field microscopy28 and

fluorescence microscopy provide insight into the swimming

behavior of bacteria.13,14 Specifically, bundle formation has been

studied by macroscopic experiments.3,4 By using helical metal

wires it has been shown that the wrapping of flagella occurs in

a right-handed sense for left-handed flagella with an in-phase

relationship between flagella.3 Experiments of the bundling

process using polymer tubes in viscous fluids support the

observation that the left-handed helices are twisted around each

other in a right-handed manner without jamming.4

Numerical investigations using Stokes equations for fluids and

various models for a flagellum, such as bead-spring models,

provide insight into the bundling process and the run-and-

tumble dynamics.5,10,15,35The propulsion dynamics, the flow field,

and the polymorphic transitions of a flagellum have been inves-

tigated by an elastic network model in ref. 10. The flow fields

have been studied in ref. 5 of three flagellum during the run as

well as the tumbling phase. The linear dependence of the swim-

ming velocity and the flagellum rotation frequency was verified.

Moreover, the simulations confirm that hydrodynamic interac-

tions can lead to bundle formation, and that the fluid flow

generated by the rotation of the flagella draws them together and

enhances the bundling process.5 By simulations exploiting the

Rotne–Prager–Yamakawa hydrodynamic tensor, the run-and-

tumble motion of a bacterium has been studied and the fluid flow

patterns have been discussed.15 The simulations suggest that the

bacterium-induced flow magnitude is large enough to affect the

transport of surrounding chemo-attractants. By a similar

approach, the bundling process of two flagella have been

studied.35 Here, multiple coexisting bundling states are found,

with either tight bundles, where the flagella are in mechanical

contact, or loose bundles, with flagella intertwined but not

touching, depending on the initial state.

Aside from the considerations in ref. 35, little is known about

the synchronization of flagella rotation, phase stability during
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rotation, or bundle stability. These aspects will depend on the

number of flagella included in a bundle and their spatial

arrangement. Moreover, the role of hydrodynamic interactions

in these processes has not been investigated. The stability and

efficiency of the bundling process is vital for bacteria and

deserves special attention.

In this article, we discuss bundle formation for systems of

various flagella by using mesoscale hydrodynamic simulations

exploiting the multiparticle collision dynamics (MPC)

approach.36,37This method has been shown to correctly account for

hydrodynamic interactions and therefore allows us to study the

influence of such interactions in bundle formation. In section 2, we

will outline the model for the solvent and the helical filament.

Section 3 presents results for various numbers of helices, starting

from two up to six helices. Finally, section 4 summarizes our

findings.

2 Simulation method, model

In order to simulate mesoscopic systems, a hybrid simulation

approach has been suggested, combining molecular dynamic

simulations (MD) for embedded (elastic) particles with the MPC

method for the fluid.36,37 The approach has successfully been

applied to the hydrodynamic behavior of many soft matter

systems, such as colloidal suspensions,38–45 polymer solu-

tions,46–52 vesicles and blood cells,53,54 as well as the swimming

behavior of sperm cells55,56 and diffusiophoretic swimmers.57

2.1 Fluid model

MPC is a particle-based simulation approach, where the fluid is

represented by Ns point particles of mass m with positions ri(t) and

velocities vi(t), where i ¼ 1,.,Ns. The algorithm consists of alter-

nating streaming and collision steps. In the streaming step, the

particles move ballistically and their positions change according to

ri(t + h) ¼ ri(t) + hni(t) (1)

in the time interval h, which denotes the collision time. In the

collision step, the particles are sorted into cubic cells of side

length a and their relative velocities, with respect to the center-of-

mass velocities of each cell, are rotated around a randomly

oriented axis by a fixed angle a. Thus, the particle velocity after

collision is given by

ni(t + h) ¼ ncm(t) + R(a)(ni(t) � ncm(t)), (2)

where R(a) is the rotation matrix and ncm ¼ S
Nc

j¼1nj=Nc is the

center-of-mass velocity of the particles in the cell to which the

particle i belongs, and Nc is the number of particles in that

cell.36,37,58,59 A random shift of the collision lattice is applied at

every collision step to ensure Galilean invariance.60 A constant

temperature is maintained locally by velocity scaling at every

collision cell and every collision step.59

2.2 Flagellum model

We consider a bacterial flagellum as a coarse-grained macro-

molecular system embedded in an MPC fluid and represent it as

helical sequence of Nm points of mass Mh. These points interact

with each other by bonds, bond bending, and torsional poten-

tials.61 A repulsive and truncated Lennard–Jones potential is

used to account for excluded-volume interactions, which prevent

flagella from crossing each other. Explicitly, the potentials are

given by

� bond potential

Ubond ¼
kbond

2

X

Nm

i¼2

�

jRi � Ri�1j � l0
�2
; (3)

� bond bending potential

Ubend ¼
kbend

2

X

Nm

i¼3

�

cosqi � cosq0
�2
; (4)

� torsional potential

Utors ¼
ktors

2

X

Nm

i¼4

�

cos4i � cos40

�2
; (5)

� repulsive Lennard–Jones potential

ULJ ¼
43

s

R

� �12

�
�s

R

�6
� �

þ 3; R\21=6s;

0; otherwise;

8

>

<

>

:

(6)

whereRi is the position vector of bead i,R is the distance between

non-bonded particles, l0, q0, and 40 are the equilibrium bond

length, bending angle, and torsional angle, respectively. kbond,
kbend, and ktors are the bond, bending, and torsional force

constants, respectively. The bending angle follows from the

relation cosqi ¼ (DRi$DRi�1)/(|DRikDRi�1|), and the torsional

angle from cos4i ¼ (DRi � DRi�1)(DRi�1 � DRi�2)/(|DRi �

DRi�1kDRi�1 � DRi�2|), where DRi ¼ Ri � Ri�1.
61

Fig. 1 Model of flagella. The base part consists of five beads. The central

bead is trapped in a three-dimensional harmonic potential. The four

peripheral beads are trapped in a one-dimensional harmonic potential

along the z-axis. The external force is symmetrically applied on two

beads.
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Additionally, five beads are added in a plane at the base of the

helix (see Fig. 1). One bead is located at the center of the helix

and the other four are arranged on a square around the central

bead. These five beads define the plane from which the helix

orientation and pitch are measured. The beads interact with each

other by bonds, bond bending, and torsional potentials similar to

those of the helix. The five beads are trapped in constraining

potentials. The central bead is confined in a three dimensional

harmonic potential, i.e., it is fixed in space, whereas the periph-

eral beads are restrained along the z-axis by a one-dimensional

harmonic potential. The potentials are of the form

Ur ¼
kcf

2
ðr� rcÞ

2
; (7)

where rc is either the equilibrium position of the central particle

or the z-coordinate of the peripheral beads; in the latter case, the

x- and y-coordinates are unconstrained. Hence, the flagellum is

not allowed to perform any translational motion but rotates

around a central bead driven by an external torque. In the

stationary state, the helices are force-free along the z-direction

and the fluid moves with a constant average velocity in the

positive z-direction. This corresponds to a free swimmer, moving

with a constant velocity in a resting fluid.

The dynamics of the mass points is described by Newton’s

equations of motion, which are integrated by the velocity–Verlet

algorithm with time step hp.
61 The flagellum is set up as a left-

handed helix. Symmetrical forces are applied in a counterclock-

wise direction when watched from the distal end, which generates

a torque M ¼ 2RhF pointing into the positive z-direction, where

Rh is the helix radius and F the applied force, without any

external net force.

The bead particles are coupled to the fluid in the collision step.

Similar to the fluid particles, the relative velocities of beads in

a particular collision cell are rotated. Hence, the velocity of

a bead after a collision is given by eqn (2), with the modified

center-of-mass velocity of a cell with NM beads

ncm ¼

m
X

Nc

i¼1

ni þMh

X

NM

i¼1

Vi

mNc þMhNM

; (8)

where Vi is the velocity of bead i. This results in an exchange of

momentum between the beads and fluid particles whilst

conserving momentum.37,46

2.3 Parameters

The size of the simulation box is taken to be Lx � Ly � Lz ¼

(70 � 70 � 80 a3), (120 � 120 � 80 a3), or (1003 a3), where a is the

side length of the collision cell, depending on the distances

between the helices. The transport properties of the solvent

depend on h, a, and Nc.
36,37,52 Tuning these parameters allows us

to attain solvents with a high Schmidt number and a low Rey-

nolds number Re. The choice Nc ¼ 10, a ¼ 130�, and

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma 2=ðkBTÞ
p

¼ 0:1, where T is the temperature and kB is the

Boltzmann constant, yields the solvent viscosity

h ¼ mNcn ¼ 8:7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBT=a 4
p

, where n is the kinematic viscosity,

and the Schmidt number Sc¼ 17, which ensures that momentum

transport dominates over mass transport. 38 In order to confirm

low-Reynolds-number behavior, we additionally consider the

collision time steps h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma 2=ðkBTÞ
p

¼ 0:05, 0.02, and 0.01,

where h scales linearly with 1/h.

Only left-handed flagella are considered. The mass of

a flagellum bead is set to Mh ¼ 10m. The number of beads for a

five-turn helix is Nm ¼ 78, with the equilibrium bond length l0 ¼

a ¼ s, the bending angle q0 ¼ 20�, and the equilibrium torsional

angle 40 ¼ 166�, which yields, with the radius of a flagellum Rh ¼

2a, the helix pitch P z 8.8a and helix angle j ¼ 55�. Thus, the

pitch is close to that of E. coli in the semi-coiled state and

somewhat smaller than the pitch of the normal state.20 The bond,

bond bending, and torsional force constants are

kbond=ðkBT=l20Þ ¼ 105, kbend/(kBT) ¼ 2 � 105, and ktors/(kBT) ¼

105, respectively. The temperature is kBT/3 ¼ 1. The distribution

of the bond, bending, and torsional energies follow the corre-

sponding Maxwell–Boltzmann distributions. The constraining-

force constant of the motor part is kcf =ðkBT=l20Þ ¼ 104. During

the simulations up to t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2=ðkBTÞ
p

¼ 6000, corresponding to

3 � 106 MD time steps of length hp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2=ðkBTÞ
p

¼ 0:002,

synchronization and bundling are completed.

Fig. 2 Average forces along the x- and y-direction (Fix, Fiy) on two

rotating helices (1,2) with constraining axial potentials for the separation

d/Rh ¼ 2.5.

Fig. 3 Magnitude of the tangential forces as a function of distance d for

a system of two aligned helices. Lines indicate the power laws d�1 and d�2

for the limiting cases of small and large helix separations, respectively.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 4363–4372 | 4365
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3 Results

Synchronization of the rotational motion between different

flagella is a prerequisite for the formation of tight bundles. We

will present results for the synchronization and bundling process

as function of time, helix separation, and applied torque.

3.1 Two helices

The bundling behavior of systems of two helices has been studied

in ref. 35 with an Oseen-tensor based hydrodynamic approach.

Our systems behave very similarly, therefore we do not discuss

this case in detail. Similarities and differences will be stressed in

the discussion of the behavior of several helices. Here we briefly

address the hydrodynamics of two helices, which provides a hint

of a possible mechanism for bundle formation.

For this purpose, we consider two helices with their center-lines

separated by a distance d. A snapshot of a single helix is displayed

in Fig. 1. In order to investigate the forces governing bundle

formation, we constrain the orientation of both helices such that

they are nearly parallel. This is achieved by confining every bead in

a harmonic potential along a circle with the radius of the helix Rh

Uax ¼
kax

2

X

Nm

i¼1

�

jRi � Rchj � RhÞ
2
$ (9)

Rch has the same x and y component as the central particle of the

base rc and the same z component as Ri initially. For the force

constant kax the same value is used as for kcf .

Counterclockwise rotation of each helix is achieved by the

same constant torque M/kBT ¼ 800. Average forces

hFi ¼
1

t

ð

t

0

Fðt0Þdt0 (10)

along the x- and y-axis, calculated from the potential (9), are shown

in Fig. 2 as function of u0t, where u0 ¼ 0:113
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=ma2
p

is the

angular frequency of a single helix driven by the same torque.

Evidently, the force on the helices along their radial distance is

approximately zero—we find hFxiRh/Mz 2.3� 10�5 � 8� 10�6—

consistent with the findings of ref. 34. However, the tangential forces

are large and point in opposite directions. The rotation of a helix

creates a flow field, which tries to drag the other helix in a tangential

direction. We expect this force to be the main mechanism of helix

wrapping and bundle formation. In ref. 34, a ‘‘tipping’’ momentum

has been determined, which expresses the same effect.

The magnitude of the tangential force depends on the distance

between the helices. As shown in Fig. 3, the force exhibits two

power-law regimes. At distances d/Rh < 5, F � 1/d, which is

explained by the distance dependence of the flow field generated

by a rotating infinitely long cylinder.62 With increasing distance,

the flow field will be modified due to the finite length of the

helices. Hence, for d/Rh > 5, we observe a crossover of the force

corresponding to the flow field created by a spinning sphere,

which yields a F � 1/d2 dependence for these distances.

3.2 Three helices

3.2.1 Synchronization and bundling dynamics. To study

bundle formation, we now consider three helices placed on an

equilateral triangle with the distance d/Rh ¼ 2.5 between their

central beads. Initially, they are aligned in parallel. There is no

axial potential, thereby the tails of the helices are free to bend

according to the induced hydrodynamic forces. Initially, two of

them are in-phase with each other and the third is out-of-phase

with the phase difference p. The phase-angle differences are

defined asDfij¼ (fi� fj) (is j¼ 1,2,3), where the phase angle fi

of helix i is defined by the orientation of the vector between the

central bead of its confined part and the first bead of the helix in

the base plane. The initial values are f1 ¼ �p, f2 ¼ 0, and f3 ¼

�p. Each helix is driven by the same torque M/kBT ¼ 800. The

phase angle differences and time averaged distances hdi between

Fig. 4 Phase angle difference and average distances between equivalent

points Pi ¼ iP along the helix contour as a function of time for the

separation d/Rh ¼ 2.5. The three helices have the initial phase differences

Df12 ¼ �p (black), Df13 ¼ 0 (red), and Df32 ¼ �p (green).

Fig. 5 Phase angle difference Df12, for the initial value Df12 ¼ �p,

and average distances between equivalent points at P3 and P5

along the helix contour as a function of time for the separation d/Rh ¼

2.5. The various single realization curves are obtained for the MPC

time steps h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2=ðkBTÞ
p

¼ 0:01 (black), 0.02 (red), 0.05

(green), and 0.1 (blue), with the angular velocities

ul

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2=ðkBTÞ
p

¼ 0:0153; 0:0302; 0:0732; 0:138, respectively.

4366 | Soft Matter, 2012, 8, 4363–4372 This journal is ª The Royal Society of Chemistry 2012
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the beads of the various helices are shown in Fig. 4 as a function

of time at various points Pi along the helices. The equivalent bead

positions Pi along a helix contour are Pi¼ iP (i¼ 1–5), see Fig. 1.

After a short time of only about four helix rotations, the phase

differences Df12 and Df32 converged to zero; Df13 z 0, because

helices 1 and 3 remain in-phase independent of time. In the

steady state, all the phases are synchronized and exhibit an

oscillating behavior due to excluded-volume interactions of the

bend helices. The frequency is equal to the mean rotational

frequency of the bundle. The average distances converge to

plateau values after some time, which marks the time necessary

for bundle formation. We consider the bundling process to be

finished when the distances at the tail have reached their

stationary-state value. For tight bundles, the minimum distance

between the helices is determined by the bead excluded-volume

distance (d/az 1). The stationary-state distances are assumed in

sequence from P1 to P5, which implies that bundling occurs from

the anchoring plane to the tail. Note that all phase differences

have converged before the average distances for the various Pi

assume their stationary-state values. This implies that synchro-

nization occurs before bundle formation.

Our mesoscale simulations are performed at finite Reynolds

numbers. With the rotation frequency u0 ¼ 0:113
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=ma2
p

,

the helix radius and the solvent kinematic viscosity of Sec. 2.3,

the Reynolds number is Re ¼ u0R
2
h=nz0:5 for the collision time

step h ¼ 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2=ðkBTÞ
p

. Since Re < 1, but not much smaller

than unity, the question arises of the relevance of non-linear

terms in the Navier–Stokes equations. To demonstrate that the

observed dynamical behavior corresponds to the low Reynolds-

number regime, we show in Fig. 5 phase angle differences and

average distances for various collision time steps in the range

h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma2=kB
p

¼ 0:01� 0:1. Note that the viscosity of the MPC

solvent is essentially inversely proportional to h in the considered

range.37,38 Since at fixed torque, the rotation frequency is ul�1/

v�h, this corresponds to the range of Reynolds numbers Re ¼

6�10�3�0.6 and, hence, covers two orders of magnitude.

Evidently, we obtain, within the statistical fluctuations the same

time-dependent behavior for every collision step, which supports

our conclusion that the results reflect the system behavior at low

Reynolds numbers.

Fig. 6 displays snapshots for various stages of the bundling

process. Starting from an aligned initial state, tangential hydro-

dynamic forces (see Sec. 3.1) cause a tilt of the individual helices,

which brings them in closer contact near their fixed ends and

simultaneously separates their free ends. This is quantitatively

reflected in Fig. 4, where the mean distance at P2 approaches its

stationary-state value while P5 increases initially and is still far

from the stationary-state value. Naturally, the details depend on

the separation d. In the stationary state a compact bundle is

formed, where the helices are wrapped around each other. A

similar behavior of attraction after synchronization was

observed in other biological systems, such as sperm pairs55,63 or

synthetic swimmers,64 which are swimming together.

3.2.2 Helix winding. A winding angle Fij is calculated

between two helices i, j according to

cos(Fij) ¼ huendij (t)u
end
ij (0)i, (11)

where uendij (t) ¼ (Rend
i (t) � Rend

j (t))/|Rend
i (t) � Rend

j (t)| and Rend
i is the

position vector of the tail end of helix i, to quantitatively measure

their wrapping. A value of Fij ¼ 2p indicates that the helices

wrapped once around each other.35 As displayed in Fig. 7, Fij is

initially zero and increases as the helices start to bundle. When

the torque is small, loose bundles are formed due to weak

hydrodynamic interactions. For large torques, tighter bundles

appear. In the case of the five turn helices, the winding angle

increases from Fij z p to Fij z 2p with increasing torque for the

considered range of M. Interestingly, we obtain a logarithmic

dependence of the stationary state winding angle on the applied

momentum, i.e., a rather weak dependence, as shown in the inset

of Fig. 7.

We find a similar behavior for the tightness of the bundles,

when we vary the initial helix separation. With increasing sepa-

ration, smaller winding angles are obtained and correspondingly

looser bundles. At small separations follow larger winding angles

and correspondingly tighter bundles.

In our simulations, the mechanical constraints due to

excluded-volume interactions can be turned off in order to

unravel their effect on bundle formation. Without such an

interaction we still observe bundles, which are tighter for M/kBT

> 400, because the helices can strongly overlap in space. Not

surprisingly, the winding angle continues to increase without

converging to a finite value, but the rotation of the helices is

synchronized.

3.2.3 Synchronization and bundling times. After bundle

formation is complete, we determine the average distances

between the helices and the bundling times for the various Pi ¼

iP. Average bead distances for several d are shown in Fig. 8. The

helices make a tight bundle for small distances. As the separation

increases, the size of the bundled domain decreases. Note that the

tail part of the bundle has a larger separation than the middle

Fig. 6 Snapshots, side views (top) and top views (bottom), of various

stages of the bundling process for d/Rh ¼ 3.5. From left to right: (i) Initial

state, the red helix is out of phase. (ii) The helices synchronized their

rotation and start to bundle. (iii) Parts of the helices are bundled. (iv)

Final, bundled state. Simulation animations are shown as movie S1 in the

ESI†.
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part, which is consistent with previous studies.5,35 The average

distance at the tail region is about 1.5–3 times larger than the

smallest distance in the tightly bundled middle region. The larger

distances at the bundle end are determined by the force balance

between the mechanical force, specifically excluded-volume

interactions, opposing wrapping, and hydrodynamic interactions

promoting bundling. This is supported by simulations where the

purely repulsive Lennard–Jones forces are turned off. Here, the

ends of the helices come significantly closer. Moreover, when

the torque is increased or the initial separation is decreased, the

end distances decrease due to an increase of hydrodynamic

interactions.

The bundling times tbun are presented in Fig. 9 for several

distances d. As explained above, tbun is defined as the time when

bundling is finished and the distances between the helices at the

tail region (P5) have converged to a steady-state value. Evidently,

bundling for small separations is faster than that for large

separations. Moreover, the bundling times for the various Pi

increase along the bundle from i ¼ 2 to i ¼ 5 for d/Rh(5. For

larger d, bundling happens almost simultaneously along the

helices, because the helices touch near their free end only (see

Fig. 12).

Synchronization and bundling times are presented in Fig. 10 as

a function of helix separation. The synchronization time is

defined as the time when the phase differences between all helices

have converged to stationary oscillating values. Note that

synchronization occurs before bundle formation. As d increases,

the synchronization and bundling times increase as

tsyn � d2 and tbun � d. (12)

At large separations, synchronization and bundling occur almost

simultaneously.

Based on the numerical results presented in Fig. 4, 7, 9, and 10,

we propose the following synchronization and bundling

Fig. 8 Average distances between three helices at the various Pi for the

initial values d/Rh ¼ 2.5, 3.5, 4.3, 5, 6, 7, 7.8 (bottom to top at Pi ¼ 0) in

the bundled state. The torque is M/kBT ¼ 800.

Fig. 9 Bundling time for a system of three helices as function of Pi. The

initial separations are d/Rh¼ 2.5, 3.5, 4.3, 5, 6, 7, 7.8 (bottom to top), and

the torque is M/kBT ¼ 800.

Fig. 10 Synchronization (black) and bundling (red) times as a function

separation for a system of three helices. The synchronization time

increases as tsyn � d2 and the bundling time as tbun � d. For large sepa-

rations, bundling and synchronization occur simultaneously.

Fig. 7 Winding angle F as a function of time for three helices with

separation d/Rh¼ 2.5. The lines from the bottom to the top correspond to

the torques M/kBT ¼ 240, 400, 800, 1200, and 1600. Tighter bundles are

formed as the torque increases. Inset: Logarithmic dependence of the

winding angle on the applied torque.
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mechanism. For short distances, direct hydrodynamic interac-

tions start to induce synchronization when the flagella are still

oriented in parallel, and is completed when the flagella first come

into close contact at P2 (see Fig. 4). However, the time for

synchronization due to direct hydrodynamic interactions quickly

increases with increasing distance. This time has been estimated

theoretically to increase as d5, within the hydrodynamic far-field

approximation, for a related system of two rigid dumbbells with

their midpoints fixed by stiff springs.12 Furthermore, in our

simulations, direct hydrodynamic synchronization is only

possible if the helix rotation time 2p/u0 is much longer than the

vorticity diffusion time d2/(4p2v); for our parameters, this implies

that synchronization due to direct hydrodynamic interactions is

only possible for d/Rh � 25. For larger distances, the flagella

initially can only feel the average rotational flow field generated

by all helices together. Since a single helix generates a rotational

flow field with angular component v4(r) � u0R
2
h/r, each flagellum

is exposed to a flow of magnitude u0R
2
h/d in a tangential direc-

tion. It follows this flow—by tilting near the anchoring point,

where the torque is largest—until the flagellar tail has rotated

(about the central line of the whole bundle) by about 180�, so

that the flagella come in close contact somewhere along their

contour. Near the point of close contact, the hydrodynamic

interactions become very strong and lead to rapid

synchronization. Thus, we can estimate the synchronization time

in this regime as

u0tsyn � u0

ð

p

0

d4 d=n4ðdÞ � ðd=RhÞ
2
$ (13)

This is consistent with the power law obtained in Fig. 10

After the flagella have synchronized and come into close

contact, the tangential forces (Fig. 2) lead to a wrapping, which

promotes helix bundling close to the contact point. Then, the

‘‘bundling front’’ propagates towards the free ends (see Fig. 9).

Eventually, at very large distances d, synchronization and

bundling is prevented by hydrodynamic interactions which are

too weak to overcome the bending rigidity or fluid noise which is

too strong, and the helices rotate independent of each other.

3.2.4 Rotation frequency and fluid velocity. Fig. 11 (a) shows

average angular velocities hui in the stationary rotating state. As

the separation between the helices increases, the angular velocity

decreases for d/Rh ( 10. Two linear regimes can be identified,

a regime where hui drops quickly for small distances d/Rh < 5,

corresponding to tight bundles, and a regime of a slower

Fig. 11 Average bundle angular-velocities of three helices (a) and

average fluid velocities (b) as a function of separation. At separations d/

Rh > 10, the helices behave like individual ones.

Fig. 12 Snapshots, side views (top) and top views (bottom), of three

helices for the separations d/Rh ¼ 7.5 (left), 10 (middle), 12.5 (right) in the

stationary state. Simulation animations are shown as movie S2 in the

ESI†.

Fig. 13 Fluid streamlines around a bundle of three helices at the region

of their fixed ends (P0, left) and the middle region (P2, right).

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 4363–4372 | 4369
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variation for larger distances 5 < d/Rh < 10, corresponding to

loose bundles. For d/Rh > 10, the helices rotate independently

with a frequency close to that of a single helix. The snapshots of

Fig. 12 illustrate stationary-state conformations for various

separations (see also Fig. 6). In response to helix rotation, the

fluid moves along the z-direction. The average fluid

velocities hnsi ¼
PN

S

i¼1hnii=NS displayed in Fig. 11 (b) show

a similar dependence on separation d as the angular velocity hui.

Only the discontinuity is larger at the crossover distance from

bundled to free helices. The minimum at d/Rhz 10 indicates that

loosely, end-bundled helices exhibit a somewhat smaller rotation

frequency and fluid velocity than those rotating independently

(d/Rh > 10). The reduced swimming velocity in the regime 5 < d/

Rh < 10 is due to the tilt of the flagella with respect to each other

(see Fig. 12), which reduces thrust in the swimming direction.

Hence, we conclude that bacteria with large bundled domains

gain swimming velocity by the larger rotational velocity, while

bacteria with only small bundled domains loose swimming

velocity. Bundles with large domains exhibit an approximately

20% higher rotation frequency than individual helices. A similar

small difference between a single-filament rotation frequency and

a bundle rotation rate has been found experimentally. 14 There-

fore, flagella with only partially bundled domains possess no

benefit of larger swimming velocities over separated, individual

helices.

The fluid streamlines, generated by the rotating bundle for

d/Rh ¼ 2.5 are shown in Fig. 13. The bundled helices rotate

counterclockwise producing a counterclockwise rotating

fluid. In Fig. 13 (left), three helices are visible, whereas in the

middle part of the bundle only streamlines of a single unit are

visible.

3.3 Several helices

In bacteria such as E. coli or Salmonella typhimurium, typically

half a dozen flagella are included in a bundle.65 To unravel

differences and similarities of bundles composed of several

flagella, we compare the bundling behavior of systems from three

up to six helices. Fig. 14 displays snapshots of conformations

during the bundling process of six helices. The helix centers are

placed on a regular triangle, square, pentagon, and hexagon,

respectively, with a circumscribed circle of radius r in the

xy-plane. In all cases, the average distances between the indi-

vidual beads and the winding angles between helices show

a similar behavior as in the three helices case (cf. Fig. 7, 8), that is

a tighter bundle is formed with increasing torque.

Results for bundling times are presented in Fig. 15 for Nh ¼ 3,

4, 5, 6 helices and various radii r. By varying the applied torque,

the bundling time decreases with increasing torque according to

tbun�M�1 (see Fig. 15 (a)). The bundling times for the torqueM/

kBT ¼ 800, displayed in Fig. 15 (b), indicate that the bundling

time increases as tbun� rwith the radius. Both, figures reveal that

tbun decreases with increasing number of helices. This is quanti-

tatively shown in Fig. 15 (c) for various radii r. Typically, the

bundling time decays as tbun � N�1/2
h . Hence, we find that the

bundling time follows the scaling law

tbun � rN�1/2
h M�1. (14)

The r dependence is consistent with the dependence on

d obtained for three flagella in Sec. 3.2, since for any given

number Nh, d ¼ 2rsin(p/Nh). Then, for the range 2 < Nh < 7, the

increase in bundling time can be approximated by the effective

power-law N1/3
h at a given distance d. We can express tbun by tbun

� r�1/2M�1, where r ¼ Nh/(2pr
2) is the planer density of helices.

Our results indicate that either an increasing helix density or an

increasing torque enhances the efficiency of the bundle formation

which we attribute to the more pronounced hydrodynamic

interactions. Furthermore, bundle formation can be controlled

more easily by adopting the applied torque than changing the

density of helices.

4 Summary and conclusions

The synchronization and bundling behavior of several bacterial

flagella has been investigated by the multiparticle collision

dynamics approach. A flagellum has been described by a bead-

spring model with internal potentials to account for the helical

structure.

To reveal the forces determining bundle formation, a system of

two parallel aligned helices has been considered. Calculating the

force on each helix, we find that the dominant contributions are

tangential to the distance vector between the helices and point in

opposite direction. The force itself is due to hydrodynamic

interactions between the helices, and decays by two power-law

regimes with increasing helix distance. We would like to point

out that our helices are flexible and the confining potentials allow

for fluctuations. This is important, since rigid helices have been

shown to exhibit no synchronization.11,34

A prerequisite of helix bundling is synchronization of their

rotational motion.3,4 Considering a system of three five-turn

helices driven by the same torque, where one of them is initially

out of phase by a phase angle p, we find fast synchronization

with a synchronization time which increases as tsyn � d2 with

increasing separation. The subsequent bundling process starts

close to the fixed ends of the flagella for small separations, i.e.,

Fig. 14 Snapshots, side views (top) and top views (bottom), of various

stages of the bundling process for r/Rh ¼ 3.5. Left to right: (i) Initial state,

the red helix is out of phase. (ii) The helices synchronized their rotation.

(iii) The helices start to bundle. (iv) Final, bundled state. Simulation

animations are shown as movie S3 in the ESI†.
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tight bundles, and proceeds toward the tail end. At larger sepa-

rations and loose bundles, only the tail-end parts meet (see

Fig. 12). In any case, the time until bundling is finished depends

linearly on distance tbun � d, where tsyn < tbun. By calculating

a winding angle,35 we find tighter bundles at larger torques.

Moreover, the winding angle shows that left-handed helices twist

around each other in a right-handed manner without jamming.3,4

In the stationary state, our systems are force free along the z-

direction, i.e., the swimming direction, and the fluid moves with

a constant average velocity in the positive z-direction (see

Fig. 11). Hence, the helices pump fluid in response to their

rotation. As shown in Fig. 11, tighter bundles with large bundled

domains marginally enhance the swimming efficiency over loose

bundles with partially bundled domains, as is reflected by the

larger fluid velocity for d/Rh < 4 compared to that of individual

helices. Loosely bundled flagella display no benefit in swimming

velocity compared to an individual helix. This explains why

bacteria with multiple flagella do not swim faster than those with

a single flagellum.14,66 Thus, from a evolutionary point of view,

the benefit of multiple flagella compared to a single flagellum is to

allow ‘‘run and tumble’’ motion, rather than swimming

efficiency.66

Extending our studies to systems of up to six helices, we find

that the bundling time follows the dependence tbun � r�1/2M�1,

which indicates that bundle formation is more sensitive to the

applied torque than the density of helices. This is related to the

strength of hydrodynamic interactions, the driving force of

bundle formation. Large torques imply strong flows and

hydrodynamics dominate over fluid fluctuations. Similarly, an

increasing number density leads to stronger inter-helix

interactions.

In the present study, one of the ends of the helices is fixed in

space and each experiences a net torque. In swimming bacteria,

the net torque on the whole bacterium is zero. Hence, the overall

flow field is different from that presented in Fig. 13, because the

counter-rotating head of the bacterium creates an oppositely

rotating field.15 Nevertheless, the flow profile in the tail region

will be similar to that of Fig. 13. The additional rotation of the

bacterium body enhances bundle formation and could be an

important factor, outweighing hydrodynamic interactions.9

Simulation studies with swimming bacteria are under-way, which

will provide detailed insight into the interplay between flagella

and body rotation in bundle formation.

Acknowledgements

Financial support by the VW Foundation (VolkswagenStiftung)

within the program Computer Simulation of Molecular and

Cellular Bio-Systems as well as Complex Soft Matter of the

initiative New Conceptual Approaches to Modeling and Simula-

tion of Complex Systems is gratefully acknowledged. We thank

Holger Stark (Berlin) for helpful discussions.

References

1 H. C. Berg and R. A. Anderson, Nature, 1973, 245, 380–382.
2 H. C. Berg, E. coli in Motion, Springer, New York, 2004.
3 R. M. Macnab, Proc. Natl. Acad. Sci. U. S. A., 1977, 74, 221–225.
4 M. Kim, J. C. Bird, A. J. V. Parys, K. S. Breuer and T. R. Powers,
Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 15481–15485.

5 H. Flores, E. Lobaton, S. Mendez-Diez, S. Tlupova and R. Cortez,
Bull. Math. Biol., 2005, 67, 137–168.

6 J. J. L. Higdon, J. Fluid Mech., 1979, 94, 331–351.
7 J. J. L. Higdon, J. Fluid Mech., 1979, 90, 685–711.
8 E. M. Purcell, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 11307–11311.
9 T. R. Powers, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top., 2002, 65, 040903.

10 Y. Gebremichael, G. S. Ayton and G. A. Voth, Biophys. J., 2006, 91,
3640–3652.

Fig. 15 Bundling time as a function of the applied torque (a), radius

r (b), and helix number (c). (a) The radius is r/Rh¼ 2.5, and the number of

helices Nh ¼ 3 (black), 4 (red), 5 (green), 6 (blue). (b) The torque is

M/kBT ¼ 800; the helix numbers are the same as in (a). (c) The radii are

r/Rh¼ 2.5 (black), 3 (red), 3.5 (green), 4 (blue), 4.5 (purple), and the other

parameters are the same as in (a), (b). The lines are obtained by linear

regression.

This journal is ª The Royal Society of Chemistry 2012 Soft Matter, 2012, 8, 4363–4372 | 4371

D
o
w

n
lo

ad
ed

 b
y
 F

o
rs

ch
u
n
g
sz

en
tr

u
m

 J
u
li

ch
 G

m
b
h
 o

n
 1

3
/0

5
/2

0
1
3
 0

8
:0

4
:5

0
. 

P
u
b
li

sh
ed

 o
n
 2

9
 F

eb
ru

ar
y
 2

0
1
2
 o

n
 h

tt
p
:/

/p
u
b
s.

rs
c.

o
rg

 | 
d
o
i:

1
0
.1

0
3
9
/C

2
S

M
0
7
3
7
8
A

View Article Online

http://dx.doi.org/10.1039/c2sm07378a


11 M. Reichert and H. Stark, Eur. Phys. J. E, 2005, 17, 493–500.
12 B. Qian, D. A. Gagnon, K. S. Breuer and T. R. Powers, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2009, 80, 061919.
13 L. Turner, W. S. Ryu and H. C. Berg, J. Bacteriol., 2000, 182, 2793–

2801.
14 N. C. Darnton, L. Turner, S. Rojevsky and H. C. Berg, J. Bacteriol.,

2007, 189, 1756–1764.
15 N. Watari and R. G. Larson, Biophys. J., 2010, 98, 12–17.
16 H. C. Berg and D. A. Brown, Nature, 1972, 239, 500–504.
17 D. Coombs, G. Huber, J. O. Kessler and R. E. Goldstein, Phys. Rev.

Lett., 2002, 89, 118102.
18 H. Hotani, J. Mol. Biol., 1982, 156, 791–806.
19 C. R. Calladine, Nature, 1975, 225, 121–124.
20 C. R. Calladine, J. Mol. Biol., 1978, 118, 457–479.
21 N. C. Darnton and H. C. Berg, Biophys. J., 2007, 92, 2230–2236.
22 H. Wada and R. R. Netz, Europhys. Lett., 2008, 82, 28001.
23 R. E. Goldstein, A. Goriely, G. Humber and C.W.Wolgemuth, Phys.

Rev. Lett., 2000, 84, 1631–1634.
24 J. W. Shaevitz, J. Y. Lee and D. A. Fletcher, Cell, 2005, 122, 941–945.
25 H. Wada and R. R. Netz, Phys. Rev. Lett., 2007, 99, 108102.
26 H. Wada and R. R. Netz, Phys. Rev. E: Stat., Nonlinear, Soft Matter

Phys., 2009, 80, 021921.
27 R. Vogel and H. Stark, Eur. Phys. J. E, 2010, 259, 33.
28 R. M. Macnab and M. K. Ornston, J. Mol. Biol., 1977, 112, 1–30.
29 G. I. Taylor, Proc. R. Soc. London, Ser. A, 1951, 209, 447–461.
30 C. R. Calladine, J. Theor. Biol., 1976, 57, 469–489.
31 J. Lighthill, SIAM Rev., 1976, 18, 161–230.
32 J. Lighthill, J. Eng. Math., 1996, 30, 35–78.
33 H. C. Berg, Annu. Rev. Biochem., 2003, 72, 19–54.
34 M. Kim and T. R. Powers, Phys. Rev. E: Stat., Nonlinear, Soft Matter

Phys., 2004, 69, 061910.
35 P. J. A. Janssen and M. D. Graham, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2011, 84, 011910.
36 R. Kapral, Adv. Chem. Phys., 2008, 140, 89–146.
37 G. Gompper, T. Ihle, D. M. Kroll and R. G. Winkler, Adv. Polym.

Sci., 2009, 221, 1–87.
38 M. Ripoll, K. Mussawisade, R. G. Winkler and G. Gompper, Phys.

Rev. E: Stat., Nonlinear, Soft Matter Phys., 2005, 72, 016701.
39 J. T. Padding and A. A. Louis, Phys. Rev. Lett., 2004, 93, 220601.
40 M. Hecht, J. Harting, T. Ihle and H. J. Herrmann,Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2005, 72, 011408.
41 K. Tucci and R. Kapral, J. Phys. Chem. B, 2005, 109, 21300.

42 S. H. Lee and R. Kapral, J. Chem. Phys., 2005, 122, 214916.
43 J. T. Padding and A. A. Louis, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys., 2006, 74, 031402.
44 A. Wysocki, C. P. Royall, R. G. Winkler, G. Gompper, T. H, A. van

Blaaderene and H. L€owen, Soft Matter, 2009, 5, 1340.
45 T. Franosch, M. Grimm, M. Belushkin, F. M. Mor, G. Foffi,

L. Forr�o and S. Jeney, Nature, 2011, 478, 85.
46 A. Malevanets and J. M. Yeomans, Europhys. Lett., 2000, 52, 231–

237.
47 K. Mussawisade, M. Ripoll, R. G. Winkler and G. Gompper,

J. Chem. Phys., 2005, 123, 144905.
48 S. H. Lee and R. Kapral, J. Chem. Phys., 2006, 124, 214901.
49 J. F. Ryder and J. M. Yeomans, J. Chem. Phys., 2006, 125,

194906.
50 I. Ali, D. Marenduzzo and J. M. Yeomans, Phys. Rev. Lett., 2006, 96,

208102.
51 R. Chelakkot, R. G. Winkler and G. Gompper, Europhys. Lett., 2010,

91, 14001.
52 C.-C. Huang, R. G. Winkler, G. Sutmann and G. Gompper,

Macromolecules, 2010, 43, 10107–10116.
53 L. McWhirter, H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci.

U. S. A., 2009, 106, 6039–6043.
54 H. Noguchi and G. Gompper, Proc. Natl. Acad. Sci. U. S. A., 2005,

102, 14159–14164.
55 Y. Yang, J. Elgeti and G. Gompper, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2008, 78, 061903.
56 J. Elgeti, U. B. Kaupp and G. Gompper, Biophys. J., 2010, 99, 1018–

1026.
57 G. R€uckner and R. Kapral, Phys. Rev. Lett., 2007, 98, 150603.
58 A. Malevanets and R. Kapral, J. Chem. Phys., 1999, 110, 8605.
59 C.-C. Huang, A. Chatterji, G. Sutmann, G. Gompper and

R. G. Winkler, J. Comput. Phys., 2010, 229, 168–177.
60 T. Ihle and D. M. Kroll, Phys. Rev. E: Stat. Phys., Plasmas,Fluids,

Relat. Interdiscip. Top., 2001, 63, 02020.
61 M. P. Allen, Computer Simulation in Liquids, Oxford, Clarendon,

1987.
62 D. J. Tritton, Physical Fluid Dynamics, Clarendon, Oxford, 1988.
63 G. J. Elfring and E. Lauga, Phys. Rev. Lett., 2009, 103, 088101.
64 C. M. Pooley, G. P. Alexander and J. M. Yeomans, Phys. Rev. Lett.,

2007, 99, 228103.
65 C. Brenner and H. Winet, Ann. Rev. Fluid. Mech., 1977, 9, 39.
66 R. M. Macnab, J. Clin. Microbiol., 1976, 4, 258.

4372 | Soft Matter, 2012, 8, 4363–4372 This journal is ª The Royal Society of Chemistry 2012

D
o
w

n
lo

ad
ed

 b
y
 F

o
rs

ch
u
n
g
sz

en
tr

u
m

 J
u
li

ch
 G

m
b
h
 o

n
 1

3
/0

5
/2

0
1
3
 0

8
:0

4
:5

0
. 

P
u
b
li

sh
ed

 o
n
 2

9
 F

eb
ru

ar
y
 2

0
1
2
 o

n
 h

tt
p
:/

/p
u
b
s.

rs
c.

o
rg

 | 
d
o
i:

1
0
.1

0
3
9
/C

2
S

M
0
7
3
7
8
A

View Article Online

http://dx.doi.org/10.1039/c2sm07378a

	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a

	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a

	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a
	Synchronization and bundling of anchored bacterial flagellaElectronic supplementary information (ESI) available: Three movies showing simulation animations of synchronization and bundling of several helical flagella. See DOI: 10.1039/c2sm07378a


