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We take a complex systems approach to investigating experimentally the collective
dynamics of a network of four self-excited thermoacoustic oscillators coupled in a ring.
Using synchronization metrics, we find a wide variety of emergent multi-scale behaviour,
such as (i) a transition from intermittent frequency locking on a T

3 quasiperiodic attractor
to a breathing chimera, (ii) a two-cluster state of anti-phase synchronization on a periodic
limit cycle, and (iii) a weak anti-phase chimera. We then compute the cross-transitivity
from recurrence networks to identify the dominant direction of the coupling between the
heat-release-rate (q′

X
) and pressure (p′

X
) fluctuations in each individual oscillator, as well

as that between the pressure (p′
X

and p′
Y

) fluctuations in each pair of coupled oscillators.
We find that networks of non-identical oscillators exhibit circumferentially biased p′

X
–p′

Y

coupling, leading to mode localization, whereas networks of identical oscillators exhibit
globally symmetric p′

X
–p′

Y
coupling. In both types of networks, we find that the p′

X
–q′

X

coupling can be symmetric or asymmetric, but that the asymmetry is always such that
q′

X
exerts a greater influence on p′

X
than vice versa. Finally, we show through a cluster

analysis that the p′
X

–p′
Y

interactions play a more critical role than the p′
X

–q′
X

interactions
in defining the collective dynamics of the system. As well as providing new insight into
the interplay between the p′

X
–p′

Y
and p′

X
–q′

X
coupling, this study shows that even a small

network of four ring-coupled thermoacoustic oscillators can exhibit a wide variety of
collective dynamics. In particular, we present the first evidence of chimera states in a
minimal network of coupled thermoacoustic oscillators, paving the way for the application
of oscillation quenching strategies based on chimera control.
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1. Introduction

Over the past several decades, tightening emission standards have prompted gas turbine
manufacturers to deploy lean-premixed combustion (Lieuwen & Yang 2005). However,
this strategy is known to be susceptible to thermoacoustic instability (O’Connor,
Hemchandra & Lieuwen 2016). Thermoacoustic instability is typically caused by
constructive interactions between the heat-release-rate (HRR) oscillations of an unsteady
flame and the pressure oscillations of the combustor (Culick 2006). Such interactions can
arise from various mechanisms, such as hydrodynamic instabilities (Poinsot et al. 1987),
equivalence ratio fluctuations (Lieuwen & Zinn 1998) and entropy waves (Candel 2002).
If the HRR and pressure oscillations are sufficiently in phase, energy can be transferred
from the flame to the acoustic field via the mechanism of Rayleigh (1945), resulting in
self-excited flow oscillations whose frequencies are often close to those of the natural
acoustic modes of the system (Culick 2006). Thermoacoustic instability can also arise
from an intrinsic feedback mechanism involving upstream propagating acoustic waves
emitted by the flame itself (Hoeijmakers et al. 2014; Emmert, Bomberg & Polifke 2015),
with no requirement for acoustic reflection at the combustor boundaries (Silva et al. 2015;
Buschmann, Mensah & Moeck 2020). Regardless of the specific feedback mechanism,
however, thermoacoustic oscillations can exacerbate thermomechanical stresses and flame
blowoff/flashback, limiting the performance and service life of the overall combustion
system (Poinsot 2017).

The analysis, prediction and control of thermoacoustic oscillations have been the
subject of extensive research (Candel 2002; Dowling & Morgans 2005; Lieuwen &
Yang 2005; Culick 2006; Sujith, Juniper & Schmid 2016; Poinsot 2017; Juniper &
Sujith 2018; Heckl 2019; Polifke 2020; Schuller, Poinsot & Candel 2020). Most of
the existing literature has focused on single combustors because these have simple
geometries and well-defined boundary conditions while still being governed by the
same physical mechanisms that are responsible for the thermoacoustic feedback loops
described above. In many industrial gas turbines, however, there exists not just a single
combustor in isolation, but multiple combustors coupled to one another (Luque et al.
2015). Such multi-combustor systems, known as can-annular systems (Bethke et al.
2002), can host a variety of thermoacoustic modes, whose stability and dynamics
are determined not only by the flame–acoustic interactions occurring within each
individual combustor (i.e. intra-combustor interactions), but also by the bidirectional
acoustic interactions occurring between directly/indirectly coupled combustors (i.e.
inter-combustor interactions) (Mongia et al. 2003; Kaufmann et al. 2008; Luque et al.
2015; Farisco, Panek & Kok 2017; Bonciolini & Noiray 2019; Ghirardo et al. 2019;
von Saldern, Moeck & Orchini 2021a). Although considerable research exists on
intra-combustor flame–acoustic interactions (Candel 2002; Dowling & Morgans 2005;
Lieuwen & Yang 2005; Culick 2006; Sujith et al. 2016; Poinsot 2017; Juniper & Sujith
2018; Heckl 2019; Polifke 2020; Schuller et al. 2020), less is known about inter-combustor
acoustic–acoustic interactions. In this experimental study, we take a complex systems
approach to investigating both types of interactions, with a focus on how they give rise
to collective dynamics in a self-excited thermoacoustic system consisting of four turbulent
lean-premixed combustors coupled in a ring configuration.

1.1. Synchronization and chimeras in coupled thermoacoustic oscillators
The thermoacoustics of multi-combustor systems can be analysed conveniently in the
framework of mutual synchronization (Pikovsky, Rosenblum & Kurths 2003; Balanov
et al. 2008). This involves treating each combustor as an individual self-excited oscillator

938 A5-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.130


Synchronization and chimeras in a thermoacoustic system

(e.g. undergoing limit-cycle motion) and examining how the mutual coupling of those
oscillators can change their phase and amplitude dynamics (Sujith & Unni 2020, 2021).
This approach has underpinned numerous studies on coupled thermoacoustic oscillators.
For example, using concepts from mutual synchronization, Thomas et al. (2018a,b)
investigated numerically the effects of dissipative coupling, time-delay coupling, and
external noise on the transition to amplitude death in a coupled Rijke-tube model.
Using similar concepts, Dange et al. (2019) observed experimentally in-phase/anti-phase
synchronization, phase-flip bifurcations and partial amplitude death in two coupled
Rijke tubes powered by electric heaters. Similarly, Biwa, Tozuka & Yazaki (2015),
Hyodo & Biwa (2018) and Hyodo, Iwasaki & Biwa (2020) observed experimentally
in-phase/anti-phase synchronization and amplitude death in two coupled thermoacoustic
oscillators powered by electric heaters and laminar Bunsen flames.

The above studies focused only on laminar systems, but practical combustors are almost
always turbulent (Lieuwen 2012). Recognizing this, Jegal et al. (2019) and Moon et al.
(2019) have investigated experimentally the mutual synchronization of two turbulent
lean-premixed combustors coupled via a cross-talk tube. They found a variety of collective
dynamics, including in-phase/anti-phase synchronization, desynchronization associated
with quasiperiodicity, and complete/partial amplitude death. In a follow-up study, Moon
et al. (2020a) investigated how changing the dimensions of the cross-talk tube can affect
the dissipative and time-delay coupling between the two combustors as well as their
collective dynamics. Recently, these dynamics were modelled phenomenologically by
Guan et al. (2021) using two canonical self-excited temporal oscillators (Van der Pol
oscillators) coupled via dissipative and time-delay terms, demonstrating the universality of
the observed synchronization phenomena. This was inspired by the work of Bonciolini &
Noiray (2019), who used two coupled stochastically driven nonlinear oscillators to model
the synchronization of thermoacoustic modes in two sequential turbulent combustors.

The use of turbulent combustors in the above studies marks a step closer to practical
conditions. However, those studies were limited to only two combustors at a time, whereas
heavy-duty land-based gas turbines typically contain a larger number of combustors
coupled in a ring configuration. The synchronization of thermoacoustic modes in
can-annular and annular combustors has attracted growing interest in recent years. For
example, Moeck et al. (2019) used an oscillator model to explore the nonlinear coupling
between azimuthal and axisymmetric modes in annular combustors. They found that
synchronization between a standing azimuthal mode and an axisymmetric mode can occur
if the two modes exhibit similar resonance frequencies and growth rates. In can-annular
combustors, the existence of clusters of thermoacoustic modes with similar frequencies
was first revealed by Ghirardo et al. (2019) and was subsequently explained by von Saldern,
Orchini & Moeck (2021b) using Bloch-wave theory. On the experimental front, Moon
et al. (2020b) and Moon, Yoon & Kim (2021) recently investigated the thermoacoustics
of four ring-coupled turbulent combustors, but they did not do so in a synchronization
framework, leaving open questions about the simultaneous interactions between different
thermoacoustic modes and their collective dynamics. In particular, the thermoacoustics of
multi-combustor systems is known to depend on both (i) the intra-combustor interactions
between HRR and pressure oscillations, and (ii) the inter-combustor interactions between
different thermoacoustic modes. Depending on the coupling and system parameters,
these interactions can produce a variety of complex multi-scale dynamics, such as
quasiperiodicity, chaos, frequency/phase locking, clustering and chimeras (Juniper &
Sujith 2018; Sujith & Unni 2020).
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Chimeras are spatiotemporal patterns in which regions of synchrony (coherence)
and asynchrony (incoherence) coexist (Panaggio & Abrams 2015). They were first
discovered by Kuramoto & Battogtokh (2002) in a population of non-locally coupled
phase oscillators governed by the complex Ginzburg–Landau equation. It was found
that under certain conditions, the spatial domain splits into two parts: one populated by
mutually synchronized oscillators evolving at a common frequency, and one populated by
desynchronized oscillators evolving at distributed frequencies (Kuramoto & Battogtokh
2002). Abrams & Strogatz (2004) later named this hybrid pattern a chimera – after the
fire-breathing creature from Greek mythology endowed with body parts from different
animals – in order to highlight the simultaneous coexistence of coherent and incoherent
oscillators in the same network. Since their discovery, chimeras have attracted considerable
research attention, leading to the theoretical prediction of numerous variants (Parastesh
et al. 2021). These variants have been classified in different ways, such as on the
basis of the spatiotemporal evolution of the coherent and incoherent domains (e.g.
breathing chimeras, alternating chimeras and travelling chimeras), the emergence of
multiple coherent clusters within the incoherent domain (e.g. multi-headed chimeras), and
the amplitude evolution of the oscillators (e.g. amplitude chimeras and chimera death)
(Parastesh et al. 2021). Although chimeras were originally defined for ensembles of
identical oscillators, this definition has since evolved to include ensembles of non-identical
oscillators as well (Halatek & Frey 2018). In the real world, chimeras have been observed
experimentally in various chemical, mechanical, optical and electrical systems (Parastesh
et al. 2021), and they are thought to hold the key to a better understanding of the mutual
interactions within such systems (Panaggio & Abrams 2015).

In thermoacoustics, chimeras were first reported by Mondal, Unni & Sujith (2017) for
a population of local HRR oscillators representing the reactive flow field of a bluff-body
stabilized turbulent premixed combustor. Since then, similar chimeras have been reported
by Pawar et al. (2019) for a swirl-stabilized combustor, and by Hashimoto et al. (2019)
for a model rocket combustor. However, although pioneering, those studies (Mondal et al.
2017; Hashimoto et al. 2019; Pawar et al. 2019) focused exclusively on single-combustor
systems where each pixel group in a flame image was taken to be an individual oscillator
in a large spatially-extended network. To our knowledge, chimeras have yet to be observed
in a multi-combustor system where each combustor is taken to be an individual oscillator
in a small network.

Small networks are minimal systems typically containing between three and ten coupled
oscillators. For such networks, Ashwin & Burylko (2015) recently proposed a state of
weak chimera characterized by the coexistence of (i) two or more oscillators in frequency
synchronization and (ii) one or more oscillators evolving at frequencies different from that
of the synchronized ensemble. Shortly after the study by Ashwin & Burylko (2015), the
first experimental evidence of weak chimeras was reported by Wojewoda et al. (2016) for
three coupled pendulums, and by Hart et al. (2016) for four optoelectronic oscillators.
Since then, weak chimeras have been investigated theoretically and experimentally in
various systems, such as Stuart–Landau oscillators (Kemeth, Haugland & Krischer 2018),
pendulum-like nodes (Maistrenko et al. 2017), electrochemical oscillators (Bick, Sebek &
Kiss 2017) and candles (Manoj et al. 2019). To date, however, weak chimeras have yet to
be observed in a thermoacoustic system, where mutually constructive interactions between
HRR sources and their surrounding acoustic field can give rise to destructive self-excited
flow oscillations (Lieuwen & Yang 2005). Establishing the existence of chimeras in a
thermoacoustic system would open up new opportunities for the application of oscillation
quenching strategies based on chimera control (Bick & Martens 2015; Parastesh et al.
2021). In this study, we present the first evidence of chimera states – namely a breathing
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chimera and a weak anti-phase chimera – in a multi-combustor system undergoing
thermoacoustic oscillations. Moreover, we investigate both the intra- and inter-combustor
interactions, and how they give rise to collective multi-scale dynamics.

1.2. Complex networks in thermoacoustics
Recent years have seen complex networks emerge as a powerful tool for investigating
the connectivity patterns in various systems, such as our climate, the internet and the
human brain (Strogatz 2001). Complex networks are based on network theory, which
uses graphs to represent the elements of a system as nodes, and the interactions between
them as links. The overarching goal is to better understand how a network of interacting
elements – each of which may have its own individual dynamics and coupling architecture
– will act collectively (Boccaletti et al. 2006). A focal point of current research is to
relate the topology of complex networks built from a physical system to the underlying
spatiotemporal dynamics of that system, with a view to developing improved methods of
prediction and control (Newman 2018).

Complex networks have seen various applications in fluid mechanics (Donges et al.
2009; Gao et al. 2013; Taira, Nair & Brunton 2016; Kobayashi et al. 2019b; Murugesan,
Zhu & Li 2019; Hachijo et al. 2020; Iacobello, Ridolfi & Scarsoglio 2020). In the past
five years, they have been used increasingly to characterize and control thermoacoustic
oscillations in combustion systems. For example, Murugesan & Sujith (2015) used a
visibility algorithm to construct complex networks from time traces of the unsteady
pressure in a turbulent combustor during its transition from combustion noise to
thermoacoustic instability. They found that networks associated with combustion noise
have a scale-free structure, which becomes replaced by an ordered topology at the onset
of thermoacoustic instability. Gotoda et al. (2017) used both weighted and unweighted
ε-recurrence networks, alongside modified visibility graphs, to show that a turbulent
combustor operating near the flame blowout limit can exhibit a network structure with
small-world features, implying a large clustering coefficient but a small average path
length. At around the same time, Godavarthi et al. (2017) used ε-recurrence networks
to analyse the dynamical transitions occurring in a turbulent combustor and found that
the characteristic path length is a reliable precursor of thermoacoustic instability. Later,
Godavarthi et al. (2018) used recurrence networks to investigate the coupling between
the HRR and pressure oscillations in a turbulent combustor transiting through different
dynamical states, such as high-dimensional deterministic chaos (combustion noise),
intermittency, and limit cycles (thermoacoustic instability). More recently, Guan et al.
(2019c) and Guan, Gupta & Li (2020) used filtered visibility graphs to distinguish between
noise-contaminated limit cycles and deterministic chaos in both laminar and turbulent
combustors.

The use of visibility and recurrence algorithms is not the only way to construct complex
networks. For example, Unni et al. (2018) and Krishnan et al. (2019a) built spatial
networks in which the connectivity between two nodes is determined by the Pearson
(1895) correlation coefficient between the flow velocities at those two nodes. They used
such networks to identify (i) the flow regions driving thermoacoustic instability and
(ii) the optimal location at which to apply passive control via micro-jet injection. To
investigate the spatiotemporal dynamics of the acoustic power sources in a turbulent
combustor, Krishnan et al. (2019b) used weighted time-varying spatial networks in which
two nodes are considered connected if and only if the product of the HRR and pressure
fluctuations at both nodes is positive. Murayama & Gotoda (2019) combined a phase
synchronization parameter and the determinism (connection strength) of cross recurrence
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plots to build weighted networks, and then used them to explain how thermoacoustic
oscillations can be weakened with secondary air injection. Recently, Krishnan et al. (2021)
constructed time-varying weighted spatial turbulent networks based on the Biot–Savart
law, and showed that thermoacoustic instability can be suppressed by targeting the primary
network hubs (i.e. the fluid elements with high vorticity) with steady air jets. In summary,
the topology and scaling properties of complex networks formed from measurements
of combustion systems can be analysed to reveal hidden spatiotemporal patterns in the
reactive flow field and to guide control strategies, among other applications. In this study,
we use complex networks to investigate the directionality of the intra- and inter-combustor
interactions occurring in a network of ring-coupled thermoacoustic oscillators.

1.3. Machine learning in thermoacoustics
For over two decades, machine learning has been used in combustion science to extract
actionable information and insight from data (Kalogirou 2003). It has recently attracted
even greater interest owing to a confluence of advancements in data collection and
storage, computational hardware, and machine learning algorithms (Brunton, Noack &
Koumoutsakos 2020). Machine learning algorithms can be classified into three broad
groups (supervised, semi-supervised and unsupervised) depending on the degree to which
the data are labelled. In this study, we focus on unsupervised machine learning because
our aim is to discover hidden patterns in unlabelled combustor data (HRR and pressure
signals), rather than to build models for prediction and classification based on new
data. Two common applications of unsupervised machine learning are dimensionality
reduction and cluster analysis. Dimensionality reduction tools, such as proper orthogonal
decomposition (Berkooz, Holmes & Lumley 1993) and dynamic mode decomposition
(Schmid 2010; Schmid et al. 2011), have been used to identify the dominant flow
structures in various thermoacoustic systems (Mariappan, Sujith & Schmid 2015; Noiray
& Denisov 2017; Passarelli et al. 2021; Shoji et al. 2021). By contrast, cluster analysis
has attracted less attention in thermoacoustics. Nevertheless, clustering algorithms can
be used to partition unlabelled data into distinct and meaningful groups, even without
expert knowledge. This could facilitate the discovery of hidden patterns and interactions,
as well as the development of reduced-order models for improved physical understanding
and control (Brunton et al. 2020). It could also open up new possibilities for data-driven
forecasting of the onset of thermoacoustic instability in self-excited combustion systems
(Sarkar et al. 2016).

1.4. Contributions of the present study
In this experimental study, we take a complex systems approach to investigating the
collective dynamics of a self-excited thermoacoustic system consisting of four turbulent
lean-premixed combustors coupled in a ring configuration. Using synchronization metrics
and recurrence networks, we examine both the intra-combustor flame–acoustic interactions
and the inter-combustor acoustic–acoustic interactions. However, unlike previous studies
where the latter interactions were investigated as discrete thermoacoustic modes (Moon
et al. 2020b, 2021), here we treat each combustor as an individual self-excited
thermoacoustic oscillator and explore how multiple such oscillators can interact in a
ring-coupled network to form various synchronous and asynchronous patterns, such as
a breathing chimera and a weak anti-phase chimera. We then use recurrence network
analysis to identify the dominant direction of the bidirectional coupling (i) between the
pressure signals in each pair of directly/indirectly coupled oscillators, and (ii) between the
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HRR and pressure signals in each individual oscillator. Finally, we use a hybrid machine
learning algorithm to perform clustering in a three-dimensional feature space defined by
global measures extracted from joint recurrence networks. In this way, we are able to
determine which of the two types of interactions (intra- or inter-combustor) plays a more
critical role in defining the collective dynamics of the overall system.

This study has two main contributions. First, it shows that even a small network of
four ring-coupled combustors can exhibit a wide variety of collective dynamics. These
dynamics include intermittent synchronization, clustering, a breathing chimera, and a
weak anti-phase chimera, encompassing a diverse mix of order and disorder in the
spatiotemporal structure. It is important to recall that these dynamics are not unique to our
particular system, but are universal to minimal networks of coupled oscillators (Abrams
& Strogatz 2004; Maistrenko et al. 2017; Kemeth et al. 2018). This implies that these
dynamics can be modelled – and thus understood, predicted and controlled – using only
low-order oscillator equations. Second, this study shows that combining cluster analysis
and recurrence network analysis can lead to a versatile tool with which to explore the
interactions within and between thermoacoustic oscillators. When combined with chimera
control techniques (Bick & Martens 2015; Parastesh et al. 2021), this hybrid machine
learning framework could help to guide the design of new ring-coupled combustion
systems with reduced susceptibility to thermoacoustic instability.

2. Experimental set-up

Figure 1(a–c) shows the experimental set-up, which is identical to that used by Moon et al.
(2020b, 2021). It consists of four cylindrical combustors, each containing a lean-premixed
CH4–air flame stabilized in a turbulent swirling injector flow. The four combustors
are coupled together in a ring configuration via a full-annular cross-talk section (inner
diameter 43 mm) mounted perpendicular to the combustor axis. The length of each
combustor is adjustable via a movable piston; in this study, we use two different combustor
lengths (1020 and 1620 mm), but the axial position of the cross-talk section is always
20 mm upstream of these lengths (ξ = 1000 and 1600 mm, respectively). The reactant
mixture contains gaseous premixed CH4 and air, whose flow rates are metered individually
using four thermal mass flow controllers (Teledyne Instruments HFM-D-301 for CH4, and
Sierra Instruments FlatTrak 780S for air). We measure the pressure fluctuations in each
combustor (p′) using a piezoelectric transducer (PCB 112A22: sensitivity 14.5 mV kPa−1)
mounted at the injector plane (figure 1b). This measurement location has been shown
by Moon et al. (2020b) to be sufficiently far from the pressure nodes of the system to
produce a reliable signal-to-noise ratio. We measure the HRR fluctuations of each flame
(q′) using a photomultiplier tube (Hamamatsu H7732-10) viewing through a bandpass
optical filter (309 ± 5 nm, OH∗ chemiluminescence). We sample simultaneously the p′
and q′ signals from all four combustors at 12 kHz for 4 s on a 16-bit analogue-to-digital
converter (TEAC LX-110). This study is guided by two main control parameters: the
equivalence ratio of the flame (φ), and the axial position of the cross-talk section (ξ ),
which sets the combustor length as ξ + 20 mm. The Reynolds number, defined based on
the outer diameter of the mixing section, is held constant at approximately 22 000. Further
details on this experimental set-up can be found in Moon et al. (2020b, 2021).

As mentioned earlier, we consider the four combustors as a network of four ring-coupled
thermoacoustic oscillators. The architecture of this network is illustrated in figure 1(d).
The acoustic interactions between any two oscillators can be decomposed into two
classes, depending on the coupling type: (i) direct coupling between any two adjacent
oscillators, as represented by four pairwise links between p′

X
and p′

Y
(figure 1(d), solid
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Figure 1. Thermoacoustic system consisting of four turbulent lean-premixed combustors coupled in a ring
configuration: (a) isometric view, (b) top cross-sectional view, and (c) end cross-sectional view of the annular
cross-talk (XT) section. The dimensions shown are in millimetres. Further details can be found in Moon
et al. (2020b, 2021). Panel (d) shows the network architecture, which contains two types of inter-combustor
interactions: (i) direct coupling between any two adjacent oscillators, as represented by four pairwise links
between p′

X
and p′

Y
(solid lines: C1–C2, C2–C3, C4–C3 and C4–C1); and (ii) indirect coupling between any

two opposite oscillators, as represented by two pairwise links between p′
X

and p′
Y

(dash-dotted lines: C1–C3 and
C4–C2). Intra-combustor interactions are captured by the coupling between p′

X
and q′

X
within each individual

oscillator (C1, C2, C3 and C4).

lines: C1–C2, C2–C3, C4–C3 and C4–C1); and (ii) indirect coupling between any two
opposite oscillators, as represented by two pairwise links between p′

X
and p′

Y
(figure 1(d),

dash-dotted lines: C1–C3 and C4–C2). The subscripts X and Y are used to index into
the four oscillators (1, 2, 3 and 4). As for the intra-combustor flame–acoustic interactions,
these are captured by the coupling between p′

X
and q′

X
within each individual oscillator

(C1, C2, C3 and C4).

3. Data analysis via complex systems theory

In this section, we give an overview of the complex systems tools used to analyse the p′
and q′ data. For a detailed discussion of these tools, the reader is referred to the books by
Webber & Zbilut (2005) and Brunton & Kutz (2019), and to the review papers by Donner
et al. (2011) and Zou et al. (2019).

3.1. Kuramoto order parameter
A proven way to identify chimera states is to quantify the phase coherence of all the
oscillators in a network. Here we do this using the Kuramoto order parameter (Kuramoto
2003)

RK(t) = 1
N

∣∣∣∣∣∣
N∑

j=1

ei θj(t)

∣∣∣∣∣∣ , (3.1)

where θj is the phase of each oscillator (i.e. the p′ signal), and N is the total number of
oscillators. The oscillators are incoherent when RK = 0, but are coherent when RK = 1.
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Synchronization and chimeras in a thermoacoustic system

3.2. ε-recurrence networks
The recurrence plot (RP) was introduced by Eckmann, Kamphorst & Ruelle (1987) as a
graphical means of identifying dynamical states and patterns in time series data using the
fundamental property of recurrence. It is a two-dimensional binary bitmap whose elements
are defined by the recurrence matrix

R = �(ε − ‖X i(d)− X j(d)‖), (3.2)

where X i(d) = (xi, xi+τ , . . . , xi+τ(d−1)) is the ith state vector of the system, ‖ · ‖ is a
norm (e.g. L1 norm, L2 norm or L∞ norm), τ is the embedding time delay, d is the
embedding dimension, �(·) is the Heaviside function, and ε is the recurrence threshold.
The distance matrix, ‖X i(d)− X j(d)‖, is binarized using �(·) such that Rij = 1 when
‖X i(d)− X j(d)‖ < ε, but Rij = 0 otherwise (Marwan et al. 2007).

If the input data are bivariate, as they are in this study (e.g. p′
X

and p′
Y

, or p′
X

and
q′

X
), then two extensions of the RP are possible: the cross recurrence plot (CRP) and

the joint recurrence plot (JRP). The CRP is used to compare the phase trajectories of
two different time signals in the same phase space, providing information on the internal
coupling between them. The CRP is defined by the cross recurrence matrix

CR = �(ε − ‖X i(d)− Y i(d)‖), (3.3)

where X i(d) is the ith state vector reconstructed from one time series, and Y i(d) is the ith
state vector reconstructed from another time series.

The JRP is used to investigate when two phase trajectories, reconstructed from two time
signals, recur simultaneously in their own phase spaces. In other words, it is a measure of
the joint probability of two systems recurring at the same time. The JRP is defined by the
joint recurrence matrix

JR = �(ε − ‖X i(d)− X j(d)‖) ·�(ε − ‖Y i(d)− Y j(d)‖), (3.4)

where X i(d) is the ith state vector reconstructed from one time series, and Y i(d) is the ith
state vector reconstructed from another time series.

Quantitative information on the nonlinear dynamics of a system can be extracted from
RPs (including CRPs and JRPs) using recurrence quantification analysis (RQA) (Webber
& Zbilut 2005). This involves computing statistical measures (e.g. the recurrence rate,
determinism and laminarity) based on the geometric patterns (e.g. diagonal or vertical
lines) present in RPs. Once computed, such RQA measures can be used in various ways,
such as to distinguish between different types of synchronization and to forecast the onset
of critical transitions (Marwan et al. 2007). In combustion science, RQA has been used
to detect thermoacoustic instability (Nair, Thampi & Sujith 2014; Hernandez-Rivera et al.
2019; Pagliaroli & Troiani 2020; Pavithran, Unni & Sujith 2021), flame blowout (Unni &
Sujith 2016; De et al. 2020) and flame flashback (Christodoulou et al. 2016).

Alternatively, the geometric patterns in RPs can be analysed in the framework of
complex networks, via the use of ε-recurrence network analysis. Introduced by Marwan
et al. (2009), such an analysis involves casting each state vector, X i(d), into a vertex (node)
of a network. Two vertices are considered connected by an edge if Rij = 1. The binary
adjacency matrix of an undirected and unweighted recurrence network is defined as

A = R − IN, (3.5)

where IN , the N-dimensional identity matrix, is used to exclude self-loops. Like RPs, CRPs
and JRPs can also be reinterpreted in the framework of complex networks. To facilitate
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this, Feldhoff et al. (2012) proposed the inter-system recurrence matrix

IR =
(

RX(εR) CRXY(εCR)

CRYX(εCR) RY(εR)

)
, (3.6)

where RX(εR) and RY(εR) are the recurrence matrices of dynamical systems X and Y,
respectively, and CRXY(εCR) and CRYX(εCR) are the corresponding cross recurrence
matrices, with CRT

YX
= CRXY. Moreover, εR and εCR are the thresholds for the recurrence

matrices and cross recurrence matrices, respectively. The binary adjacency matrix of an
inter-system recurrence network can then be defined as

IA = IR − IN . (3.7)

The joint recurrence network is defined analogously to the recurrence network:

JA = JR − IN . (3.8)

When constructing ε-recurrence networks, we do not use the full time series of p′ and
q′ because this would cause the adjacency matrix to be excessively large (48 000 × 48 000
elements). Instead, we split the time series into shorter segments using a sliding window
of 0.4 s, which is long enough to capture at least 30 and 100 cycles of the lowest and
highest frequency components, respectively. For comparison, previous analyses involving
ε-recurrence networks used a non-overlapping sliding window spanning around 43 cycles
of the dominant mode (Godavarthi et al. 2018). To reduce noise, we use a window overlap
ratio of 0.5, resulting in 19 shorter time segments. We use a recurrence threshold equal
to the fixed recurrence rate (RR), following recommendations by Feldhoff et al. (2012)
that RRXY < RRX,RRY and RRX,RRY ≤ 0.05. For the inter-system recurrence networks,
we use a threshold of 0.04 for the cross recurrence matrices and 0.05 for the recurrence
matrices. For the joint recurrence networks, we use a threshold of 0.05 for the recurrence
matrices. A sensitivity analysis (Appendix A) reveals that the results are insensitive to the
exact threshold values used, so long as they are within the range suggested by Feldhoff
et al. (2012).

We use four measures to quantify the network structure: the cross-transitivity, the global
edge density, the global average path length and the global clustering coefficient. We use
these specific measures because they have been proven to be able to characterize the
mutual synchronization of various coupled systems (Zou et al. 2019), including those
in thermoacoustics (Sujith & Unni 2020). Watts & Strogatz (1998) originally proposed
the clustering coefficient as a measure of the mean fraction of triangles formed by three
different vertices of a network. The clustering coefficient is defined as

C = 1
N

N∑
i=1

∑N
j,k=1 AijAjkAki

ki(ki − 1)
, (3.9)

where Aij is an element (edge) in the adjacency matrix A, and ki = ∑N
j=1 Ajk is the degree

centrality, a measure of the number of edges associated with a given vertex i. This measure,
however, is known to underestimate the actual fraction of triangles in some networks,
particularly those dominated by vertices of a small degree, e.g. scale-free networks. To
overcome this problem, Barrat & Weigt (2000) proposed the transitivity as an alternative
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way to quantify the clustering of a network. The transitivity is defined as

T =

N∑
i,j,k=1

AijAjkAki

N∑
i,j,k=1

AijAki

. (3.10)

More recently, Feldhoff et al. (2012) proposed the cross-transitivity

T XY =

∑
i∈V X; j,k∈V Y

IAijIAjkIAki

∑
i∈V X;j,k∈V Y

IAijIAki
, (3.11)

where IAij is an element (edge) in IA, and V X and V Y are two disjunct subsets of the
whole vertex set V such that V X ∩ V Y = ∅ and V X ∪ V Y = V . It is worth noting that
T XY and T YX are analogous to T , counting the number of cross-triangles over the
number of cross-triples. The cross-transitivity has been used by Godavarthi et al. (2018)
to investigate the mutual interactions between p′ and q′ in a turbulent premixed combustor
undergoing limit-cycle oscillations. This network measure was found to be able to identify
the dominant direction of the bidirectional coupling between the pressure and HRR fields,
providing physical insight for the development of new detection and control strategies. In
§ 4.2, we use the cross-transitivity to identify the dominant direction of the bidirectional
coupling within and between thermoacoustic oscillators.

The second network measure that we use is the global edge density

ρg = 1
N(N − 1)

N∑
i=1

ki, (3.12)

where ki is the degree centrality at vertex i, and ρg ≈ RRJR, i.e. the recurrence rate of the
JRP.

The third network measure that we use is the global average path length

Lg = 1
N(N − 1)

N∑
i,j=1

l ij, (3.13)

where l ij is the shortest path length between vertices i and j. Murugesan & Sujith (2016)
have shown that Lg can capture the changes occurring in a turbulent combustor as it
transitions from combustion noise to thermoacoustic instability. During combustion noise,
many network nodes exist with many links to their neighbours. During thermoacoustic
instability, the network becomes more organized, with nodes having links to only their
adjacent neighbours, resulting in a longer average path between nodes. Thus Lg can
be used to detect changes in the system dynamics based on changes in the network
connectivity.

The fourth network measure that we use is the global clustering coefficient (see (3.9)),
which is denoted by Cg in this study. Unlike Lg, Cg is large for a highly connected network
(e.g. combustion noise) but is small for a poorly connected network (e.g. thermoacoustic
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instability). This suggests that Cg can be used to detect different forms and degrees of
mutual synchronization. Further details on these network measures can be found in the
review papers by Donner et al. (2011) and Zou et al. (2019).

3.3. Cluster analysis of recurrence network measures
Recently, Kobayashi et al. (2019a) proposed a multi-step hybrid framework combining
complex networks and machine learning. First, they constructed ordinal partition transition
networks from time traces of the pressure and HRR fluctuations in a swirl-stabilized
turbulent combustor. Second, they used principal component analysis to build a
two-dimensional feature space containing the first and second components estimated from
the probability distribution of the transition patterns. Third, they used a support vector
machine with k-means clustering to classify the principal components into three groups,
each corresponding to a distinct state of the combustor: combustion noise, transition, and
thermoacoustic instability. Finally, they monitored the transition state percentage Rt, which
is defined as the duration ratio between the states of transition and combustion noise. They
found that a threshold of Rt = 0.50 provides sufficiently early warning for thermoacoustic
instability to be suppressed preemptively via secondary air injection at the flame base.

In this study, we propose a similar hybrid framework combining complex networks
and machine learning. However, rather than using the framework for early detection of
thermoacoustic instability, we use it to determine which of the two types of interactions
(p′

X
–p′

Y
or p′

X
–q′

X
) contributes more to the collective dynamics of the system. We use a

standard Gaussian mixture model (GMM) to perform clustering in a three-dimensional
feature space defined by three global measures extracted from joint recurrence networks:
Cg, ρg and Lg. We examine all three network measures for both p′

X
–p′

Y
and p′

X
–q′

X

interactions.
Although both the GMM and k-means algorithms rely on the use of cluster centres, only

the former can account for data covariance, implying that it is more flexible in discovering
clusters of different shapes (Press et al. 2007). This flexibility has led to GMM clustering
being applied to various observation types, such as human skin tones (Yang & Ahuja
1998), seismic events (Kuyuk et al. 2012) and pulsars (Lee et al. 2012). As § 4.3 will show,
that flexibility will also prove to be useful here as the data clusters in our system tend to be
of different shapes. In general, the use of GMM clustering involves a model of the form

f
(
xj,�

) =
k∑

p=1

αp Np(xj, μp, σp), (3.14)

where � is a vector of unknown parameters (with mean μp and variance σp), f (·) is the
measured probability density function (PDF), and Np(·) is the PDF of the sample xj and
is normally distributed. Each Np(·) is weighted by αp such that α1 + α2 + · · · + αk = 1,
and k is the number of mixtures (Reynolds 2009). We use an expectation-maximization
algorithm to converge iteratively to the maximum likelihood parameters. We standardize
the data features by removing their mean and by scaling them to unit variance before
clustering.

4. Results and discussion

4.1. Collective dynamics: synchronization and chimeras
We start by examining the collective dynamics of the system under three exemplary
operating conditions. These are represented by three networks that differ in their spatial
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distributions of φ and ξ : network I (§ 4.1.1) and network II (§ 4.1.2) are each populated by
identical oscillators, whereas network III (§ 4.1.3) is populated by two different types of
oscillators.

4.1.1. Network I: intermittent frequency locking and a breathing chimera
Figure 2 shows the collective dynamics of network I, whose oscillators are identical in
equivalence ratio (φ1,2,3,4 = 0.61) and cross-talk position (ξ1,2,3,4 = 1600 mm). We first
consider the early stages of the experiment, 0 ≤ t ≤ 2 s. In this interval (figure 2(a1),
where the time span 0.98 ≤ t ≤ 1.02 s is magnified), the time traces of p′ for all four
oscillators show temporally synchronized peaks (red bands) and troughs (blue bands),
indicating that the entire network is in a state of global in-phase synchronization (Pikovsky
et al. 2003; Balanov et al. 2008). This synchronicity extends to the HRR fluctuations as
well (figure 2(a2), 0.98 ≤ t ≤ 1.02 s): strong temporal alignment can be observed between
the peaks of p′ and q′ (red and yellow bands) and between their troughs (blue and green
bands). The fact that p′ and q′ are evolving in phase (i.e. with a phase difference of less
than π/2) implies a positive Rayleigh (1945) integral (

∫
p′q′ dt > 0), providing a physical

mechanism by which energy is transferred from the flames to the acoustic modes to sustain
the observed self-excited thermoacoustic oscillations (Lieuwen & Yang 2005; Nicoud &
Poinsot 2005; Magri, Juniper & Moeck 2020).

Although p′ and q′ evolve in phase, their dynamics are not simply periodic: the
spectrogram and power spectral density (PSD) of both p′ (figures 2b(1–4)) and q′
(figures 2c(1–4)) reveal the coexistence of three discrete modes, whose frequencies
are incommensurable (f1 = 167, f2 = 186, f3 = 201 Hz). This implies the presence of
quasiperiodicity on an ergodic three-dimensional torus attractor (3-torus), otherwise
known as T

3 quasiperiodicity (Hilborn 2000). Similar T
3 quasiperiodic states have been

observed by Guan et al. (2019a,b) in a laminar thermoacoustic system consisting of a
single Bunsen-flame combustor subjected to external periodic forcing. Other systems in
which T

3 quasiperiodicity has been observed include Rayleigh–Bénard convection cells
(Gollub & Benson 1980), barium–sodium niobate crystals (Martin, Leber & Martienssen
1984) and electrical circuits (Borkowski et al. 2015). In nonlinear dynamical systems,
quasiperiodic states on T

n with n ≥ 3 are known to be unstable to arbitrarily small
disturbances (Newhouse, Ruelle & Takens 1978). As a result, they tend to collapse into
disorganized states, such as chaos, via a sequence of folding and stretching operations
(Hilborn 2000). In our system, we find that the T

3 quasiperiodic state is indeed unstable,
existing only transiently between asynchronous epochs, before eventually giving way to a
breathing chimera in the late stages of the experiment (t ≥ 2 s), as will be discussed below.

To verify that all four oscillators in the network are in the same T
3 quasiperiodic state,

we use the Hilbert transform to compute the instantaneous phase difference, �ψp′
X

p′
Y
,

between the pressure signals in each pair of directly/indirectly coupled oscillators (X
and Y). Focusing still on the early stages (0 ≤ t ≤ 2 s), we find that all six oscillator-pair
combinations exhibit long epochs in which�ψp′

X
p′

Y
oscillates within ±π/2 of even integer

multiples of π, indicating in-phase synchronization (figure 2(d1), yellow regions and, in
the left inset, dark-grey regions). During these long synchronous epochs, the time-averaged
slope of �ψp′

X
p′

Y
, or 〈�̇ψp′

X
p′

Y

〉, is zero for all combinations, indicating that all four
oscillators are evolving at the same time-averaged frequency, a phenomenon known as
frequency locking (Pikovsky et al. 2003). The fact that the instantaneous values of�ψp′

X
p′

Y

do not remain steady in time, however, implies the absence of phase locking (Pikovsky
et al. 2003). The presence of frequency locking without phase locking is a characteristic
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Figure 2. Collective dynamics of network I, which exhibits a transition from intermittent frequency locking
on a T

3 quasiperiodic attractor to a breathing chimera. Shown at the top are time traces of (a1) p′ and (a2) p′
and q′ for each of the four oscillators in the network (C1, C2, C3 and C4); both p′ and q′ have been normalized
by their respective maximum values from the entire network. Also shown are the spectrograms and PSDs of
(b1–4) p′ and (c1–4) q′, with the PSDs computed via the algorithm of Welch (1967). Panels (b1, c1), (b2, c2),
(b3, c3) and (b4, c4) correspond to oscillators C1, C2, C3 and C4, respectively. The figure also shows (d1, e1)
the temporal variation of �ψp′

X
p′

Y
and �ψp′

X
q′

X
, alongside (d2, e2) their probability distributions, ζp′

X
p′

Y
and

ζp′
X

q′
X

, where the values of �ψp′
X

p′
Y

and �ψp′
X

q′
X

in (d2, e2) are wrapped around the interval [−π,π]. In the
inset of (e1), each curve has been shifted by even integer multiples of π for clearer visualization. The ( f 1) time
trace, ( f 2) spectrogram and PSD of the Kuramoto order parameter RK are shown in order to evaluate the phase
coherence of the network. In (d1–2, e1–2), the dark- and light-grey regions denote in-phase and anti-phase
dynamics, respectively. In (d1, f 1–2), the yellow regions denote epochs of global in-phase synchronization.

state in synchronization theory, known as phase trapping. Phase trapping is not unique to
thermoacoustic systems (Balusamy et al. 2015; Kashinath, Li & Juniper 2018; Guan et al.
2019a) or even to fluid mechanical systems (Li & Juniper 2013b,a), but can be found in
various physical systems, such as solid-state lasers (Thévenin et al. 2011). Its detection here
in a ring-coupled thermoacoustic system thus provides further evidence of its universality
(Pikovsky et al. 2003; Balanov et al. 2008).
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Interspersed between those long epochs of in-phase frequency locking (figure 2(d1),
yellow regions) are short epochs of asynchrony in which �ψp′

X
p′

Y
jumps by even integer

multiples of π. These jumps, known as phase slips, are a classic feature of forced or
coupled self-excited systems exposed to strong or unbounded noise (Pikovsky et al. 2003).
In effect, such noise drives the system from one stable equilibrium point (potential well)
to an adjacent one. In our thermoacoustic system, the source of such noise is thought to be
turbulence in the underlying reactive flow field. Put together, these observations indicate
that during 0 ≤ t ≤ 2 s, the system switches intermittently between two distinct regimes:
(i) in-phase frequency locking on a T

3 quasiperiodic attractor; and (ii) desynchronization
due to noise-induced phase slipping. In this study, we refer to this alternating state as
intermittent frequency locking. Similar states have been observed previously in other
forced or coupled self-excited systems, such as the human brain exposed to external
visual stimuli (Pisarchik, Chholak & Hramov 2019). However, it is important to recognize
that the intermittent frequency locking observed here differs from the intermittent phase
synchronization observed by Pawar et al. (2017): the former involves switching between
frequency-locked T

3 quasiperiodicity and desynchronization in a small network of four
ring-coupled combustors represented by their pressure signals, whereas the latter involves
switching between phase-locked periodicity and desynchronization in a single isolated
combustor represented by its pressure and HRR signals. Crucially, in our ring-coupled
network, all four oscillators are either globally synchronized or globally desynchronized
at any given instant (within 0 ≤ t ≤ 2 s). In other words, the inter-combustor p′

X
–p′

Y

interactions of the entire network enter the frequency-locked epochs at the same time,
and then they switch to the asynchronous epochs also at the same time (figure 2(d1)).
Later, however, we will see that such simultaneous global switching does not continue
indefinitely, with the network eventually transitioning to a breathing chimera.

Next we examine the probability distribution of �ψp′
X

p′
Y
, denoted as ζp′

X
p′

Y
, where

�ψp′
X

p′
Y

is wrapped around the interval [−π,π] (figure 2(d2)). In a continuously
desynchronized system (i.e. one without any synchronous epochs), �ψp′

X
p′

Y
would drift

unboundedly in time, causing ζp′
X

p′
Y

to be distributed uniformly across all possible values
of �ψp′

X
p′

Y
. By contrast, in a continuously synchronized system (i.e. one without any

asynchronous epochs),�ψp′
X

p′
Y

would be locked to certain values, causing ζp′
X

p′
Y

to exhibit
dominant peaks. In the special case of intermittent frequency locking, the tail properties of
those ζp′

X
p′

Y
peaks would depend on the amplitude of phase trapping and on the frequency

and duration of phase slipping. In figure 2(d2) (top sub-panel, 0 ≤ t ≤ 2 s), we find
that nearly all the p′

X
–p′

Y
interactions lead to a unimodal ζp′

X
p′

Y
distribution with a peak

at −π/2 < �ψp′
X

p′
Y
< π/2. This is consistent with the observed intermittent switching

between long epochs of in-phase frequency locking and short epochs of desynchronization
associated with phase slipping (figure 2(d1)). However, one specific pair of indirectly
coupled oscillators (C1–C3) exhibits a bimodal ζp′

X
p′

Y
distribution centred on�ψp′

X
p′

Y
≈ 0.

This is caused by the square-like waveform of �ψp′
X

p′
Y

for C1–C3 (figure 2(d1), see left
inset), which shows that C1 leads C3 roughly half of the time, and vice versa the other half.
Meanwhile, the other pair of indirectly coupled oscillators (C2–C4) exhibits a unimodal
ζp′

X
p′

Y
distribution rather than a bimodal one. This indicates an asymmetry in the evolution

of�ψp′
X

p′
Y
, despite the overall system being composed of identical oscillators. We attribute

this asymmetry to subtle differences in the operating conditions (e.g. the temperature,
velocity and φ of the reactants) and in the dimensions of the combustors and cross-talk
tubes. Indeed, Moon et al. (2019) have shown that two nominally identical uncoupled
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combustors operated at nominally identical conditions can exhibit different limit-cycle
amplitudes in their pressure oscillations. Moreover, Ghirardo et al. (2019) have shown
that even slight asymmetries in can-annular combustors can have a noticeable effect on
their modal dynamics. Nevertheless, for all six oscillator-pair combinations, every peak
in ζp′

X
p′

Y
resides well within the in-phase limits of −π/2 < �ψp′

X
p′

Y
< π/2 (figure 2(d2),

top sub-panel, dark-grey region), indicating that the intermittent epochs of phase slipping
are neither frequent nor long enough to prevent the four oscillators from evolving in phase
with one another on a time-averaged basis.

Moving on to the intra-combustor flame–acoustic interactions, we again use the Hilbert
transform to compute the instantaneous phase difference, �ψp′

X
q′

X
, but this time between

the pressure and HRR signals in each individual oscillator (X). We find that �ψp′
X

q′
X

evolves differently across all four oscillators (figure 2(e1), 0 ≤ t ≤ 2 s), despite them being
nominally identical in geometry and operating conditions. The cause of this asymmetry
is believed to be related to that observed in ζp′

X
p′

Y
between C1–C3 and C2–C4. All

four oscillators exhibit phase slipping between p′
X

and q′
X

but to different degrees, with
C3 showing the largest and most frequent phase slips. This may be attributed to the
relatively strong low-frequency HRR components in C3 (figure 2(c3), see inset). These
components are at linear combinations of f1, f2 and f3, implying that they may be due
to beating, possibly promoted by the slow temporal variations observed in the mode
amplitudes of the HRR signal. These low-frequency components are more prominent
in q′

X
than in p′

X
(figure 2(c3) versus figure 2(b3)), which would suggest that they are

caused by vortical interactions rather than by acoustic interactions. Similar low-frequency
components in the HRR signal, arising from an intrinsic hydrodynamic mode in the flame,
have been identified by Guan et al. (2019c) as a potential cause of p′

X
–q′

X
decoupling in

a liquid-fuelled combustor with a turbulent diffusion flame. The fact that the oscillator
with the lowest degree of phase slipping between p′

X
and q′

X
(C1) exhibits the weakest

low-frequency HRR components lends support to this hypothesis.
Between the epochs of phase slipping, phase locking occurs, as evidenced by �ψp′

X
q′

X

remaining relatively constant in time (figure 2(e1), see inset, where the data have been
shifted by even integer multiples of π for clearer visualization). This indicates the
presence of intermittent phase locking between p′

X
and q′

X
in each oscillator. The absence

of continuous phase locking between p′
X

and q′
X

is not a violation of the Rayleigh
criterion. This is because although the instantaneous values of �ψp′

X
q′

X
do not always

remain at a fixed value, the probability distribution of �ψp′
X

q′
X
, denoted as ζp′

X
q′

X
, still

shows a statistical preference for in-phase p′
X

–q′
X

dynamics (−π/2 < �ψp′
X

q′
X
< π/2)

in each oscillator (figure 2(e2), top sub-panel). Finally, it is worth recalling that the
evolution of �ψp′

X
q′

X
differs among the four oscillators, with phase slipping in some

oscillators often coinciding with phase locking in other oscillators (figure 2(e1)). This
stands in stark contrast to the evolution of �ψp′

X
p′

Y
(figure 2(d1)), demonstrating that

global synchronization of p′
X

–p′
Y

across the entire network does not necessarily imply
simultaneous phase locking of p′

X
–q′

X
in each oscillator.

We now consider the late stages of the experiment, 2 ≤ t ≤ 4 s. We find that a key
difference relative to the early stages (0 ≤ t ≤ 2 s) is that synchronization of p′

X
–p′

Y
no

longer occurs simultaneously in every pair of oscillators. Although intermittent frequency
locking continues to occur across the entire network, its degree and timing vary locally.
For example, in a sample time window 2.3 ≤ t ≤ 2.34 s (figure 2(d1), green region),
three oscillator-pair combinations (C1–C2, C2–C3, C1–C3) exhibit frequency locking,
as evidenced by their �ψp′

X
p′

Y
oscillating boundedly with 〈�̇ψp′

X
p′

Y

〉 = 0. In the same
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time window, however, the other three combinations (C3–C4, C4–C1, C2–C4) exhibit
desynchronization, as evidenced by their�ψp′

X
p′

Y
slipping in time. Crucially, in the epochs

of frequency locking, �ψp′
X

p′
Y

shows none of the statistical preference for even integer
multiples of π (in-phase synchronization) seen in the early stages. Taking C2–C3 as
an example, we find that some of its frequency-locked epochs show temporal switching
between anti-phase and in-phase synchronization (figure 2(d1), top middle inset), some
epochs show only in-phase synchronization (figure 2(d1), bottom right inset), and other
epochs show only anti-phase synchronization (figure 2(d1), top right inset). Such switching
between anti-phase and in-phase synchronization can be seen directly in the pressure
traces (figure 2(a1)), where the peaks of C2 are initially aligned with the troughs of C3
(t ≈ 2.3 s) but then become aligned with the peaks of C3 shortly afterwards (t ≈ 2.34 s).
As expected, this mix of in-phase and anti-phase synchronization causes ζp′

X
p′

Y
to be

uniformly distributed with no clear peak (figure 2(d2), bottom sub-panel, 2 ≤ t ≤ 4 s).
From these observations, we can conclude that the system has transitioned from a state
in which intermittent frequency locking occurs simultaneously across the entire network
(0 ≤ t ≤ 2 s) to one in which intermittent frequency locking occurs at different times and
to different degrees in different parts of the network (2 ≤ t ≤ 4 s). As noted in § 1.1, such
a hybrid state containing both synchronous and asynchronous spatial domains is called a
chimera (Abrams & Strogatz 2004).

To identify the specific type of chimera present in this system, we compute RK using
the instantaneous phase of p′ in all four oscillators (Kuramoto 2003). On examining the
time trace, spectrogram and PSD of RK (figures 2( f 1–2)), we find two different types of
behaviour. Early on (0 ≤ t ≤ 2 s), we observe long epochs in which RK is relatively steady
and close to 1 (figures 2( f 1–2), yellow regions), indicating that the phasors of all four
oscillators are well aligned with one another, consistent with frequency locking occurring
in the entire network. Interspersed between those long epochs of RK ≈ 1 are short epochs
in which RK fluctuates between 0.5 and 1; these RK fluctuations arise from rotating
phasors associated with phase slipping. Later on (2 ≤ t ≤ 4 s), we find that RK oscillates
continuously with a large amplitude, indicating that the system has transitioned to a
non-stationary state in which the positions of the coherent (synchronous) and incoherent
(asynchronous) spatial domains vary in time. Such a state is known as a breathing chimera
and was first discovered by Abrams et al. (2008) in a network of phase oscillators. An
examination of the RK spectra shows that the breathing frequencies are f3 − f1, f3 − f2 and
f2 − f1 (figure 2( f 2)), which are linear combinations of the three incommensurable modes
identified earlier in the T

3 quasiperiodic attractor. It is worth mentioning that a breathing
chimera was observed previously by Mondal et al. (2017) in a turbulent combustor during
its transition to intermittency. In that study, however, the instantaneous phase was extracted
from the HRR field in a single combustor, without any inter-combustor coupling. In the
present study, we show that a breathing chimera can also emerge in a small network of
four ring-coupled thermoacoustic oscillators, strengthening the universality of this state.

As for the intra-combustor flame–acoustic interactions in the late stages (2 ≤ t ≤ 4 s),
we find that the trends identified in the early stages (0 ≤ t ≤ 2 s) are still present. In
particular, intermittent phase locking between p′

X
and q′

X
continues to occur to varying

degrees in all four oscillators (figure 2(e1)): C1 exhibits almost continuous phase locking,
but C2, C3 and C4 exhibit increasingly pronounced epochs of phase slipping amidst
intermittent phase locking. Nevertheless, as in the early stages, all four oscillators
spend considerable time with their �ψp′

X
q′

X
at even integer multiples of π, causing

ζp′
X

q′
X

to exhibit a dominant peak within the in-phase limits of −π/2 < �ψp′
X

q′
X
< π/2

(figure 2(e2), bottom sub-panel, 2 ≤ t ≤ 4 s). This implies that across the entire network,
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p′
X

and q′
X

are in phase on a time-averaged basis, even though they are not always so on
an instantaneous basis. The in-phase relationship between p′

X
and q′

X
in each oscillator

(figure 2(e2), bottom sub-panel) stands in stark contrast to the absence of any statistically
preferred phase relationship between p′

X
and p′

Y
in the entire network (figure 2(d2), bottom

sub-panel). This contrasting behaviour provides further evidence that the phase dynamics
of the intra-combustor flame–acoustic interactions does not necessarily dictate that of the
inter-combustor acoustic–acoustic interactions.

In summary, we have shown that under certain conditions, a small network of four
ring-coupled thermoacoustic oscillators can transition from (i) intermittent frequency
locking on a T

3 quasiperiodic attractor to (ii) a breathing chimera in which the positions
of the synchronous and asynchronous spatial domains vary in time. Furthermore, we
have provided evidence showing that the phase dynamics of the p′

X
–p′

Y
interactions

between coupled oscillators does not necessarily match the phase dynamics of the p′
X

–q′
X

interactions within those oscillators.

4.1.2. Network II: a two-cluster state of anti-phase synchronization
Figure 3 shows the collective dynamics of network II, whose oscillators are identical
in equivalence ratio (φ1,2,3,4 = 0.65) and cross-talk position (ξ1,2,3,4 = 1600 mm). In
terms of operating conditions, network II differs from network I (§ 4.1.1) in that it is at
a slightly higher equivalence ratio (0.65 versus 0.61). The layout of figure 3 (network
II) is identical to that of figure 2 (network I). On examining the time traces of p′
(figure 3(a1)), we find that unlike network I, network II exhibits no dynamical transitions
during the entire sampling interval. Instead, it remains in a stationary state where
anti-phase synchronization occurs between any two adjacent oscillators, i.e. between any
two directly coupled oscillators (C1–C2, C2–C3, C3–C4, C4–C1). In the literature on
can-annular combustors, this is known as a push–pull mode, which Ghirardo, Moeck &
Bothien (2020) and von Saldern et al. (2021b), among others, have recently studied via
low-order modelling. Owing to the ring-coupled architecture of our system, the fact that
anti-phase synchronization occurs between any two directly coupled oscillators (C1–C2,
C2–C3, C3–C4, C4–C1) implies that in-phase synchronization occurs between any two
indirectly coupled oscillators (C1–C3, C2–C4). The result is a globally synchronous state
in which all four oscillators evolve at the same limit-cycle frequency (f1 = 210 Hz, as per
the PSDs of both p′ and q′; figures 3(b1–4) and 3(c1–4)) but are split into two clusters
based on their instantaneous phases: cluster {C1,C3} is in anti-phase synchronization
with cluster {C2, C4}. Similar states of clustering have been observed previously in
networks of Stuart–Landau oscillators (Manrubia, Mikhailov & Zanette 2004; Premalatha
et al. 2018), chemical oscillators (Wang, Kiss & Hudson 2000; Kiss, Zhai & Hudson
2005) and candle-flame oscillators (Manoj et al. 2019; Manoj, Pawar & Sujith 2021).
The phase difference �ψp′

X
p′

Y
for each of the six oscillator-pair combinations remains

largely constant in time (figure 3(d1)), indicating that the pressure oscillations in the
entire network are not only frequency locked but also phase locked (Pikovsky et al.
2003), with no sign of the phase trapping or slipping seen in network I (figure 2(d1)).
As noted earlier, the directly coupled oscillators (C1–C2, C2–C3, C3–C4, C4–C1) are
anti-phase synchronized, implying that their �ψp′

X
p′

Y
is locked to odd integer multiples of

π (figure 3(d1), light-grey regions). By contrast, the indirectly coupled oscillators (C1–C3,
C2–C4) are in-phase synchronized, implying that their �ψp′

X
p′

Y
is locked to even integer

multiples of π (figure 3(d1), dark-grey regions). This mix of anti-phase and in-phase
synchronization leads to a clear separation of peaks in the ζp′

X
p′

Y
distribution (figure 3(d2)),
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Figure 3. The same as in figure 2 but for network II, which exhibits a two-cluster state of anti-phase
synchronization on a periodic limit cycle.

which is a characteristic feature of clustering based on the instantaneous phase (Manrubia
et al. 2004).

In contrast to the mix of anti-phase and in-phase dynamics observed in the
inter-combustor p′

X
–p′

Y
interactions, the intra-combustor p′

X
–q′

X
interactions show only

in-phase dynamics. This is apparent in the time traces of p′
X

and q′
X

(figure 3(a2)) and
in the evolution of �ψp′

X
q′

X
(figures 3(e1–2)). Although all the p′

X
–p′

Y
interactions are

continuously phase locked (figure 3(d1)), the p′
X

–q′
X

interactions are continuously phase
locked for only C1, and are intermittently phase locked otherwise (figure 3(e1)). This
behaviour is similar to that observed in network I (figure 2(e1)), demonstrating that
continuous phase locking of p′

X
–p′

Y
across the entire network does not necessarily imply

continuous phase locking of p′
X

–q′
X

in each oscillator. Nevertheless, an examination of
ζp′

X
q′

X
shows that in all four oscillators, p′

X
and q′

X
remain in phase on a time-averaged

basis, with C1 showing the tallest ζp′
X

q′
X

peak (figure 3(e2)), in line with its �ψp′
X

q′
X

being
continuously phase locked (figure 3(e1)).
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Figure 3( f 1) shows that RK remains close to zero for the entire sampling interval,
which would typically suggest a disordered state of randomly aligned phasors. Here,
however, the low values of RK are caused not by randomly aligned phasors, but by a
systematic cancellation of phasors between the two halves of the network: the phasors
of cluster {C1,C3} cancel those of cluster {C2,C4}. A similar cancellation of phasors,
arising also from anti-phase synchronized clustering, has been reported previously in a
large population of strongly coupled relaxation oscillators (Călugăru et al. 2020). The
spectrum of RK is weak and flat, with no noticeable peaks (figure 3(f 2)). Recent analysis
of a network of coupled Stuart–Landau oscillators by Joseph & Pakrashi (2020) has shown
that the conditions favourable to anti-phase synchronization include a small number of
oscillators (typically less than 20), low connectivity, weak coupling over distance, and
strong symmetry in the network topology. Our thermoacoustic system satisfies all of
these conditions: it has only four oscillators (four combustor nodes), each oscillator is
directly coupled to only its two adjacent neighbours (i.e. nearest neighbour coupling), the
coupling is achieved with a single annular cross-talk section, and the network topology
is a symmetric ring. The discovery of anti-phase synchronization in such a network of
four ring-coupled thermoacoustic oscillators is thus consistent with the low-order network
analysis of Joseph & Pakrashi (2020).

4.1.3. Network III: a weak anti-phase chimera
Figure 4 shows the collective dynamics of network III, whose oscillators are identical
in cross-talk position (ξ1,2,3,4 = 1000 mm) but not in equivalence ratio (φ1,3 = 0.61,
φ2,4 = 0.57). On examining the time traces of p′ (figure 4(a1)), we find that the network is
stationary but divided into two halves: each of the two pairs of indirectly coupled identical
oscillators (C1–C3, C2–C4) is in anti-phase synchronization, producing push–pull modes
(Moon et al. 2021), but the two pairs are not synchronized with each other. In other
words, half of the network (C1–C3) evolves at one frequency (f1 = 262 Hz), while the
other half (C2–C4) evolves at a different frequency (f2 = 77 Hz), as can be seen in the
PSDs of both p′ (figures 4(b1–4)) and q′ (figures 4(c1–4)). In recent experiments, Moon
et al. (2020b) observed a similar frequency-based partitioning of the spatial domain
and attributed it to mode localization induced by a loss of rotational symmetry in the
network.

Examining the inter-combustor p′
X

–p′
Y

interactions, we find that �ψp′
X

p′
Y

for both pairs
of indirectly coupled identical oscillators (C1–C3, C2–C4) is approximately constant in
time, with values hovering near odd integer multiples of π, interrupted by occasional phase
slips (figure 4(d1)). In the ζp′

X
p′

Y
curve (figure 4(d2)), this gives rise to peaks at �ψp′

X
p′

Y
=

±π, indicating that both pairs of indirectly coupled identical oscillators (C1–C3, C2–C4)
are undergoing intermittent phase locking in an anti-phase manner (Pikovsky et al.
2003). By contrast, in all four pairs of directly coupled non-identical oscillators (C1–C2,
C2–C3, C3–C4, C4–C1), �ψp′

X
p′

Y
drifts unboundedly in time (figure 4(d1)), indicating

desynchronization associated with phase drifting. This is caused by the oscillator
frequency alternating between f1 and f2 around the network. Thus ζp′

X
p′

Y
is uniformly

distributed across all possible values of �ψp′
X

p′
Y

(figure 4(d2)). Collectively, these
observations indicate that network III is in a stationary state of weak anti-phase chimera.
As alluded to in § 1.1, a weak anti-phase chimera is a special type of chimera in which two
or more oscillators in a network evolve in anti-phase synchronization, while at least one
other oscillator evolves at a frequency different from that of the synchronized ensemble
(Ashwin & Burylko 2015). Weak anti-phase chimeras have been predicted theoretically
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Figure 4. The same as in figure 2 but for network III, which exhibits a weak anti-phase chimera.

by Maistrenko et al. (2017) in a minimal network of three identical pendulum-like
nodes. Here, we present experimental evidence showing that a weak anti-phase chimera
can emerge in a thermoacoustic system, namely a small network of four non-identical
thermoacoustic oscillators coupled in a ring configuration.

Turning now to the intra-combustor p′
X

–q′
X

interactions, we find that intermittent phase
locking occurs in all four oscillators, but to different degrees (figure 4(e1)): the two
oscillators at φ1,3 = 0.61 (C1 and C3) exhibit only occasional phase slips, whereas the
two oscillators at φ2,4 = 0.57 (C2 and C4) exhibit frequent phase slips. In the former two
oscillators (C1 and C3), the peak in ζp′

X
q′

X
sits near the boundary between in-phase and

anti-phase dynamics (figure 4(e2)), indicating that the Rayleigh criterion is barely satisfied
in C1 and C3. By contrast, in the latter two oscillators (C2 and C4), the peak in ζp′

X
q′

X

sits well within the in-phase limits (figure 4(e2)), indicating that the Rayleigh criterion is
satisfied in C2 and C4, with appreciable energy being transferred from the flames to the
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Figure 5. Recurrence network analysis of the three networks in § 4.1: (a) cross-transitivity of p′
X

and p′
Y

for
each pair of directly/indirectly coupled oscillators; (b) cross-transitivity of p′

X
and q′

X
for each individual

oscillator. The vertical marker bars represent the standard deviation. Also shown are network diagrams
illustrating the coupling architecture in (c) network I, (d) network II, and (e) network III.

acoustic field. This increase in energy transfer is believed to be the physical cause of the
higher pressure amplitudes observed in C2 and C4 relative to C1 and C3 (figure 4(a1)).

Figure 4( f 1) shows that RK for network III is higher than that for network II
(figure 3(f 1)), indicating greater phase coherence. Although phasor cancellation occurs
in both pairs of anti-phase synchronized oscillators (C1–C3, C2–C4), the process is not
perfect owing to phase slips and minor fluctuations in �ψp′

X
p′

Y
(figure 4(d1)). Given

that the phasors in C1–C3 rotate at f1 while those in C2–C4 rotate at f2, a new spectral
component emerges at their linear combination (f1 − f2), as can be seen in the spectrogram
and PSD of RK (figure 4(f 2)).

4.2. Identifying the dominant coupling direction via recurrence networks
Using recurrence network analysis (§ 3.2), we compute the cross-transitivity to identify the
dominant direction of the bidirectional coupling (i) between the pressure signals in each
pair of directly/indirectly coupled oscillators, Tp′

X
p′

Y
and Tp′

Y
p′

X
(figure 5a), and (ii) between

the pressure and HRR signals in each individual oscillator, Tp′
X

q′
X

and Tq′
X

p′
X

(figure 5b).
Identifying the degree of asymmetry in these interactions can reveal physical insight into
the network coupling architecture, thus aiding the development of new control strategies.

For any two coupled oscillators X and Y, if Tp′
X

p′
Y
< Tp′

Y
p′

X
, then the phase trajectory

of Y is pulled towards that of X, implying that their bidirectional coupling is biased in
the direction X → Y (Feldhoff et al. 2012). However, it should be emphasized that this
does not necessarily imply that oscillator X has unidirectional authority over oscillator Y.
Instead, it simply means that the influence of oscillator X on oscillator Y is greater than
the influence of oscillator Y on oscillator X. In other words, the two oscillators are still
interacting bidirectionally, albeit through asymmetric coupling.
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Before discussing the results, we note that although network I is non-stationary
(§ 4.1.1), its cross-transitivity data remain statistically stationary over the entire sampling
interval (not shown, for brevity). On this basis, we time-average the cross-transitivity
data for network I in the same way as we do for networks II and III, which are
inherently stationary. Even so, figures 5(a,b) reveal variable data scatter in some cases (the
vertical marker bars represent the standard deviation), making it non-trivial to compare
different datasets. Here, we consider Tp′

X
p′

Y
to be statistically different from Tp′

Y
p′

X
if

|Tp′
X

p′
Y

− Tp′
Y

p′
X
|/max(Tp′

X
p′

Y
, Tp′

Y
p′

X
) ≥ 0.1. We use an analogous criterion to compare

Tp′
X

q′
X

and Tq′
X

p′
X
.

In networks I and II, we find that Tp′
X

p′
Y

≈ Tp′
Y

p′
X

for every pair of directly/indirectly
coupled oscillators (figure 5a). This shows that the inter-combustor acoustic–acoustic
coupling in both networks is globally symmetric, with no dominant direction of authority
between any two nodes, regardless of whether they are directly or indirectly coupled.
Such globally symmetric coupling is due to each network being populated by identical
oscillators. As for the intra-combustor flame–acoustic coupling, we find that, somewhat
counterintuitively, Tp′

X
q′

X
≈ Tq′

X
p′

X
for only C1 and C2 in network I, and for only C1 and

C4 in network II (figure 5b), indicating that symmetric coupling between the HRR and
pressure fields exists in only half of each network, despite identical oscillators all around.
Furthermore, we find that Tp′

X
q′

X
> Tq′

X
p′

X
for the other half of each network, indicating

asymmetric coupling in which the HRR field exerts a greater influence on the pressure
field than vice versa. This particular form of asymmetric q′

X
→ p′

X
coupling has also

been observed by Godavarthi et al. (2018) in a turbulent premixed combustor without
any inter-combustor coupling. The inter- and intra-combustor interactions identified in
networks I and II are summarized graphically in figures 5(c) and 5(d), respectively.

In network III, we find that Tp′
X

p′
Y
< Tp′

Y
p′

X
for every pair of directly coupled oscillators

(figure 5(a), C1–C2, C2–C3, C3–C4, C4–C1). This indicates asymmetric coupling, with
a dominant direction that forms a clockwise loop around the perimeter of the network
(figure 5(e), C1 → C2 → C3 → C4 → C1). As for the two pairs of indirectly coupled
oscillators (C1–C3, C2–C4), we find that Tp′

X
p′

Y
≈ Tp′

Y
p′

X
, indicating symmetric coupling.

This is due to the coexistence of two opposing coupling paths. Between C1 and C3, these
paths are C1 → C2 → C3 and C3 → C4 → C1; analogous paths exist between C2 and
C4. Ghirardo et al. (2019, 2020) showed that mode localization in coupled can-annular
combustors can be caused by asymmetric local perturbations, such as those arising from
variations in the can geometry or the flame response. We speculate that mode localization
in network III (§ 4.1.3) arises from the asymmetric spatial distribution of equivalence ratio
(φ1,3 = 0.61, φ2,4 = 0.57), which splits the network in half with non-identical oscillators
and thus biases the inter-combustor coupling in the circumferential direction. By contrast,
because both network I (§ 4.1.1) and network II (§ 4.1.2) contain identical oscillators,
they exhibit globally symmetric coupling with no mode localization. Moving on to the
intra-combustor flame–acoustic coupling (figure 5b), we find that the half of the network
at φ1,3 = 0.61 (C1 and C3) has symmetric coupling, whereas the other half, at φ2,4 = 0.57
(C2 and C4), has asymmetric coupling. As is the case for networks I and II, the asymmetric
flame–acoustic coupling is biased such that the HRR field exerts a greater influence on
the pressure field than vice versa (figure 5e). A practical implication of this asymmetric
q′

X
→ p′

X
coupling is that if the goal is to control thermoacoustic oscillations by disrupting

the intra-combustor p′
X

–q′
X

interactions, then modifying the flame response may be more
effective than modifying the acoustic field. However, as the next subsection will show,
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Figure 6. GMM cluster analysis in a feature space defined by three global measures extracted from joint
recurrence networks: the global clustering coefficient Cg, the global edge density ρg, and the global average path
length Lg. Panel (a) shows p′

X
–p′

Y
objects, and (b) shows p′

X
–q′

X
objects. The bottom row shows a graphical

representation of the cluster distribution for each of the three networks from § 4.1.

if the inter-combustor p′
X

–p′
Y

interactions could be modified as well, then doing so may
provide a more effective means of control.

In all three networks, we find that the coupling between any two signals (p′ or q′)
becomes more symmetric as their degree of phase locking increases. For example, in
network I (§ 4.1.1), p′

X
and q′

X
experience stronger phase locking in C1 than in C4. As

a result, the difference between Tp′
X

q′
X

and Tq′
X

p′
X

is smaller in C1 than in C4 (figure 5b).
This trend holds not just for the intra-combustor flame–acoustic interactions, but also for
the inter-combustor acoustic–acoustic interactions. For example, in network III (§ 4.1.3),
the pressure signals are more synchronized in the indirectly coupled oscillators (C1–C3,
C2–C4) than they are in the directly coupled oscillators (C1–C2, C2–C3, C3–C4, C4–C1).
As a result, the difference between Tp′

X
p′

Y
and Tp′

Y
p′

X
is smaller in the former group than

in the latter group (figure 5a). Unravelling the relationships between the synchronization
behaviour and coupling architecture of such networks will be crucial for understanding,
predicting and controlling the dynamics of ring-coupled thermoacoustic systems.

4.3. Cluster analysis of recurrence network measures
We use the hybrid machine learning framework proposed in § 3.3 to discover patterns in the
network structure. The aim is to determine whether the collective dynamics is dominated
by the inter-combustor p′

X
–p′

Y
interactions or by the intra-combustor p′

X
–q′

X
interactions.

We perform a GMM cluster analysis in a three-dimensional feature space defined by three
global measures extracted from joint recurrence networks: Cg, ρg and Lg. The results of
this analysis are shown in figure 6 for both p′

X
–p′

Y
and p′

X
–q′

X
objects. For both types of

objects, we find that the optimal number of clusters is nc = 4 (Appendix B).
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Starting with the p′
X

–p′
Y

data (figure 6a), we find that each of the four clusters (G1, G2,
G3, G4) is homogeneous, containing objects from only a single network. For example, G1
and G2 contain objects from networks I and II, respectively; these two clusters are aligned
parallel to the main diagonal in the ρg–Cg plane (figure 6(a), see inset). Similarly, both
G3 and G4 contain objects from network III. Specifically, G3 captures only the directly
coupled oscillators (C1–C2, C2–C3, C3–C4, C4–C1); these objects are scattered in the
Lg–Cg plane but are concentrated at a particular ρg slice. By contrast, G4 captures only
the indirectly coupled oscillators (C1–C3, C2–C4); these objects are scattered relatively
evenly across the entire feature space. It is worth noting that although both the indirectly
coupled oscillators in network III (figure 6(a), G4) and the directly coupled oscillators in
network II (figure 6(a), G2) exhibit anti-phase synchronization on a periodic limit cycle,
only the former undergoes intermittent phase locking. As a result, the cluster structures of
G4 and G2 are markedly different from each other. This shows that even subtle differences
in the synchronization dynamics can be identified via changes in the recurrence network
measures.

Unlike the p′
X

–p′
Y

data (figure 6a), the p′
X

–q′
X

data (figure 6b) are grouped into some
heterogeneous clusters, i.e. clusters containing objects from more than one network. For
example, G2 contains objects from both networks I and III, while G3 contains objects from
both networks II and III. When viewed from above (figure 6(b), see inset), G1, G2 and G3
are aligned along the cross-diagonals of the ρg–Cg plane, while G4 is concentrated at the
core.

In summary, by performing a GMM cluster analysis of three global measures extracted
from joint recurrence networks, we have shown that the p′

X
–p′

Y
objects form only

homogeneous clusters. By contrast, the p′
X

–q′
X

objects form both homogeneous and
heterogeneous clusters. This suggests that the network features arising from the p′

X
–p′

Y

interactions are more distinctive than those arising from the p′
X

–q′
X

interactions. From
this, we can conclude that the inter-combustor acoustic–acoustic interactions are more
important than the intra-combustor flame–acoustic interactions in defining the collective
dynamics of the system.

5. Conclusions

In this experimental study, we have taken a complex systems approach to investigating
the collective dynamics of four turbulent lean-premixed combustors coupled in a ring
configuration. We treated each combustor as an individual self-excited thermoacoustic
oscillator and explored how multiple such oscillators can interact in a network to form
various synchronous and asynchronous patterns, many of which have not been observed
previously in ring-coupled combustors. Specifically, we considered the intra-combustor
flame–acoustic interactions as a process of mutual coupling between the HRR fluctuations
(q′

X
) and pressure fluctuations (p′

X
) in each individual combustor. Similarly, we considered

the inter-combustor acoustic–acoustic interactions as a process of mutual synchronization
between the pressure fluctuations (p′

X
and p′

Y
) in directly/indirectly coupled combustors.

Using synchronization metrics derived from the Hilbert transform and the Kuramoto
order parameter, we found a wide range of complex multi-scale dynamics, depending on
the spatial distribution of the equivalence ratio and cross-talk position. These dynamics
include (network I) a transition from intermittent frequency locking on a T

3 quasiperiodic
attractor to a breathing chimera in which synchronous and asynchronous spatial domains
move around in time, (network II) a two-cluster state of anti-phase synchronization on a
periodic limit cycle, and (network III) a weak anti-phase chimera. In both the p′

X
–p′

Y
and

p′
X

–q′
X

interactions, we found evidence of phase slipping or drifting occurring between
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epochs of phase locking or trapping. However, we found that the phase dynamics of p′
X

–p′
Y

does not always match that of p′
X

–q′
X

, with phase or frequency locking in the former often
coinciding with phase slipping or drifting in the latter. Finally, we found that identical
oscillators in a network (networks I and II) evolve globally at the same time-averaged
frequencies, but that non-identical oscillators in a network (network III) exhibit mode
localization, with different parts of the network evolving at different frequencies. This mix
of frequencies is characteristic of a weak chimera. Along with the breathing chimera found
in network I, this constitutes the first evidence of chimera states in a minimal network of
coupled thermoacoustic oscillators.

We then used recurrence network analysis, namely the cross-transitivity, to identify the
dominant direction of the bidirectional coupling in p′

X
–p′

Y
and p′

X
–q′

X
. We found that

the mode localization observed in network III arises from its non-identical oscillators
biasing the p′

X
–p′

Y
coupling in the circumferential direction. By contrast, because both

networks I and II contain only identical oscillators, they exhibit globally symmetric p′
X

–p′
Y

coupling with no mode localization. Counterintuitively, even with identical oscillators,
both networks I and II exhibit a combination of symmetric and asymmetric p′

X
–q′

X

coupling. The asymmetric p′
X

–q′
X

coupling is always biased such that the HRR field
exerts a greater influence on the pressure field than vice versa (q′

X
→ p′

X
). This suggests

that modifying the flame response may be more effective than modifying the acoustic
field, if the aim is to control thermoacoustic oscillations by disrupting the intra-combustor
p′

X
–q′

X
interactions. However, if the inter-combustor p′

X
–p′

Y
interactions can be modified

as well, then doing so may offer a more effective means of control, as our cluster analysis
shows. Thus identifying the degree of asymmetry in the p′

X
–p′

Y
and p′

X
–q′

X
interactions

can provide physical insight into the network coupling architecture and help to guide the
design of new control strategies.

Finally, we proposed a hybrid framework, combining unsupervised machine learning
and complex networks, to discover hidden patterns in the network structure. We performed
a GMM cluster analysis in a three-dimensional feature space defined by three global
measures extracted from joint recurrence networks: the global clustering coefficient
(Cg), the global edge density (ρg), and the global average path length (Lg). We found
that the p′

X
–p′

Y
objects form only homogeneous clusters, whereas the p′

X
–q′

X
objects

form both homogeneous and heterogeneous clusters. This indicates that, compared with
the intra-combustor flame–acoustic interactions, the inter-combustor acoustic–acoustic
interactions are more distinctive and thus play a more critical role in defining the collective
dynamics of the system.

The implications of this study are twofold. First, we have shown that even a small
network of four ring-coupled combustors can exhibit a wide variety of collective dynamics,
such as intermittent frequency locking, in-phase/anti-phase synchronization, clustering,
T

3 quasiperiodicity, a breathing chimera and a weak anti-phase chimera. These dynamics
encompass a broad mix of order and disorder, producing spatiotemporal patterns where
coherent and incoherent domains coexist. Despite their complexity, however, these
dynamics are known to be universal to minimal networks of coupled oscillators (Abrams &
Strogatz 2004; Maistrenko et al. 2017; Kemeth et al. 2018). Our findings thus lend support
to the use of canonical low-order models (e.g. the Van der Pol and/or Stuart–Landau
oscillators) to understand, predict and control the thermoacoustics of coupled combustion
systems. Second, we have shown that cluster analysis can be combined with recurrence
network analysis to create a powerful tool with which to explore the p′

X
–p′

Y
and p′

X
–q′

X

interactions occurring between and within thermoacoustic oscillators, respectively. When
combined with chimera control techniques (Bick & Martens 2015; Parastesh et al. 2021),
this hybrid machine learning framework could offer valuable clues as to how certain
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chimera states (e.g. chimera death, Zakharova, Kapeller & Schöll 2014) can be reached.
In turn, this would open up new pathways to controlling self-excited thermoacoustic
oscillations in coupled combustion systems, potentially improving the performance and
service life of gas turbines.
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Appendix A. Sensitivity of the cross-transitivity to the recurrence threshold

In our recurrence network analysis (§ 3.2), we use recurrence threshold values equal to
RRXY = 0.04 and RRX = RRY = 0.05, following recommendations by Feldhoff et al.
(2012) that RRXY < RRX,RRY and RRX,RRY ≤ 0.05. To evaluate the sensitivity of the
results to the recurrence threshold, we show in figure 7 the cross-transitivity for the three
networks from § 4.1 at three different sets of threshold values: the baseline (RRXY = 0.04,
RRX = RRY = 0.05), smaller than the baseline (RRXY = 0.035, RRX = RRY = 0.045),
and larger than the baseline (RRXY = 0.045, RRX = RRY = 0.05). We find that for each
network, the trends in Tp′

X
p′

Y
and Tp′

Y
p′

X
, as well as those in Tp′

X
q′

X
and Tq′

X
p′

X
, are insensitive

to the exact threshold values used, so long as they are within the range suggested by
Feldhoff et al. (2012).

Appendix B. Determining the optimal number of clusters

We use four different indicators to determine the optimal number of clusters into which to
group the recurrence network measures from § 4.3. These indicators are the silhouette
score (Rousseeuw 1987), the Jensen–Shannon divergence (JSD) (Endres & Schindelin
2003), the Akaike information criterion (AIC) (Akaike 1998) and the Bayesian information
criterion (BIC) (Schwarz 1978).

Silhouetting is a graphical method of quantifying the degree of consistency within
clusters of data objects. It involves computing the following:

a(i) = 1
|Ci| − 1

∑
j∈Ci, i /= j

d(i, j), (B1a)

b(i) = min
k /= i

1
|Ck|

∑
j∈Ck

d(i, j), (B1b)

s(i) =
⎧⎨
⎩

b(i)− a(i)
max{a(i), b(i)} , if |Ci| > 1,

0, if |Ci| = 1,
(B1c)

where d(i, j) is the distance between samples i and j in cluster Ci, and s(i) is the silhouette
value (Rousseeuw 1987). The silhouette score, s̄, is simply the arithmetic mean of s(i) and
is an indicator of how similar an object is to its own cluster (cohesion) relative to other
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Figure 7. Cross-transitivity for the three networks in § 4.1 at three different sets of threshold values: (a,b)
RRXY = 0.04, RRX = RRY = 0.05; (c,d) RRXY = 0.035, RRX = RRY = 0.045; and (e,f ) RRXY = 0.045,
RRX = RRY = 0.05. The vertical marker bars represent the standard deviation.

clusters (separation). The value of s̄ can range from −1 to +1. A high s̄ value indicates a
close match between the object and its own cluster, implying that the number of clusters
used is appropriate. A low s̄ value indicates overlapping clusters, while a negative s̄ value
indicates that the object has been assigned to the wrong cluster, which could be due to the
use of too many or too few clusters.

In statistics and probability theory, the JSD is an indicator of the degree of similarity
between two probability distributions (Endres & Schindelin 2003). It is a symmetrized and
smoothed version of the Kullback–Leibler divergence D(P||Q):

JSD(P||Q) = 1
2 D(P||M)+ 1

2 D(Q||M), (B2a)

M = 1
2(P + Q), (B2b)

D(P||M) =
∫ ∞

−∞
p(x) log

(
p(x)

1
2 [p(x)+ q(x)]

)
dx, (B2c)

where p(x) and q(x) are the probability densities of P and Q, respectively. If the base 2
logarithm is used for the two probability distributions, then the JSD values are bounded
between 0 and 1 (Endres & Schindelin 2003).
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Figure 8. Variation of (a) the silhouette score, (b) the Jensen–Shannon divergence, (c) the gradient of the
Akaike information criterion, and (d) the gradient of the Bayesian information criterion, all as functions of
the number of clusters. The optimal number of clusters suggested by each of the four indicators (a–d) is
highlighted with a red circular marker. Both the inter-combustor p′

X
–p′

Y
interactions and the intra-combustor

p′
X

–q′
X

interactions are considered.

Derived from information theory, the AIC is an estimator of the out-of-sample
prediction error (Akaike 1998). As such, it can be used to assess the relative quality of
a collection of statistical models for a given dataset, thus aiding model selection. The AIC
value of a model is defined as

AIC = 2k − 2 ln(L̂), (B3)

where k is the number of estimated parameters in the model, and L̂ is the maximum value
of the likelihood function for that model (Akaike 1998). The BIC is defined similarly to
the AIC but with a different penalty term:

BIC = ln(k)− 2 ln(L̂). (B4)

When a collection of candidate models is considered for a dataset, the preferred model is
that which has the lowest values of AIC and BIC.

Figure 8(a) shows that s̄ for p′
X

–p′
Y

decreases monotonically as the number of clusters nc
increases. Therefore, we cannot use s̄ to determine reliably the optimal number of clusters
for the acoustic coupling between two combustors. By contrast, s̄ for p′

X
–q′

X
reaches a

maximum at nc = 4. Figure 8(b) shows that the JSD for p′
X

–p′
Y

and p′
X

–q′
X

reaches a local
minimum at nc = 5 and nc = 3, respectively. Figures 8(c) and 8(d) show the local gradient
of the AIC and BIC, as computed with a standard second-order approximation. We find
that the AIC and BIC gradients for both p′

X
–p′

Y
and p′

X
–q′

X
begin to saturate at around

nc = 4. Put together, these findings suggest that the optimal number of clusters for our
data is nc = 4, which is why we group the recurrence network measures into four clusters
(§ 4.3).
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