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Synchronization and Communication Using
Semiconductor Lasers With Optoelectronic Feedback

Henry D. |. Abarbanel, Matthew B. Kennel, Lucas llling, S. Tang, H. F. Chen, and J. M. Liu

Abstract—Semiconductor lasers provide an excellent oppor- communication, both theoretical and experimental, studied ring
tunity for communication using chaotic waveforms. We discuss |aser systems in which the active element was a section of rare
the characteristics and the synchronization of two semiconductor ¢4k qoped fiber [4]. In the case of erbium-doped fiber, one can
lasers with optoelectronic feedback. The systems exhibit broad- . . e
band chaotic intensity oscillations whose dynamical dimension achlevg SUbStam'_al amplification a.t th? wavelength _Of L6
generally increases with the time delay in the feedback loop. We Which is at a minimum of attenuation in standard single-mode
explore the robustness of this synchronization with parameter optical fibers. The demonstration that such ring lasers could be
mismatch in the lasers, with mismatch in the optoelectronic ysed for communications at observed bit rates up to 250 Mb/s
feedback delay, and with the strength of the coupling between is quite important, in principle [3], but the fact that the upper

the systems. Synchronization is robust to mismatches between theI inal | i bi h lifeti f about 10 that
intrinsic parameters of the lasers, but it is sensitive to mismatches asing levelin Erdium has a flietme o aboll NS Means ha

of the time delay in the transmitter and receiver feedback loops. the chaotic waveform circulating in the ring changes very slowly
An open-loop receiver configuration is suggested, eliminating on the time scale of the round-trip time of a standard ring laser
feedback delay mismatch issues. Communication strategies for composed of tens of meters of passive fiber. The ratio of fluo-
arbitrary amplitude of modulation onto the chaotic signals are  ragcent Jifetime to laser ring round-trip time ratio is abw@t,
discussed, and the bit-error rate for one such scheme is evaluated . . .
as a function of noise in the optical channel. and once the e_rblum upper level is populated, that popul_atlon
remains essentially constant and drops out of the dynamics of
the ring laser. If there were no nonlinear effects in the ring,
this laser would not exhibit chaotic oscillations. The observed
chaotic waveforms then arise from the nonlinear effects of the
. INTRODUCTION glass fiber which, small in magnitude, act on the circulating light
HE USE of chaotic waveforms for optical communicatiofhany times.
has been widely investigated in both theoretical and exper-T his circumstance has led us to consider an active element in
imental contexts [1]-[3]. The use of chaotic signals on which @ feedback laser system which has time scales commensurate
modulate and demodulate information may be quite attractiydth bit rates of gigabits per second that would be attractive for
from the point of view of the efficiency of the use of commu2ny realistic applications. We explore here the use of a semi-
nications channel bandwidth or possibly for reasons of powgnductor laser as the active element in a delay-feedback ring
efficiency in the design and use of the transmitter. Issues of “s¥/Stem. Except for the feedback-delay time, the carrier lifetime,
curity” of chaotic transmissions are a much more difficult topidh€ photon lifetime, and other time scales in this system are 1
and little real insight has been presented in the literature on tAi% OF less, and the bandwidth for communications available to
matter. We do not consider this issue here. a chaotic signal is a few gigahertz or more. From the point of
Optical communications using chaotic transmitters and rélew of dynamics, the use of a semiconductor laser as the ac-
ceivers offers the potential of an enormous usable bandwidth ff€ element for a delay-feedback ring is also much more inter-
high bit rate data communication or utilization of the availabl@Sting, as the carrier inversion does not “freeze out” from the

bandwidth by many users. Our earlier work on optical chaotfynamical equations. Chaotic oscillations are achieved at giga-
hertz frequencies.
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_TRANSMITTER feedback/x(t), because chaos cannot occur in a system of two
' ordinary differential equations. The time delay adds, in prin-

l ciple, an infinite number of other degrees of freedom, though
E in practice the number of active degrees of freedom involved in
; the observable laser dynamics depends on the sizg cbm-

'JT ! pared to the intrinsic times scales in the laser operation.
' We are not concerned with the dynamics of the optical phase
k in this system as it is removed by the use of the photodetector
; in the optoelectronic circuit. We write the amplitude as
i

A(t) = VI(H) e €)

Fig. 1. Schematic of chaotic transmitter laser. The light from thgnd

semiconductor laselLD) is received by the photodiod®D) which puts out 2enn’2

a current/(t). (The symbolPD: J(t) is shorthand for this.) This current is S(t) = 0P I(t) (4)
transformed by a nonlinear function into the currdpt(t) = f(J(t — 74)), hwqg

which acts after a length of feedback loepr has been traversed. This

current ¢ »(t)) is added to the external bias currehtand fed back into the is the photon density. Ignoring the spontaneous emission for
semiconductor laser. now. we find

lases in a single mode of optical frequengywhose complex  dS(%)

valued coefficient isA(t). The output light is received by a ~ g¢ —7e5() + Lg(N (D), 5(£))5(?) ©)
photodetector (PD) producing a currefit(t) proportional to AN(t)  Jo+ Jr(t)
|A(#)]2. We also consider the possibility of placing a nonlinear pran od
function of the intensityf(Jr(¢)) in the electronic feedback
loop from the PD back to the laser yielding a feedback currewheng(N(t), S(t)) is a phenomenological quantity. Over the
Jr(t) = f(Jr(t — r)) wWith 7 the time delay associated withrange of variation of bothV(¢) and S(¢) in our calculations,
the electronic feedback loop. The dynamical equationsifej either a Taylor expansion about the fixed point/at(t)/dt =

— N (t) — g(N (), S(£)S(t)  (6)

and the carrier densiti/ (¢) are ds(t)/dt = Jrp = 0 or a simple ratio of terms incorporating
the same information is adequate. If larger excursions in the dy-
dA(t) e . . . ; : .
—— === A(t) + i(wo—we)A() namical variables were required, more details of the gain would
dt 2 be needed.
r . i i
+ 5 (1—ib)g(IN,| AP)A(t)+ Fop 1) We expand;(N(¢), S(¢)) about the stationary CW operating

condition,(So, No) the dynamical fixed point of the laser in the

AN T Jm(t 2eqan’? absence of external feedbagk = 0. This gives us
) AT N2 g AP A
9(N, ) = go+ gn(N = No) +gp(5 — So).  (7)
SIATUZTR) )29 v Py A
N ed R hwq I " Liuand Simpson [5] show how to experimentally estimgate=
(2) 9g/ON > 0andg, = 9g/9S < 0. This operating point,
defined byd N (¢)/dt = dS(t)/dt = Jp = 0,impliesl'gy = 7.
where _ and fixes the bias current ak/cd — vsNo = goSo. By this
Ye cavity decay rate; normalization, our dynamical equations are independent of how
wo center optical frequency; far above threshold we set the laser except via indirect influence
We Iongltudlqal mode frequency of the coldyp, ¢he empirical differential gain parametgrsandg,,, which
Iaser cavity; depend on the expansion point.
I confinement factor; Transforming to dimensionless quantitigs), n(t), and.7
b linewidth enhancement factor;

i : o . ) defined byS(¢) = So(1 + s(t)), N(¢) = No(1 + n(¢)) and
g(N(t), |A@)]?) ﬁﬁggflefgf;;é?s.coeﬁlment including non- _ “x 7 17 7. (1)) = (Jo + Jr(t))/ed — 45 No, we have

d active layer thickness of the laser; ds(t)
n' refractive index of the semiconductor gz = 7e(1+s(t) + La(n(®), s(t))(1 + (1)) (8)
medium; dn(t) 3

Yo spontaneous car_rier_ decay rate; 7 =y (T + Tr(t)) — vsn(t) — g(n(t), s(t)) FO (1+s(t))

Iy = Fr+¢Fr spontaneous emission noise source. 0 9
We take this noise to be a Gaussian Langevin source with corre- ©)
zego(rliéFg()i)]iRés» = (Fr(®)Fi(s)) = (Bep/2)5(t = 5) and andSo/No = J s/ g0 by solving for the bias current at the CW

R T = U

Ignoring the noise, the phase of the optical field is determing&’er(’ltmg point. The dimensionless ggir= g/go is

by N(t) and|A(¢)|* and is not an independent dynamical vari- . Yn v
: I . o (n,s) =1+ n—-2s (10)
able, so chaotic oscillations cannot appear without a nontrivial g\, 8) = T s

C
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wherey,, = g,50 andy, = —['g,Sy. We have also investigated 0.55
the gain in the form 0.45
0.35 |
g(N, §) = gitg"g_ évg)) (11) 0 ol
o 0 5 oo0s|
and found no change in our results over the dynamical range of -.g -0.05 |
our semiconductor lasers. ;; -0.15 ¢
The natural relaxation oscillation frequency in this laser is -0.25 ¢
fr = /TeTn F 77p/ 27 With which we form the dimension- :g'ig
less timer = ¢fr. Our dynamical equations for the optoelec- 055 , d ) 1 ‘
tronic feedback semiconductor laser now read -1 -05 0 05 1 15 2
s (arb. units)
ds(r) 1 - 12
dr f_R %(g(n(T)’ S(T)) B 1)(1 + S(T)) ( ) Fig. 2. The thresholded, inverted tent map (21), used as the nonlinear element

of the electrooptical loopd = 0.5, B = 0.5.
dn(r) 1
= 7:(J + Tr(7)) — vsu(7)

dr Ir Separating the optical phase using- (s 4 1)!/2¢*?
— vsg(n(7), s(r))T (1 +s(7)) (13) ’ ) " Lo 4
N Vn Tp S(7 +dr) = 3(r + dr) + COln|* + 20723 + DY *Re[ 7).
g(n,s) =1+ T n— o S. (14) (19)
o _ There is no preferred phase in the physics of the system. Because
B. Spontaneous Emission Noise of this continuous symmetry, the phase angle is asymptotically

Without laser noise, the optical phase entirely decouples fraficorrelated with the intensity. In addition, the random variable
the dynamics. The situation is more complicated, however, orieés uniformly distributed in angle. Therefore, without loss of
spontaneous emission is included. Equation (12) becomes generality, we can define a new random variaple- e,

and this has exactly the same statisticgasamelyé = £ +
d; 1 2 ; i i i
s(m) _ eG((r), s(7)) = 1)(1 +s(7)) + &2, with each component being a random complex Gaussian as

|A0|f;z/2 before. Thus, the explicit integration algorithm that we employ
(148)Y2 [Freos ¢+ Fysing]. (15) '€2ds

Even though bothFr and F; are independent Gaussian pro§(T +d7) = §(7 + dr) + 20V 2(3(r + dr) + 1)Y/2

cesses, it is not entirely correct to replace the noise term on the L+ CEF+ &) (20)

right side with a single Gaussian noise process, because the op- | . .

tical phasep is a dynamical variable stochastically perturbed b A the_ simulation of some toy model pro_bler_ns (no_t shown), this

a noise termky cos ¢ — Fy sin ¢, which is correlated with the Igorithm produceo_l results_ for the distribution of |_nten3|ty th_at

intensity noise. were the same as mtegratmg the complex equatlon of mqtlon,
To derive the integration algorithm, we proceed as if we weld1€réas integrating the equivalent of (15), assuming a single

integrating the original complex field with a complex noisd!01S€ source on the intensity, gave incorrect answers.

term. The Langevin equation far= A/|Aq| reads

dr f_R

C. Optoelectronic Feedback

da _ Fla, n] + 1 F (16 We investigated two functional forms fofr (7). First, we
dr ’ Ao f/2 " considered straight linear feedbadi (1) = £(.7 + 1)[s(7 —
7.) + 1], 7. = fr7r, and second, the nonlinear inverted tent

with F'[-] representing the deterministic dynamics. In the leagiap function, as shown in Fig. 2. The functional form is
difficult situation, a Gaussian white noise source with constant

coefficients, the rule for the integration step is ST o) - B, fors <0
Tr(r)={ &(r=n) =B, for0<s<(A+B)/¢
+dr) = a(r +dr) + C/? 17 +
a(t +dr) = a(r +dr) +C'/?p 17 A, fors > (A+B)/¢.

- . . S 21)
wherea, the result of integrating the deterministic part= . . . (.
[ Fla(t"), n(t')] d¥', the coefficientC = dr Rop /2| Aol f, This gives a nonlinear feedback current with three adjustable

parameters A, B, and. The positive parameter corresponds

andn is a complex-valued Gaussian random variable .
" P to the slope and B to the value of the bottom peak of the inverted

0= 1 4 ino; m.2 € N(0, 1). tent map. In both cases, we ensure tat+ J» > 0 for the
’ physical reason that current cannot be extracted from a laser.
We have for the intensity + 1 = |a|? A sample of the time series for each feedback choice is shown

in Fig. 3. The additional complexity which arises with the in-
s(T+dr) = §(14d7)+C|n|> +20Y?Re[a(r +dr)n*]. (18) verted tent map nonlinearity is clear.
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Fig. 3. Calculated time series from the chaotic optoelectronic feedback
semiconductor laser: linear feedback (top), tent map feedback (bottom). These
time series hav&®,, = 0. Fig. 4. (a) Bifurcation diagram and (b) estimated Lyapunov dimengign

for the semiconductor laser with linear feedback. This plot uses numerical
simulations withR2,, = 0.

For linear feedback witlV (1) = £(J + 1)[s(7 — 7)) + 1],
there are significant periodic and quasi-periodic regimes inter-

spersed with chaotic windows when the feedback times IShS|OtW fct)tr hlgt;h—d;hmelnsmnatll systems;'.llke this c:jntf]' I(:jqr hon-
close to a multiple of the natural oscillation time scale [6]. ighaotic attractors the largest exponent IS zero and the dimension

Fig. 4, we show the bifurcation diagram for= 0.15 by plot- Li_determmed”%y thet_numbfetL of zlerol Ij{yr:lijunov exponents. I?
ting the extrema of the laser intensjty(¢)|* versusr,.. We ex- IS case small deviations of the caiculated Lyapunov exponents

hibit the Lyapunov dimension evaluated from the time series m their true zero value can change the estimated dimension

intensity for linear feedback in the same plot. rzfll_rgatflcally. i1 i f the bif i hib
Lyapunov dimension is defined in terms of the ordered spec- € Irequent truncations of the biiurcation sequence, exnib-

trum of Lyapunov exponents; > A, > --- by determining the |te;1q 'r? F|g.f4, az well as the ex!stelnc_e Ofl TUIt'Sta.‘b(lje. re:[glr?hes,
integer X at which the suny>"_ A, changes sign which we found in our numerical simulations, indicate the

complexity of the detailed bifurcation diagram for the semi-

K K+1 conductor laser rate equations with optoelectronic feedback. In
Z Ae 205 Z Ae <0 (22) Fig. 4, we see that the typical stages in the bifurcation sequence
a=1 a=1 for the linear feedback are a Hopf bifurcation of the CW steady
and state with a Lyapunov dimension of zero to a limit cycle with
K . .
\ Dy, =1 and, subsequently, a second bifurcation to a two-torus,
Z @ corresponding to quasi-periodic motions with, = 2. Upon
D =K+ r”)\‘l—| (23) increasing the control parameterfurther, we observe chaotic
K+1

motion. Varying the feedback strengtlwhile keeping the time
The spectrum of Lyapunov exponents is determined using ttielay 7. fixed one obtains the same stages in the bifurcation
same method as in [2]. This involves writing the effect of theequence. This indicates a quasi-periodic route to chaos, which
numerical integration algorithm (in our case, a fourth-order pragrees well with results from analytic bifurcation analyses [7],
dictor corrector) as a map operating on a very large state—spd8g,
consisting of the discretized ring of intensity states, representingn Fig. 5, we present a more detailed look at a typical bifur-
the time-delayed feedback, and additional variables for the pagation sequence for the linear feedback by showing the power
ulation inversion and time derivatives of intensity and populapectral density in the first column and the Poincaré section in
tion inversion. The very sparse Jacobian of this map may tie second column for time delays of = 9.0, 8.6, 8.58, and
computed analytically from the equations of motion, and impl&-.1 (A-D), respectively. The frequencies are given in units of
mented as a “Jacobian times vector” subroutine. The dynamibg relaxation oscillation frequency of the laser without feed-
of the laser, along with the linearized dynamics of the tangelmack. We use time-delay embedding coordinates and obtain the
space, are simultaneously integrated, and the Lyapunov expaincaré section by defining a 3-D hyperplane, e.g., with co-
nents stably extracted from the product of Jacobians with a standinates £, v, 2) for definiteness, in a 4-D embedding space.
dard recursive orthogonal/right-triangular (QR) matrix deconhe graphs in the second column present the projection of the
position. We estimate the Lyapunov dimension from the calcBoincaré section along theaxis. By means of Hopf bifurca-
lated spectrum of Lyapunov exponents by first setting all exptiens, limit cycle attractors are created, and in the first column
nents with absolute values smaller than a certain cutoff to zdfig. 5(A) shows the power spectral density, and in the second
and then applying (23). This is necessary, because the conwatumn the Poincaré section of such an attractor. Note that the
gence of the calculated Lyapunov exponents to their limit valuegquency of the limit cycle oscillations is on the order of the
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Fig. 6. Bifurcation diagram and estimated Lyapunov dimensions for
the semiconductor laser with: (a) inverted tent map feedback and (b) no
Fig. 5. Numerical evidence for the quasi-periodic route to chaos for the linegpontaneous emission noise.
feedback. Power spectral density (first column) and projection of the Poincaré
section onto ther—y-plane (second column) for the case of: (A) limit cycle

oscillations; (B) quasi-periodic oscillations on a two-torus; (C) oscillations ofunction gives high-dimensional chaos over most time-delays.

a three-torus; and (D) chaos. For the three-torus (C) and chaos (D), we disﬁz . . - .
in the third column a very thin slice through the 3-D Poincaré section at t % IS Iarge, and usually noninteger for > 0.5, as shown in

location indicated by the arrows (second column). Fig. 6. Linear feedback does not require additional electronics
in the optoelectronics loop, so it is easier to implement experi-

. _ mentally.
natural relaxation oscillation frequency. A decrease of the delayAlthough with time-delayed feedback the dimension of this

fume leads to. a destabilization Of the limit cycle and a tV\'O'tor"t%namical system can be quite high, it is still substantially less

IS creatgd Fig. 5(B). A second mcommensurate frequency_q an that for a semiconductor laser subjected to optical feed-
pears with a value on the order of the inverse of the delay ti &ck in many regimes as represented by the Lang—Kobayashi
in the feedback, significantly slower than the relaxation oscill quations. Furthermore, the autocorrelation time scale of the dy-
tion frequency. The toroidal nature of the attractor can Clea%?émics ofthe optical-ph:ase-dependent Lang—Kobayashi system
be seen in the Poincaré section. At a slightly shorter time del?é"at least an order of magnitude faster than in our system. Op-

a three-torus is found Fig. 5(C). A closfe t_axamlnatlon of tl cal feedback is governed by the large photon decay-ate
Spectrum reveals the appearance of a third incommensurate ¥¢- 1 511 -1 jnstead of the spontaneous carrier relaxation rate

quency, with a value significantly lower than both the relax- _ 5% 1095~ ~, is too fast for simple experimental tech-

ation oscillation frequency and the frequency corresponding ?’questo give time-resolved measurements, while the time scale

? rotund-tn%_nmle. TO tﬂ'sfﬁrg th? three-torusthr_latul_re Ththe tftrajectories in our optoelectronic feedback allow for time
ractor, we dispiay In the third column a very thin siice throug élce measurements using fast oscilloscopes.
the 3-D Poincaré section. The location of the slice is indicate

by the arrows in the second column of Fig. 5(C). It shows, that
the closed curve of Fig. 5(B), which represents a two-torus at- 1. SYNCHRONIZATION
tractor, bifurcates to a two-torus in the section, corresponding to ] ) ]
a three-torus attractor. Finally, when entering the chaotic regifie Coupling the Transmitter and Receiver
as in Fig. 5(D), we observe a breakup of the three-torus, as wellps a prelude to using two of our laser setups for communica-
as the development of a broadband background in the spectriggh we investigate the synchronization of their oscillations. In
The estimated Lyapunov dimensions for (A)—(D), using sgimes where the lasers synchronize, the action of the receiver
cutoff of 1 - 107*, areDy, = 1.00, D;, = 2.00, D;, = 3.00, laser reflects in a deterministic way the oscillations of the trans-
andD;, = 3.95 respectively. For case (D), the largest Lyapunomitter, and thus, even though they each can be chaotic, one can
exponent is clearly positive, whereas for the other three casesiognize the effect of modulation at the transmitter and demod-
the absolute value of the largest Lyapunov exponent is smallgate this at the receiver.
than the cutoff. This agrees well with the quasi-periodic route To investigate synchronization, we couple two lasers
to chaos and shows that Fig. 5(D) does, indeed, corresponawsich we denote as the transmitter with dynamical variables
chaotic dynamics of the feedback laser. nr(t), sp(t) and the receiver with(t), sr(t), calling timet
For the purpose of communication with chaos, it suffices tagain. We connect the transmitter to the receiver unidirection-
find the parameter regimes corresponding to chaotic oscilialy by transmitting./--(¢) = |Ar(¢)|? to the receiver. At the
tions. In Fig. 4, we see that with linear feedbdgk rises above receiver we multiply/-(¢) by 0 < ¢ < 1 and add:Jr(¢) to the
three only forr,. > 7. In contrast, the inverted tent map feedbackeceiver intensity/r(¢) multiplied by1 — ¢. The current signal
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TABLE |
DYNAMICAL VARIABLES, DEFINITIONS, AND NUMERICAL VALUES OF PARAMETERS

Symbol Value Description
s(7) dimensionless intracavity photon density
n(7) dimensionless carrier density
g(n(r),s(r)) dimensionless gain coefficient
T=(7) dimensionless feedback current
J 2/3 bias current at fixed point
Vs 1.458 x10%s7! | spontaneous carrier decay rate
Yol T 2.0 x10%s~! | gain variation with carrier density
Yo! T 3.6 x10%°s~! | gain variation with photon density
Ve 3.6 x10's~! | photon decay rate
0.15 feedback coefficient
fr= (Yevm +Vs1)2/2m | 3.5 x10%~! | relaxation oscillation frequency
Ry /| Aol 9.55 x10%s~! | spontaneous emission noise variance

into the receiver is, thus,J(t) + (1 — ¢)Jr(t), leading to the 9
coupled equations of motion 8|
dsp(t . T
£ BT o (G e, s(6) — DL+ 52(6) o
2(1+51(1) I
26071/ 1+ st(t -
2 F 2 47
+ \/ Soh(x)o o S 3l
dn t t%: ot
£ B0 (T + Ten(®) 2 () T
— %9(nr(t), s7(0)T (1 +sr(t)) o
and T 0 1 2 3 4 5 6 7 8 9
dsp(t . s.(t) (arb. units)
£ BB o (Gan(r), sn(®) D+ 5m(2) T
Fig. 7. Synchronization of two optoelectronic feedback semiconductor lasers,
L 2¢on/2(1 + sgr(t)) Fs whereR,, # 0.
Soh&)o
dur(t) 15

Ir o =7:(T + [eTrr(t) + (1 — &) Trr(#)]) — v.ngr(f)

oo No Noise

= Ys9(nr(t),sr(t))JT (1 +sr(?)). (24) g | —— With Noise
In the case of linear feedback, for example é
¥
Trr =67 + V) r(t =) +1) :
Ton =67+ DBalt—m)+1]. (@9) 5
The net current injected into the receiver semiconductor laser —
element is 0o 02 04 06 08 1

Coupling Strength ¢
8T+ D [esr(t—1)+ (1= cspt—7)+1].  (26)

Fig. 8. Synchronization error in coupling of two optoelectronic feedback

We see that for alt, the identity solutiorsr(¢) = sr(t) and semiconductor lasers as a function of the coupling coefficie®., = 0
ng(t) = ng(t) is always possible. It is not necessarilgtable (circles).R., # 0 (squares).
solution, and only when itis stable do we say that the transmitter
and receiver are synchronized. Whes 1, the receiveris being Taple I. As a function of, we show in Fig. 8 the synchroniza-
runopen loop as its optoelectronic feedback is disconnectediign error

The quality of the synchronization wheg,, # 0 is shown
in Fig. 7, where we plot;(t) versussg(t) coming from calcu- c_ {lsT () —sr(®)]) 27)
lations where: = 1 and R, is set to the standard value listed in o {sr(t))
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where(-) means time average 5 e 0.4 —
17 I I P P
wen=g [ o 9  5°°% :
0 .g 0.6 | '.. 302 _'“- "_- i
and the integration is over the total observed or calculated time é 0.4 . .' ) 04 bes N
series. g o2y et vt 1 7 Tt tereetecenene
With R,,, = 0, we see in Fig. 8 that the semiconductor lasers @ ¢ bl 0 P
synchronize essentially perfectly foer > 0.1 and undergo a -20 '10 0 :0 20 -20 ;mT ° 010 20
rapid transition to the unsynchronized state oK 0.1. The (1"-x. A" in % (=, My, i %
desynchronization folt;, # 0 in Fig. 8 is partly a result of (@ (b)
spontaneous emission, but also a result of the intrinsic dynamics _ o.s : : : : : l
of the coupled systems. e Tr
Lg 0.6 ec=10 = 08 e | e c=1.0 |
B. Parameter Mismatch Between Transmitter and Receiver % 04 ] o6} - o
The transmitter and receiver systems are inevitably different S - . 0.4 P
from each other. The many parameters characterizing the semi- § 0.2 tees, L . seeetl 02 | '-.'. Y 1
conductor lasers or the optoelectronic feedback loops can never @ 0 ,"“':"" 0 e
be identical in a real system. In this situation, identity synchro- 20 -10 0 10 20 -20 -10. O 10 20
nizationsy(t) = sp(t) andny(t) = ng(t) is not a mathemat- (Y =1, W, 1N % (=1, Y, in %

ical solution of our model equations. Nonetheless, the deviation © %)
from the identity solution can be small over some range of PR o Synchronization error from mismatchesin(upper left)+. (upper
rameters in analog devices such as the ones we envision hﬁf@o ~, (lower left), andh,, (lower right).
Over some range of parameters, one might expect to achieve
generalized synchronization [9], in which the transmitter and re-
ceiver dynamical variables are definite, typically unknown, non- -c=c;,4
linear functions of each other. There is a set of experiments on ®c-07 .
a quite different class of laser systems [10], [11], which suggest $020%
that the transition from the totally unsynchronized state of two
coupled nonlinear system through generalized synchronization
to identity synchronization is smooth.

We have evaluated the effect of various parameter mis-
matches between the transmitter and the receiver on the quality
of synchronization, and have comput&és a function of

0.3

02+ u

u [ ]
01 g "a_u ....“

...
Toto 3’3.’.038.009000

Synchronization Error
n
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Fig. 10. Synchronization error from mismatchegin
In Fig. 9, we display the value of for mismatches in

Ve, Vs> ¥p @Ndy, for ¢ = 0.4 and fore = 1. In these calcula- again points to the use ofca= 1 open-loop receiver configura-

tions R,, # 0, so even at perfect parameter matching, thetion. Fig. 11 displays the synchronization eréoas a function

is a nonzerof. While the error is tolerable for a 5% or soof the mismatch in feedback delay.

mismatch at = 1, for ¢ = 0.4 the error is large for almost all  From this, we see that feedback rate mismatch does not

mismatches. significantly affect the synchronization quality while the
To investigate the synchronization error associated with dihfluence of the delay-time mismatch is very significant. Also,

ferences in the properties of the two feedback loops, we invégm Fig. 11, we see that the synchronization error oscillates

tigated€ as a function of with the increase of the delay-time mismatch. The oscillation
P period corresponds to the time interval between two pulses in

€ =&)/¢ the output of a chaotic pulse train. So, each time the mismatch

and in the delay time increases to the amount of a pulse-to-pulse
(rR -+ /L. interval, the second pulse will substitute the first pulse and the

synchronization error will be reduced. Because of the signifi-
Fig. 10 displayst versus the mismatch in the feedback rate cant effect of the delay-time mismatch on the synchronization,
Here, we displayt for ¢ = 0.4, 0.7 and0.95. It is clear that, we need to adjust the delay time in the transmitter and receiver
asc increases, the error due to mismatches becomes small. Teisdback loops very well.
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T T T modulators at frequencies well above a gigahertz. This modu-
1 lator attenuates the intensity roughly proportional to the voltage

imposed across it, so we can represent the intensity leaving the
modulator asn(t)Jr(t). m(t) is the message; it can be analog,
digital, voice, or data. We transport the field down the com-
munications channel, resulting in a received intengigyt) =
em(t)Jr(t). Recall, we are concerned with intensities alone
as the optical phases at transmitter and receiver need not be
matched in our scheme.

The receiver detects an intensify-(t) = cm(t)Jr(t) and
adds to thafl — ¢).Jz(¢) in its nonlinear feedback loop. Identity
synchronization/r(t) = Jg(¢) is still a solution to the coupled

Synchronization Error

o108 6 4 2 0 2 4 6 8 10 12 equations. At the receiver, one estimates the message by
(T "t T)/17T in %
r r M JC(t)
mp(t) = — O (29)
Fig. 11. Synchronization error from mismatch in feedback time delay "
or in the notation depicted in Fig. 12
_TRANSMITTER
Y 1—c¢) PDs
J Jdy al t) = ( . 30
— LD e AW S m(?) ¢ PDy (30)

(1-c) JT! FD,:oml; E The symbolP D, stands for the intensity coming from photode-
: tector numbetk.
EJQI PD, (100, i i It is not necessary to have two physical photodiodes in
N ! . the transmitter laser, as one may calibrate the photodiode
Jy = (1-c+omp, D : gain, as well as the modulator gain and offset to produce the
___________ — . same function. We show the diagram Fig. 12 to emphasize
the required symmetry between transmitter and receiver.
RECEIVER _ The receiver requires two distinct photodiodes. Notice that
[TT T TTTTTmTmomoooooomommo-om-oeg nowhere in the system does tbptical phase or electric field
| polarization explicitly enter the dynamics. Photodiodes are
; intensity-only devices, and the intensity modulator has a simple
! multiplicative influence on the intensity as well. Thus, this
5 scheme ought to be insensitive to the difficult problems of

matching optical path lengths of transmitter and receiver, as
well as being insensitive to environmental fluctuations in the
optical phase and polarization state as the signal propagates
2 through the communications channel, e.g., a fiber optic cable.
An atmospheric channel, however, could have an effect on the

Fig. 12. Schematic of transmitter and receiver systems which works for atijtensity and, thus, the communication performance.
value of the modulationP D, - - - PD, are photodiodes, providing electrical

signal proportional to input intensity. (SymhBID,.: .J is shorthand for current A. Communications: No Channel Noise
J coming from photodiode numbér) We use)M to denote an electrooptical * ’

modulator which multiplicatively modulates information onto the intensity. To achieve communication using our multiplicative modula-
tion strategy, we transmit digital nonreturn-to-zero bits so that a
From these evaluations éfas a function of parameter mis-“one” is represented by: = ¢*2 and a “zero” bym = ¢~ 5.
match, we see that the open-loop= 1 configuration is pre- This is transmitted in a fixed bit tim&,. The message is then
ferred. Itis more robust to parameter mismatch, and it has exd@kposed on the received intensity(¢).Jz(¢), which is always

lent synchronization in the perfectly mismatched state. Since thgsitive and bounded away from zero in our construction.
coupled systems are quite sensitive to time-delay mismatcheqt the receiver, we form the quantity

whenc # 1, we prefer this open-loop configuration.

Js = (1-ChJg + omdy D

I

1

1

:

v TR

! [;' PD,:(1-0)Jg

logmp(t) = log(Jo(t)/ Jr(t))

IV. COMMUNICATIONS _ logm(t) + log(Jz(t)/Ja(t)) (31)

To assure that we can maintain synchronization of the trans-
mitter and receiver while using an arbitrary modulation amplte demodulate this information. This expression for the esti-
tude for arbitrary) < ¢ < 1, we have adopted the scheme showmated message signalz(¢) emphasizes the error which is in-
in Fig. 12: identical synchronization is a solution of the dynamroduced by a failure to have a synchronized transmitter and re-
ical equations with and without modulation. We use a multeeiver. Fig. 13 shows the demodulation error as a functian of
plicative modulation scheme which can be realized by LiNiOThis becomes just a normalized synchronization error when we
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Fig. 14. (a) Sample of transmitted modulated intensity, superimposed with

modulating signal. (b) Power spectral densities of transmitter laser intensity
ignal pre-modulation (dashed), post-modulation (solid), and modulation signal
ashed). The dotted trace has been shifted-@ dB for greater visibility, it

Id otherwise nearly superpose the solid trace.

Fig. 13. Average demodulation erriog(Jz/J7)) with varying bit sizeB,
T, = 1 and no channel noise as a function of the coupling strength betwe
transmitter and receivem = % for a “1” or a “0” respectively.B = 0 or

m = 1 means no message is modulated onto the transmitter signal. We disﬁ’f/ﬁy
both: (a) the cas&., = 0 and taking spontaneous emission noise into account

(b) R.p # 0. This figure demonstrates that with the communication scheme gfiations can be seen in Fig. 13(b), raising the error floor as ex-
Fig. 12 large modulation and small modulation produce small errors. pected

have a transmission with no modulatiodl3—= 0 orm = 1,and B. Communications: Channel Noise

is displayed in Fig. 8 above. Fig. 13 shows We now turn to the performance in a noisy channel. While not

log £ — loe m()2 loe J (1) — log Jr(t))2 anticipating significant noise for transmission through an op-

{(log mﬁf( ‘)J ;)ng( D7) = {(log Rl( )J (;g QT( )7 tical fiber, the situation may not be quite the opposite for trans-
((log (1)) ((log Jr(#))?) mission through the atmosphere. To represent the noise charac-

as a function of the coupling constantWithout spontaneous teristips of the channel, we uge a mu_ItipI.icative Qaussian sto-
emission noise and above a critical coupling, essentially p&hastic model for channel noise, which is considered a good
fect synchronization is achieved [Fig. 13(a)]. Most strikingl)f,'rSt approximation [12] to the cha.racte.rlsncs of a noisy opucal
the performance is independent of the size and the period of g@nnel. The phy5|cal picture beh_lnd this characterlzatlon is that
modulation, with neither the error nor critical coupling changinf'€ Signal which enters the receiver laser, after traversing the
substantially. In other words, the system is stable to large amjif@nnel, is:Jce™™), with 7)(t) being a Gaussian white process.
tude modulation. As in [2], we have found this result to hold over Chen and Yao have shown [13], [14] that it is critical to use
a range of bit rates an order of magnitude below and above ff@Per stochastic integration algorithms to simulate chaotic
result presented here, as well as for nonrepeating analog nfgmunications schemes. Unfortunately, it seems there are no
sages. We mention that successful decoding can take place wifdisfactory algorithms for integrating stochastic differential
the modulation is not visible to conventional techniques, if, féfauations with substantial nonlinearities associated with the
instance, chaotic signal-masking is desirable. Fig. 14 showStgchastic variable in the vector field. We proceed by adding an
sample of transmitted optical intensity with— 0.1 size mod- 2dditional dynamical element by lettimgt) be a new indepen- -
ulation, which is significantly smaller than the natural dynamicl€nt variable with Brownian dynamics. This is expressed via
range of the oscillations. The modulation signal is not clear}€ Langevin equation foy(t)
visible in the time series or power spectrum compared to an dn(t) 1
unmodulated signal, yet the recovery of the modulated signal “a T n+p /e
is perfect in the absence of noise. From a dynamical point of

view, the fact that the system is stable even to large modulahere N (0, 1) is a Gaussian white process with zero mean
tion depth (though this is not necessary for signal recovery)asd variance unity. This produces, in our noise variajjte, a
more striking. The role of including spontaneous emission fluGaussian process with correlation timeand variancg:?. The

N(0, 1) (33)
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value ofr, depends on the physics underlying the scattering in 0
the channel. For clear air it is much less than a nanosecond, the 05 EEEgh L. <
characteristic time of dynamics in our laser. On time scales rel- -1 -
evant to the operation of our lasergs nearly white in this set- = -15 ¢ N
ting. With strong particle scattering, it may not be so. We origi- w2 \7\\
nally introduced this device in order to put the set of equations 2 -25 )™=~/ Q\\ \\
in a suitable form (linear in the stochastic variable) for the nu- 2 Bils--nc=06 NN
merical algorithm we employ [15]. Now we can use it to more -35 3;2‘:‘113 Y \\ q
faithfully represent the actual physics of the channel. 4 [l x— No Chaos NN

The receiver measureg-c”(Y) and the demodulator recon- -45 . s - = 2
structs the estimated message(¢) as E/N, in dB

log m(t) = log(Jo(£)/Tr(t) @

0 . : ,
= logm(t) +log(Jr(t)/Jr(t)) +n(t).  (34) 05 E

We averag€logmg(t))r, over a bit timeT;,, and sample the T
signals everyl;. If this average is greater than zero, then we T ey
call it a “one.” If it is less than zero, we call it a “zero.” In our ) 2T
studies, T /T, = 10. In these variables, the messdggm is § 257
contaminated with additive stochastic noise throyghs well =
as by any deviation in synchronizatibsg(Jr /). Bl

As is conventional in communication theory, we report the 4’: I

bit error rate (BER) versus the “energy per bit” divided by the
spectral density of the noig8, /\y. In our circumstances, it is
not clear what the proper energy per Bjt means, but if one ig- (b)

nores the chaotic carrier for the moment and looks onlygat. ) )
the sianal contaminated by white Gaussian additive noiF'é" 15. BER versus effective SNR over a range of coupling strengths. (a)

as g ) y ) ) Bfear feedback (thin lines). (b) Inverted tent map feedback (thin lines). Direct

thenE, = B2T, and the noise density, = (n?)7Ts. Fig. 15 signaling (crosses) shown in both.

summarizes our results for BER verstig/ Ny calculated with

5 x 10° bits, with bit timeZ}, = 1 in dimensionless units, andtical frequencies to high-speed electronics allows us to manip-
bit size B = 0.1, over a range of noise strengths. This bit size IS q gn-sp P

the same as the one shown in Fig. 14. Gener&llyN, param ulate the feedback signal in an efficient and realistic fashion.
. . 0 -

. . We studied the idea of introducing a nonlinear function im-
eterizes the performance reasonably well, as it does for convep- . .
i : . : i emented electronically into the feedback loop, and demon-
tional linear communications. We include reference curves car-

responding to the perfect direct detector, i.e., estimating BE rated that it would produce high-dimensional chaotic oscilla-

assuming no synchronization erfot(Jr/Jr) = 0, in (34). idns. The feedback adds a time-delayed curtgrft — 7r),

Above a certair: ~ 0.5, the synchronization threshold, Com_Wh|ch we add to the laser bias current to close the feedback

L . . - oop. 7r Iis the propagation delay around the ring. While, in
munication performance is good with vanishing error rate as the ~ . . .

. . ; . rinciple, the number of degrees of freedom in the time delay

noise strength declines. The curves for chaotic synchronization P :

S ; - ) - semiconductor laser system is infinite, in practice the number

lie slightly to the right of the “direct signaling” curve becausé : :

. .Of active degrees of freedom depends on the magnitude, of

some channel noise enters the feedback loop of the receive

) . rlative to the other time scales in the problem—see Table | for
In many regimes, however, this does not cause global desyn- ) . . .

L e ..these. As a function ofg, there is a bifurcation sequence as
chronization and, thus, complete loss of communication ab|I|(ti¥.

: ) o : een in Fig. 4 which reveals the richness of the structure when
Using the inverted tent map feedback function in the higher j . . : :
i . . : (t — Tr) is taken to be proportional to the intensity of the
mensional chaotic regime, the performance is somewhat Worlséés’er lightJ-(t — ) = I A(t — 75)|%. With the nonlinear
as the channel noise interacts with the larger Lyapunov expa:. 9 "/ F =) =1 TR ’

S o . Inverted tent map feedback considered in this paper, the bifur-
nents, resulting in greater desynchronization. Still, the overall . . . . .

) o . cation sequence is equally rich and the dimension of the chaotic
message is that synchronization of a semiconductor laser wi

optoelectronic feedback is structurally stable. oscillations [arg_e rat compgra_bﬂg}. .
Synchronization of two similar lasers, one acting as a trans-

mitter and sending a signal unidirectionally to the other acting as

a receiver, is accomplished by injecting a fraction of the trans-
We have analyzed the chaotic oscillations of a semiconductuitter intensityc|A(#)|? added to a complementary fraction

laser with optoelectronic feedback, as shown in Fig. 1. The uskthe receiver intensityl — c)|Ag(#)|? into the receiver laser

of the photodiode in the feedback loop was motivated by our ithirough the injected current. The scheme for this is shown in

ability to use the rapidly varying optical phase of laser systerfy. 12 withm(t) = 1. As a function ofd < ¢ < 1, we have in-

in synchronization or communications applications [4]. Transestigated the identity synchronization of two such laserscFor

forming the operational range of the feedback loop from opeughly 0.4 or larger, very accurate synchronization of the elec-

V. DISCUSSION
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tric field and carrier inversion in transmitter and receiver are ac-[9] N. F. Rulkov, M. M. Sushchik, L. Tsimring, and H. D. I. Abarbanel,

Compllshed both with and without Spontaneous emission noise. “Generalized Synchronization of chaos in direCtionally COupled chaotic
. o systems,’Phys. Rev. Evol. 51, pp. 980-994, Feb. 1995.
Tang and Liu [16] have demonstrated synchronization of sucﬁO] D. Y. Tang, R. Dykstra, M. W. Hamilton, and N. R. Heckenberg, “Stages

systems. of chaotic synchronizationChaos vol. 8, pp. 697-701, Sept. 1998.
No real semiconductor lasers are ever identical as our matfitl] —— “Observation of generalized synchronization of chaos in a driven
ical lati Id ire. To d . h chaotic system,Phys. Rev. Evol. 57, pp. 5247-5251, May 1998.
emat_'(_:a_ ormulation would appear to r_equ"e' _0 etermine t %LZ] R. M. Gagliardi and S. KarpQptical Communications New York:
sensitivity of our setup to parameter mismatch in real lasers, we ~ Wiley, 1976.
evaluated a measure of synchronization, the time-averaged dif3] C.C.ChenandK. Yao, “Stochastic-calculus-based numerical evaluation
f b . d s L. f and performance analysis of chaotic communication systetB&E

erence 'etween tra'nsm|tterl and receiver intensities, as a func-  tans. Circuits Syst, hol. 47, pp. 1663-1672, Dec. 2000.
tion of mismatches in both intrinsic parameters of the laserg14] ——, “Numerical evaluation of error probabilities of self-synchronizing
such as the photon lifetime, and the carrier relaxation rate, and ~ chaotic communicationsjEEE Commun. Lettvol. 4, pp. 37-39, Feb.
as a function of the feedback parametand the feedback loo 2000. - ;

_ parame Dac P [15] G. Denkand S. Schaffler, “Adams methods for the efficient solution of
time 7. For each parameter mismatch, the sensitivity of the  stochastic differential equations with additive nois€gmputing vol.
synchronization was much larger@g 0.4 than atc = 1, sug- 59, pp. 153-161, 1997. o . .

. hat — 1 f ble i . onlv th .~ . [16] S. Tang and J. M. Liu, “Synchronization of high-frequency chaotic op-
gesting t a_t = 1is preferable in pract_lce. nly the senSItlylty tical pulses,’Opt. Lett, voi. 26, pp. 596-598, 2001.
to 7r remained marked at# 1, and this means that matching
of the feedback delays will be required to use this kind of setup
for communications based on the synchronization of the chaotic
lasers. Henry D. I. Abarbanel, photograph and biography not available at the time of
Finally, we examined some communications strategies wigHplication.
and without channel noise. Channel noise is unlikely to be a

major issue in optical fiber links, but in transmission though air,

noise is likely to be important. Our evaluation of the BERs as a thew B. K | born in Santa Monica. CA. in 1968, H ved th

- . . . . . . ew b. Kennel was born in santa ivionica, , 1IN . Fereceive e
function of S|gnal to noise in the channel summarized .m Fig. ﬁ degree in physics from Princeton University, Princeton, NJ, in 1989, and
shows that quite acceptable performance can be achieved ugiBgh.D. degree in physics from the University of California at San Diego
the modulation/synchronization scheme we indicate in Fig. 1@£§D) in 19%5- oral fellowshio at the Gak Ridae National Laborator. b

. . . er a postdoctoral fellowsnip a e Oal Idge National Laboratory, De-
The mdepen_dence of the _amp“tUde (_)f the modulation for ﬂBgrtment of Energy, he joined the Institute for Nonlinear Science at UCSD as
synchronization error rate is an attractive feature of our methag. Assistant Research Scientist. His research interests are in chaotic commu-

The work in this paper and a related paper on the experimemigﬁtion and the application of information theoretical algorithms to observed

realization of these laser systems [16] prepares the way for fjpinear dynamics.
ther investigations of such systems;, in particular, the study of

their ability to realistically work in a noisy environment and the

analysis of multiuser methods using these coupled chaotic S€[Mkas llling was born in Halle, Germany, in 1973. He received the Vordiplom

conductor lasers. from Humboldt University, Berlin, Germany, in 1996. He is currently working
toward the Ph.D. degree in physics at the University of California at San Diego
(UcsbD).
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