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Synchronization and Communication Using
Semiconductor Lasers With Optoelectronic Feedback

Henry D. I. Abarbanel, Matthew B. Kennel, Lucas Illing, S. Tang, H. F. Chen, and J. M. Liu

Abstract—Semiconductor lasers provide an excellent oppor-
tunity for communication using chaotic waveforms. We discuss
the characteristics and the synchronization of two semiconductor
lasers with optoelectronic feedback. The systems exhibit broad-
band chaotic intensity oscillations whose dynamical dimension
generally increases with the time delay in the feedback loop. We
explore the robustness of this synchronization with parameter
mismatch in the lasers, with mismatch in the optoelectronic
feedback delay, and with the strength of the coupling between
the systems. Synchronization is robust to mismatches between the
intrinsic parameters of the lasers, but it is sensitive to mismatches
of the time delay in the transmitter and receiver feedback loops.
An open-loop receiver configuration is suggested, eliminating
feedback delay mismatch issues. Communication strategies for
arbitrary amplitude of modulation onto the chaotic signals are
discussed, and the bit-error rate for one such scheme is evaluated
as a function of noise in the optical channel.

Index Terms—Chaos, communication system nonlinearities, op-
tical communication, optoelectronic devices, synchronization.

I. INTRODUCTION

T HE USE of chaotic waveforms for optical communication
has been widely investigated in both theoretical and exper-

imental contexts [1]–[3]. The use of chaotic signals on which to
modulate and demodulate information may be quite attractive
from the point of view of the efficiency of the use of commu-
nications channel bandwidth or possibly for reasons of power
efficiency in the design and use of the transmitter. Issues of “se-
curity” of chaotic transmissions are a much more difficult topic,
and little real insight has been presented in the literature on this
matter. We do not consider this issue here.

Optical communications using chaotic transmitters and re-
ceivers offers the potential of an enormous usable bandwidth for
high bit rate data communication or utilization of the available
bandwidth by many users. Our earlier work on optical chaotic
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communication, both theoretical and experimental, studied ring
laser systems in which the active element was a section of rare
earth doped fiber [4]. In the case of erbium-doped fiber, one can
achieve substantial amplification at the wavelength of 1.55m,
which is at a minimum of attenuation in standard single-mode
optical fibers. The demonstration that such ring lasers could be
used for communications at observed bit rates up to 250 Mb/s
is quite important, in principle [3], but the fact that the upper
lasing level in erbium has a lifetime of about 10 ms means that
the chaotic waveform circulating in the ring changes very slowly
on the time scale of the round-trip time of a standard ring laser
composed of tens of meters of passive fiber. The ratio of fluo-
rescent lifetime to laser ring round-trip time ratio is about,
and once the erbium upper level is populated, that population
remains essentially constant and drops out of the dynamics of
the ring laser. If there were no nonlinear effects in the ring,
this laser would not exhibit chaotic oscillations. The observed
chaotic waveforms then arise from the nonlinear effects of the
glass fiber which, small in magnitude, act on the circulating light
many times.

This circumstance has led us to consider an active element in
a feedback laser system which has time scales commensurate
with bit rates of gigabits per second that would be attractive for
any realistic applications. We explore here the use of a semi-
conductor laser as the active element in a delay-feedback ring
system. Except for the feedback-delay time, the carrier lifetime,
the photon lifetime, and other time scales in this system are 1
ns or less, and the bandwidth for communications available to
a chaotic signal is a few gigahertz or more. From the point of
view of dynamics, the use of a semiconductor laser as the ac-
tive element for a delay-feedback ring is also much more inter-
esting, as the carrier inversion does not “freeze out” from the
dynamical equations. Chaotic oscillations are achieved at giga-
hertz frequencies.

In this paper, we consider a laser system with feedback
formed by an optoelectronic loop from the semiconductor
laser optical output back to the bias current across the laser
itself. This particular form of feedback is insensitive to the
optical phase of the laser output. As intensity detection is much
easier than phase detection, removing it from our dynamical
considerations makes any strategy for communications much
more realistic.

II. SEMICONDUCTORFEEDBACK LASER

A. Equations of Motion

We consider a closed-loop optical system, as seen in Fig. 1.
The semiconductor laser is driven by a dc bias current, and
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Fig. 1. Schematic of chaotic transmitter laser. The light from the
semiconductor laser (LD) is received by the photodiode (PD) which puts out
a currentJ(t). (The symbolPD: J(t) is shorthand for this.) This current is
transformed by a nonlinear function into the currentJ (t) = f(J(t � � )),
which acts after a length of feedback loopc� has been traversed. This
current (J (t)) is added to the external bias currentJ and fed back into the
semiconductor laser.

lases in a single mode of optical frequencywhose complex
valued coefficient is . The output light is received by a
photodetector (PD) producing a current proportional to

. We also consider the possibility of placing a nonlinear
function of the intensity in the electronic feedback
loop from the PD back to the laser yielding a feedback current

with the time delay associated with
the electronic feedback loop. The dynamical equations for
and the carrier density are

(1)

(2)

where
cavity decay rate;
center optical frequency;
longitudinal mode frequency of the cold
laser cavity;
confinement factor;
linewidth enhancement factor;
optical gain coefficient including non-
linear effects;
active layer thickness of the laser;
refractive index of the semiconductor
medium;
spontaneous carrier decay rate;
spontaneous emission noise source.

We take this noise to be a Gaussian Langevin source with corre-
lations and

.
Ignoring the noise, the phase of the optical field is determined

by and and is not an independent dynamical vari-
able, so chaotic oscillations cannot appear without a nontrivial

feedback , because chaos cannot occur in a system of two
ordinary differential equations. The time delay adds, in prin-
ciple, an infinite number of other degrees of freedom, though
in practice the number of active degrees of freedom involved in
the observable laser dynamics depends on the size ofcom-
pared to the intrinsic times scales in the laser operation.

We are not concerned with the dynamics of the optical phase
in this system as it is removed by the use of the photodetector
in the optoelectronic circuit. We write the amplitude as

(3)

and

(4)

is the photon density. Ignoring the spontaneous emission for
now, we find

(5)

(6)

when is a phenomenological quantity. Over the
range of variation of both and in our calculations,
either a Taylor expansion about the fixed point at

or a simple ratio of terms incorporating
the same information is adequate. If larger excursions in the dy-
namical variables were required, more details of the gain would
be needed.

We expand about the stationary CW operating
condition, the dynamical fixed point of the laser in the
absence of external feedback . This gives us

(7)

Liu and Simpson [5] show how to experimentally estimate
and . This operating point,

defined by , implies
and fixes the bias current as . By this
normalization, our dynamical equations are independent of how
far above threshold we set the laser except via indirect influence
on the empirical differential gain parametersand , which
depend on the expansion point.

Transforming to dimensionless quantities , , and
defined by and

, we have

(8)

(9)

and by solving for the bias current at the CW
operating point. The dimensionless gain is

(10)
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where and . We have also investigated
the gain in the form

(11)

and found no change in our results over the dynamical range of
our semiconductor lasers.

The natural relaxation oscillation frequency in this laser is
with which we form the dimension-

less time . Our dynamical equations for the optoelec-
tronic feedback semiconductor laser now read

(12)

(13)

(14)

B. Spontaneous Emission Noise

Without laser noise, the optical phase entirely decouples from
the dynamics. The situation is more complicated, however, once
spontaneous emission is included. Equation (12) becomes

(15)

Even though both and are independent Gaussian pro-
cesses, it is not entirely correct to replace the noise term on the
right side with a single Gaussian noise process, because the op-
tical phase is a dynamical variable stochastically perturbed by
a noise term , which is correlated with the
intensity noise.

To derive the integration algorithm, we proceed as if we were
integrating the original complex field with a complex noise
term. The Langevin equation for reads

(16)

with representing the deterministic dynamics. In the least
difficult situation, a Gaussian white noise source with constant
coefficients, the rule for the integration step is

(17)

where , the result of integrating the deterministic part
, the coefficient ,

and is a complex-valued Gaussian random variable

We have for the intensity

(18)

Fig. 2. The thresholded, inverted tent map (21), used as the nonlinear element
of the electrooptical loop.A = 0:5; B = 0:5.

Separating the optical phase using

(19)

There is no preferred phase in the physics of the system. Because
of this continuous symmetry, the phase angle is asymptotically
uncorrelated with the intensity. In addition, the random variable

is uniformly distributed in angle. Therefore, without loss of
generality, we can define a new random variable ,
and this has exactly the same statistics as, namely

, with each component being a random complex Gaussian as
before. Thus, the explicit integration algorithm that we employ
reads

(20)

In the simulation of some toy model problems (not shown), this
algorithm produced results for the distribution of intensity that
were the same as integrating the complex equation of motion,
whereas integrating the equivalent of (15), assuming a single
noise source on the intensity, gave incorrect answers.

C. Optoelectronic Feedback

We investigated two functional forms for . First, we
considered straight linear feedback

, , and second, the nonlinear inverted tent
map function, as shown in Fig. 2. The functional form is

for

for

for
(21)

This gives a nonlinear feedback current with three adjustable
parameters A, B, and. The positive parametercorresponds
to the slope and B to the value of the bottom peak of the inverted
tent map. In both cases, we ensure that for the
physical reason that current cannot be extracted from a laser.

A sample of the time series for each feedback choice is shown
in Fig. 3. The additional complexity which arises with the in-
verted tent map nonlinearity is clear.
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Fig. 3. Calculated time series from the chaotic optoelectronic feedback
semiconductor laser: linear feedback (top), tent map feedback (bottom). These
time series haveR = 0.

For linear feedback with ,
there are significant periodic and quasi-periodic regimes inter-
spersed with chaotic windows when the feedback timeis
close to a multiple of the natural oscillation time scale [6]. In
Fig. 4, we show the bifurcation diagram for by plot-
ting the extrema of the laser intensity versus . We ex-
hibit the Lyapunov dimension evaluated from the time series of
intensity for linear feedback in the same plot.

Lyapunov dimension is defined in terms of the ordered spec-
trum of Lyapunov exponents by determining the
integer at which the sum changes sign

(22)

and

(23)

The spectrum of Lyapunov exponents is determined using the
same method as in [2]. This involves writing the effect of the
numerical integration algorithm (in our case, a fourth-order pre-
dictor corrector) as a map operating on a very large state–space,
consisting of the discretized ring of intensity states, representing
the time-delayed feedback, and additional variables for the pop-
ulation inversion and time derivatives of intensity and popula-
tion inversion. The very sparse Jacobian of this map may be
computed analytically from the equations of motion, and imple-
mented as a “Jacobian times vector” subroutine. The dynamics
of the laser, along with the linearized dynamics of the tangent
space, are simultaneously integrated, and the Lyapunov expo-
nents stably extracted from the product of Jacobians with a stan-
dard recursive orthogonal/right-triangular (QR) matrix decom-
position. We estimate the Lyapunov dimension from the calcu-
lated spectrum of Lyapunov exponents by first setting all expo-
nents with absolute values smaller than a certain cutoff to zero
and then applying (23). This is necessary, because the conver-
gence of the calculated Lyapunov exponents to their limit values

Fig. 4. (a) Bifurcation diagram and (b) estimated Lyapunov dimensionD

for the semiconductor laser with linear feedback. This plot uses numerical
simulations withR = 0.

is slow for high-dimensional systems like this one. For non-
chaotic attractors the largest exponent is zero and the dimension
is determined by the number of zero Lyapunov exponents. In
this case small deviations of the calculated Lyapunov exponents
from their true zero value can change the estimated dimension
dramatically.

The frequent truncations of the bifurcation sequence, exhib-
ited in Fig. 4, as well as the existence of multistable regimes,
which we found in our numerical simulations, indicate the
complexity of the detailed bifurcation diagram for the semi-
conductor laser rate equations with optoelectronic feedback. In
Fig. 4, we see that the typical stages in the bifurcation sequence
for the linear feedback are a Hopf bifurcation of the CW steady
state with a Lyapunov dimension of zero to a limit cycle with

and, subsequently, a second bifurcation to a two-torus,
corresponding to quasi-periodic motions with . Upon
increasing the control parameterfurther, we observe chaotic
motion. Varying the feedback strengthwhile keeping the time
delay fixed one obtains the same stages in the bifurcation
sequence. This indicates a quasi-periodic route to chaos, which
agrees well with results from analytic bifurcation analyses [7],
[8].

In Fig. 5, we present a more detailed look at a typical bifur-
cation sequence for the linear feedback by showing the power
spectral density in the first column and the Poincaré section in
the second column for time delays of , 8.6, 8.58, and
8.1 (A–D), respectively. The frequencies are given in units of
the relaxation oscillation frequency of the laser without feed-
back. We use time-delay embedding coordinates and obtain the
Poincaré section by defining a 3-D hyperplane, e.g., with co-
ordinates ( ) for definiteness, in a 4-D embedding space.
The graphs in the second column present the projection of the
Poincaré section along theaxis. By means of Hopf bifurca-
tions, limit cycle attractors are created, and in the first column
Fig. 5(A) shows the power spectral density, and in the second
column the Poincaré section of such an attractor. Note that the
frequency of the limit cycle oscillations is on the order of the
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Fig. 5. Numerical evidence for the quasi-periodic route to chaos for the linear
feedback. Power spectral density (first column) and projection of the Poincaré
section onto thex–y-plane (second column) for the case of: (A) limit cycle
oscillations; (B) quasi-periodic oscillations on a two-torus; (C) oscillations on
a three-torus; and (D) chaos. For the three-torus (C) and chaos (D), we display
in the third column a very thin slice through the 3-D Poincaré section at the
location indicated by the arrows (second column).

natural relaxation oscillation frequency. A decrease of the delay
time leads to a destabilization of the limit cycle and a two-torus
is created Fig. 5(B). A second incommensurate frequency ap-
pears with a value on the order of the inverse of the delay time
in the feedback, significantly slower than the relaxation oscilla-
tion frequency. The toroidal nature of the attractor can clearly
be seen in the Poincaré section. At a slightly shorter time delay,
a three-torus is found Fig. 5(C). A close examination of the
spectrum reveals the appearance of a third incommensurate fre-
quency, with a value significantly lower than both the relax-
ation oscillation frequency and the frequency corresponding to
a round-trip time. To discern the three-torus nature of the at-
tractor, we display in the third column a very thin slice through
the 3-D Poincaré section. The location of the slice is indicated
by the arrows in the second column of Fig. 5(C). It shows, that
the closed curve of Fig. 5(B), which represents a two-torus at-
tractor, bifurcates to a two-torus in the section, corresponding to
a three-torus attractor. Finally, when entering the chaotic regime
as in Fig. 5(D), we observe a breakup of the three-torus, as well
as the development of a broadband background in the spectrum.

The estimated Lyapunov dimensions for (A)–(D), using a
cutoff of , are , , ,
and respectively. For case (D), the largest Lyapunov
exponent is clearly positive, whereas for the other three cases,
the absolute value of the largest Lyapunov exponent is smaller
than the cutoff. This agrees well with the quasi-periodic route
to chaos and shows that Fig. 5(D) does, indeed, correspond to
chaotic dynamics of the feedback laser.

For the purpose of communication with chaos, it suffices to
find the parameter regimes corresponding to chaotic oscilla-
tions. In Fig. 4, we see that with linear feedback rises above
three only for . In contrast, the inverted tent map feedback

Fig. 6. Bifurcation diagram and estimated Lyapunov dimensions for
the semiconductor laser with: (a) inverted tent map feedback and (b) no
spontaneous emission noise.

function gives high-dimensional chaos over most time-delays.
is large, and usually noninteger for , as shown in

Fig. 6. Linear feedback does not require additional electronics
in the optoelectronics loop, so it is easier to implement experi-
mentally.

Although with time-delayed feedback the dimension of this
dynamical system can be quite high, it is still substantially less
than that for a semiconductor laser subjected to optical feed-
back in many regimes as represented by the Lang–Kobayashi
equations. Furthermore, the autocorrelation time scale of the dy-
namics of the optical-phase-dependent Lang–Kobayashi system
is at least an order of magnitude faster than in our system. Op-
tical feedback is governed by the large photon decay rate

instead of the spontaneous carrier relaxation rate
. is too fast for simple experimental tech-

niques to give time-resolved measurements, while the time scale
of trajectories in our optoelectronic feedback allow for time
trace measurements using fast oscilloscopes.

III. SYNCHRONIZATION

A. Coupling the Transmitter and Receiver

As a prelude to using two of our laser setups for communica-
tion we investigate the synchronization of their oscillations. In
regimes where the lasers synchronize, the action of the receiver
laser reflects in a deterministic way the oscillations of the trans-
mitter, and thus, even though they each can be chaotic, one can
recognize the effect of modulation at the transmitter and demod-
ulate this at the receiver.

To investigate synchronization, we couple two lasers
which we denote as the transmitter with dynamical variables

and the receiver with , calling time
again. We connect the transmitter to the receiver unidirection-
ally by transmitting to the receiver. At the
receiver we multiply by and add to the
receiver intensity multiplied by . The current signal



1306 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 37, NO. 10, OCTOBER 2001

TABLE I
DYNAMICAL VARIABLES, DEFINITIONS, AND NUMERICAL VALUES OF PARAMETERS

into the receiver is, thus, , leading to the
coupled equations of motion

and

(24)

In the case of linear feedback, for example

(25)

The net current injected into the receiver semiconductor laser
element is

(26)

We see that for all , the identity solution and
is always possible. It is not necessarily astable

solution, and only when it is stable do we say that the transmitter
and receiver are synchronized. When , the receiver is being
runopen loop, as its optoelectronic feedback is disconnected.

The quality of the synchronization when is shown
in Fig. 7, where we plot versus coming from calcu-
lations where and is set to the standard value listed in

Fig. 7. Synchronization of two optoelectronic feedback semiconductor lasers,
whereR 6= 0.

Fig. 8. Synchronization error in coupling of two optoelectronic feedback
semiconductor lasers as a function of the coupling coefficientc. R = 0

(circles),R 6= 0 (squares).

Table I. As a function of , we show in Fig. 8 the synchroniza-
tion error

(27)
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where means time average

(28)

and the integration is over the total observed or calculated time
series.

With , we see in Fig. 8 that the semiconductor lasers
synchronize essentially perfectly for and undergo a
rapid transition to the unsynchronized state for . The
desynchronization for in Fig. 8 is partly a result of
spontaneous emission, but also a result of the intrinsic dynamics
of the coupled systems.

B. Parameter Mismatch Between Transmitter and Receiver

The transmitter and receiver systems are inevitably different
from each other. The many parameters characterizing the semi-
conductor lasers or the optoelectronic feedback loops can never
be identical in a real system. In this situation, identity synchro-
nization and is not a mathemat-
ical solution of our model equations. Nonetheless, the deviation
from the identity solution can be small over some range of pa-
rameters in analog devices such as the ones we envision here.
Over some range of parameters, one might expect to achieve
generalized synchronization [9], in which the transmitter and re-
ceiver dynamical variables are definite, typically unknown, non-
linear functions of each other. There is a set of experiments on
a quite different class of laser systems [10], [11], which suggest
that the transition from the totally unsynchronized state of two
coupled nonlinear system through generalized synchronization
to identity synchronization is smooth.

We have evaluated the effect of various parameter mis-
matches between the transmitter and the receiver on the quality
of synchronization, and have computedas a function of

In Fig. 9, we display the value of for mismatches in
and for and for . In these calcula-

tions , so even at perfect parameter matching, there
is a nonzero . While the error is tolerable for a 5% or so
mismatch at , for the error is large for almost all
mismatches.

To investigate the synchronization error associated with dif-
ferences in the properties of the two feedback loops, we inves-
tigated as a function of

and

Fig. 10 displays versus the mismatch in the feedback rate.
Here, we display for and . It is clear that,
as increases, the error due to mismatches becomes small. This

(a) (b)

(c) (d)

Fig. 9. Synchronization error from mismatches in
 (upper left),
 (upper
right), 
 (lower left), and
 (lower right).

Fig. 10. Synchronization error from mismatches in�.

again points to the use of a open-loop receiver configura-
tion. Fig. 11 displays the synchronization erroras a function
of the mismatch in feedback delay.

From this, we see that feedback rate mismatch does not
significantly affect the synchronization quality while the
influence of the delay-time mismatch is very significant. Also,
from Fig. 11, we see that the synchronization error oscillates
with the increase of the delay-time mismatch. The oscillation
period corresponds to the time interval between two pulses in
the output of a chaotic pulse train. So, each time the mismatch
in the delay time increases to the amount of a pulse-to-pulse
interval, the second pulse will substitute the first pulse and the
synchronization error will be reduced. Because of the signifi-
cant effect of the delay-time mismatch on the synchronization,
we need to adjust the delay time in the transmitter and receiver
feedback loops very well.
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Fig. 11. Synchronization error from mismatch in feedback time delay� .

Fig. 12. Schematic of transmitter and receiver systems which works for any
value of the modulation.PD � � �PD are photodiodes, providing electrical
signal proportional to input intensity. (SymbolPD : J is shorthand for current
J coming from photodiode numberk.) We useM to denote an electrooptical
modulator which multiplicatively modulates information onto the intensity.

From these evaluations ofas a function of parameter mis-
match, we see that the open-loop configuration is pre-
ferred. It is more robust to parameter mismatch, and it has excel-
lent synchronization in the perfectly mismatched state. Since the
coupled systems are quite sensitive to time-delay mismatches
when , we prefer this open-loop configuration.

IV. COMMUNICATIONS

To assure that we can maintain synchronization of the trans-
mitter and receiver while using an arbitrary modulation ampli-
tude for arbitrary , we have adopted the scheme shown
in Fig. 12: identical synchronization is a solution of the dynam-
ical equations with and without modulation. We use a multi-
plicative modulation scheme which can be realized by LiNiO

modulators at frequencies well above a gigahertz. This modu-
lator attenuates the intensity roughly proportional to the voltage
imposed across it, so we can represent the intensity leaving the
modulator as . is the message; it can be analog,
digital, voice, or data. We transport the field down the com-
munications channel, resulting in a received intensity

. Recall, we are concerned with intensities alone
as the optical phases at transmitter and receiver need not be
matched in our scheme.

The receiver detects an intensity and
adds to that in its nonlinear feedback loop. Identity
synchronization is still a solution to the coupled
equations. At the receiver, one estimates the message by

(29)

or in the notation depicted in Fig. 12

(30)

The symbol stands for the intensity coming from photode-
tector number .

It is not necessary to have two physical photodiodes in
the transmitter laser, as one may calibrate the photodiode
gain, as well as the modulator gain and offset to produce the
same function. We show the diagram Fig. 12 to emphasize
the required symmetry between transmitter and receiver.
The receiver requires two distinct photodiodes. Notice that
nowhere in the system does theoptical phase or electric field
polarization explicitly enter the dynamics. Photodiodes are
intensity-only devices, and the intensity modulator has a simple
multiplicative influence on the intensity as well. Thus, this
scheme ought to be insensitive to the difficult problems of
matching optical path lengths of transmitter and receiver, as
well as being insensitive to environmental fluctuations in the
optical phase and polarization state as the signal propagates
through the communications channel, e.g., a fiber optic cable.
An atmospheric channel, however, could have an effect on the
intensity and, thus, the communication performance.

A. Communications: No Channel Noise

To achieve communication using our multiplicative modula-
tion strategy, we transmit digital nonreturn-to-zero bits so that a
“one” is represented by and a “zero” by .
This is transmitted in a fixed bit time . The message is then
imposed on the received intensity , which is always
positive and bounded away from zero in our construction.

At the receiver, we form the quantity

(31)

to demodulate this information. This expression for the esti-
mated message signal emphasizes the error which is in-
troduced by a failure to have a synchronized transmitter and re-
ceiver. Fig. 13 shows the demodulation error as a function of.
This becomes just a normalized synchronization error when we
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Fig. 13. Average demodulation errorhlog(J =J )i with varying bit sizeB,
T = 1 and no channel noise as a function of the coupling strength between
transmitter and receiver.m = e for a “1” or a “0” respectively.B = 0 or
m = 1 means no message is modulated onto the transmitter signal. We display
both: (a) the caseR = 0 and taking spontaneous emission noise into account
(b)R 6= 0. This figure demonstrates that with the communication scheme of
Fig. 12 large modulation and small modulation produce small errors.

have a transmission with no modulation— or , and
is displayed in Fig. 8 above. Fig. 13 shows

(32)
as a function of the coupling constant. Without spontaneous
emission noise and above a critical coupling, essentially per-
fect synchronization is achieved [Fig. 13(a)]. Most strikingly,
the performance is independent of the size and the period of the
modulation, with neither the error nor critical coupling changing
substantially. In other words, the system is stable to large ampli-
tude modulation. As in [2], we have found this result to hold over
a range of bit rates an order of magnitude below and above the
result presented here, as well as for nonrepeating analog mes-
sages. We mention that successful decoding can take place when
the modulation is not visible to conventional techniques, if, for
instance, chaotic signal-masking is desirable. Fig. 14 shows a
sample of transmitted optical intensity with size mod-
ulation, which is significantly smaller than the natural dynamic
range of the oscillations. The modulation signal is not clearly
visible in the time series or power spectrum compared to an
unmodulated signal, yet the recovery of the modulated signal
is perfect in the absence of noise. From a dynamical point of
view, the fact that the system is stable even to large modula-
tion depth (though this is not necessary for signal recovery) is
more striking. The role of including spontaneous emission fluc-

Fig. 14. (a) Sample of transmitted modulated intensity, superimposed with
modulating signal. (b) Power spectral densities of transmitter laser intensity
signal pre-modulation (dashed), post-modulation (solid), and modulation signal
(dashed). The dotted trace has been shifted by+10 dB for greater visibility, it
would otherwise nearly superpose the solid trace.

tuations can be seen in Fig. 13(b), raising the error floor as ex-
pected.

B. Communications: Channel Noise

We now turn to the performance in a noisy channel. While not
anticipating significant noise for transmission through an op-
tical fiber, the situation may not be quite the opposite for trans-
mission through the atmosphere. To represent the noise charac-
teristics of the channel, we use a multiplicative Gaussian sto-
chastic model for channel noise, which is considered a good
first approximation [12] to the characteristics of a noisy optical
channel. The physical picture behind this characterization is that
the signal which enters the receiver laser, after traversing the
channel, is , with being a Gaussian white process.

Chen and Yao have shown [13], [14] that it is critical to use
proper stochastic integration algorithms to simulate chaotic
communications schemes. Unfortunately, it seems there are no
satisfactory algorithms for integrating stochastic differential
equations with substantial nonlinearities associated with the
stochastic variable in the vector field. We proceed by adding an
additional dynamical element by letting be a new indepen-
dent variable with Brownian dynamics. This is expressed via
the Langevin equation for

(33)

where is a Gaussian white process with zero mean
and variance unity. This produces, in our noise variable, a
Gaussian process with correlation timeand variance . The
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value of depends on the physics underlying the scattering in
the channel. For clear air it is much less than a nanosecond, the
characteristic time of dynamics in our laser. On time scales rel-
evant to the operation of our lasers,is nearly white in this set-
ting. With strong particle scattering, it may not be so. We origi-
nally introduced this device in order to put the set of equations
in a suitable form (linear in the stochastic variable) for the nu-
merical algorithm we employ [15]. Now we can use it to more
faithfully represent the actual physics of the channel.

The receiver measures and the demodulator recon-
structs the estimated message as

(34)

We average over a bit time , and sample the
signals every . If this average is greater than zero, then we
call it a “one.” If it is less than zero, we call it a “zero.” In our
studies, . In these variables, the message is
contaminated with additive stochastic noise through, as well
as by any deviation in synchronization .

As is conventional in communication theory, we report the
bit error rate (BER) versus the “energy per bit” divided by the
spectral density of the noise . In our circumstances, it is
not clear what the proper energy per bitmeans, but if one ig-
nores the chaotic carrier for the moment and looks only at
as the signal contaminated by white Gaussian additive noise,
then and the noise density . Fig. 15
summarizes our results for BER versus calculated with

bits, with bit time in dimensionless units, and
bit size , over a range of noise strengths. This bit size is
the same as the one shown in Fig. 14. Generally, param-
eterizes the performance reasonably well, as it does for conven-
tional linear communications. We include reference curves cor-
responding to the perfect direct detector, i.e., estimating BER,
assuming no synchronization error , in (34).
Above a certain , the synchronization threshold, com-
munication performance is good with vanishing error rate as the
noise strength declines. The curves for chaotic synchronization
lie slightly to the right of the “direct signaling” curve because
some channel noise enters the feedback loop of the receiver.
In many regimes, however, this does not cause global desyn-
chronization and, thus, complete loss of communication ability.
Using the inverted tent map feedback function in the higher di-
mensional chaotic regime, the performance is somewhat worse,
as the channel noise interacts with the larger Lyapunov expo-
nents, resulting in greater desynchronization. Still, the overall
message is that synchronization of a semiconductor laser with
optoelectronic feedback is structurally stable.

V. DISCUSSION

We have analyzed the chaotic oscillations of a semiconductor
laser with optoelectronic feedback, as shown in Fig. 1. The use
of the photodiode in the feedback loop was motivated by our in-
ability to use the rapidly varying optical phase of laser systems
in synchronization or communications applications [4]. Trans-
forming the operational range of the feedback loop from op-

(a)

(b)

Fig. 15. BER versus effective SNR over a range of coupling strengths. (a)
Linear feedback (thin lines). (b) Inverted tent map feedback (thin lines). Direct
signaling (crosses) shown in both.

tical frequencies to high-speed electronics allows us to manip-
ulate the feedback signal in an efficient and realistic fashion.
We studied the idea of introducing a nonlinear function im-
plemented electronically into the feedback loop, and demon-
strated that it would produce high-dimensional chaotic oscilla-
tions. The feedback adds a time-delayed current ,
which we add to the laser bias current to close the feedback
loop. is the propagation delay around the ring. While, in
principle, the number of degrees of freedom in the time delay
semiconductor laser system is infinite, in practice the number
of active degrees of freedom depends on the magnitude of
relative to the other time scales in the problem—see Table I for
these. As a function of , there is a bifurcation sequence as
seen in Fig. 4 which reveals the richness of the structure when

is taken to be proportional to the intensity of the
laser light . With the nonlinear,
inverted tent map feedback considered in this paper, the bifur-
cation sequence is equally rich and the dimension of the chaotic
oscillations larger at comparable .

Synchronization of two similar lasers, one acting as a trans-
mitter and sending a signal unidirectionally to the other acting as
a receiver, is accomplished by injecting a fraction of the trans-
mitter intensity added to a complementary fraction
of the receiver intensity into the receiver laser
through the injected current. The scheme for this is shown in
Fig. 12 with . As a function of , we have in-
vestigated the identity synchronization of two such lasers. For
roughly 0.4 or larger, very accurate synchronization of the elec-
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tric field and carrier inversion in transmitter and receiver are ac-
complished both with and without spontaneous emission noise.
Tang and Liu [16] have demonstrated synchronization of such
systems.

No real semiconductor lasers are ever identical as our math-
ematical formulation would appear to require. To determine the
sensitivity of our setup to parameter mismatch in real lasers, we
evaluated a measure of synchronization, the time-averaged dif-
ference between transmitter and receiver intensities, as a func-
tion of mismatches in both intrinsic parameters of the lasers,
such as the photon lifetime, and the carrier relaxation rate, and
as a function of the feedback parameterand the feedback loop
time . For each parameter mismatch, the sensitivity of the
synchronization was much larger at than at , sug-
gesting that is preferable in practice. Only the sensitivity
to remained marked at , and this means that matching
of the feedback delays will be required to use this kind of setup
for communications based on the synchronization of the chaotic
lasers.

Finally, we examined some communications strategies with
and without channel noise. Channel noise is unlikely to be a
major issue in optical fiber links, but in transmission though air,
noise is likely to be important. Our evaluation of the BERs as a
function of signal to noise in the channel summarized in Fig. 15
shows that quite acceptable performance can be achieved using
the modulation/synchronization scheme we indicate in Fig. 12.
The independence of the amplitude of the modulation for the
synchronization error rate is an attractive feature of our method.

The work in this paper and a related paper on the experimental
realization of these laser systems [16] prepares the way for fur-
ther investigations of such systems;, in particular, the study of
their ability to realistically work in a noisy environment and the
analysis of multiuser methods using these coupled chaotic semi-
conductor lasers.
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