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This paper clarifies the relation between synchronization and graph topology. Applying the
Connection Graph Stability method developed by Belykh et al. [2004a] to the study of syn-
chronization in networks of coupled oscillators, we show which graph properties matter for
synchronization. In particular, while we explicitly link the stability of synchronization with the
average path length for a wide class of coupling graphs, we prove by a simple argument that
the average path length is not always the crucial quantity for synchronization. We also show
that synchronization in scale-free networks can be described by means of regular networks with a
star-like coupling structure. Finally, by considering an example of coupled Hindmarsh–Rose neu-
ron models, we demonstrate how global stability of synchronization depends on the parameters
of the individual oscillator.
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1. Introduction

Synchronization of two limit-cycle systems tradi-
tionally means that their time evolution is periodic,
with the same period and, perhaps, the same phase.
Synchrony in periodic systems is often divided into
two classes: synchronization of an oscillator by
an external force (external synchronization) and
mutual synchronization of two coupled nonlinear
oscillators. Classical mathematical studies of exter-
nal synchronization are due to van der Pol [1927],
Andronov and Vitt [1930], Cartwright and Little-
wood [1945]. Discovered by Huygens around 1665,
mutual synchronization of two periodic oscillators

was first analytically studied by Maier [1935] (for
an extensive review on classical synchronization, see
[Pikovsky et al., 2001]).

From a mathematical point of view we under-
stand the synchronization of two periodic oscilla-
tors as a bifurcation transition from quasiperiodic
motion (beating) to regular periodic behavior for
the system as a whole. The quasiperiodic behavior
is associated with the existence of an ergodic torus.
The synchronization regime corresponds to the exis-
tence of a stable periodic orbit on the (resonant)
torus, in a synchronization zone known as Arnold’s
tongue. Therefore, the main problem in the studies
of classical synchronization is (i) to find a regime of
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synchrony in the parameter space, and (ii) to deter-
mine possible routes to the loss of synchronization
on the boundaries of this region. Within the frame-
work of bifurcation theory, this problem was exten-
sively studied by Afraimovich and Shilnikov [1974,
1977, 1991]. In particular, they rigorously described
different scenarios of a torus break-down (for a
review, see [Shilnikov et al., 2004; Shilnikov et al.,
1998, 2001]).

More recently, synchronization of chaotic sys-
tems has been discovered [Fujisaka & Yamada,
1983; Afraimovich et al., 1986; Pecora & Carroll,
1990] and since then it has become an important
research topic in mathematics, physics, and engi-
neering (for reviews on chaos synchronization, see,
e.g. [Pecora et al., 1997; Kurths et al., 2003]).

The strongest form of synchrony in chaotic sys-
tems is complete synchronization when all oscil-
lators of the network acquire identical chaotic
behaviors. Similar, to some extent, to classical
synchronization, the complete chaotic synchroniza-
tion implies that the dynamics in the phase space
is restricted to a lower dimensional manifold. If the
oscillators are identical, this submanifold is a hyper-
plane. This leads to two fundamental considerations
in studying chaos synchronization; (i) finding the
synchronous solution (hyperplane), if synchroniza-
tion is not complete and (ii) determining its sta-
bility. In this context, the central question about
complete synchronization in networks of oscillators
is: When is such synchronous behavior stable, espe-
cially in regard to coupling strengths and coupling
configurations of the network?

Most known methods for determining stabil-
ity for synchronized chaotic systems are based on
the calculation of the eigenvalues of the coupling
matrix for different regular coupling schemes and
a term depending on the dynamics of the individ-
ual oscillators, see, e.g. [Belykh et al., 1992; Wu &
Chua, 1996; Pecora & Carroll, 1998; Pecora, 1998;
Pogromsky & Nijmeijer, 2001]. A general approach
to the local synchronization of chaotic systems
for any linear coupling scheme, called the Master
Stability function, was developed by Pecora and
Carroll [1998]. Stronger, but more conservative,
global stability results for synchronization in net-
works of coupled chaotic systems were also obtained
[Wu & Chua, 1996; Pogromsky & Nijmeijer, 2001;
Wu, 2002].

In recent papers, Belykh et al. [2004a, 2005b]
have developed an alternative method for proving
complete synchronization in networks of coupled

limit-cycle or chaotic oscillators with arbitrary
connection graphs. This approach, called the
Connection Graph Stability method, combines the
Lyapunov function approach with graph theoretical
reasoning. The method directly links synchroniza-
tion with graph theory and allows one to avoid cal-
culating the eigenvalues of the coupling matrix. It
is also applicable to time-dependent networks.

The purpose of this paper is to proceed with
the application of the Connection Graph Stabil-
ity method to the study of global synchronization
in regular and complex networks and to elucidate
the relation between network dynamics and graph
theory. The layout of this paper is as follows. First,
in Sec. 2, we state the problem under considera-
tion. We briefly review the main known methods
for determining stability for synchronized chaotic
systems and touch upon their strengths and weak-
nesses. We revisit the Connection Graph Stabil-
ity method and, in Sec. 3, apply it to regular
and complex networks of oscillators. Finally, in the
Appendix, as an illustrative example we derive a
proof for global stability of synchronization between
coupled Hindmarsh–Rose models.

2. Network Synchronization

2.1. Network considered

We consider a network of n identical oscillators that
are linearly and mutually coupled:

ẋi = F (xi) +
n∑

j=1

εij(t)Pxj , i = 1, . . . , n. (1)

Here, xi is the d-vector containing the coordinates
of the ith oscillator, and F (xi) is a nonlinear vec-
tor function defining the dynamics of the individ-
ual oscillator (whether periodic or chaotic). The
nonzero elements of the d × d matrix P deter-
mine which variables couple the oscillators. The
connectivity (Laplacian) matrix G = (εij(t)) is an
n × n symmetric matrix with zero row-sums and
non-negative off-diagonal elements. The matrix G
is assumed to have one zero eigenvalue λ1 and n−1
negative eigenvalues λn < · · · < λ3 < λ2 < 0. The
matrix G defines a connected graph with n vertices
and m edges. The vertices of the graph correspond
to the individual oscillators, and the graph has an
edge between nodes i and j if εij = εji > 0.

The completely synchronous state of system
(1) is defined by the linear invariant manifold
D = {x1 = x2 = · · · = xn}, often called the
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synchronization manifold. The eigenvector with
eigenvalue λ1 = 0 corresponds to the longitudinal
direction along the synchronization manifold. Being
negative, all the other eigenvalues λ2, . . . , λn corre-
spond to transversal directions and are crucial for
the transversal stability of D.

Typically, in networks of continuous time oscil-
lators (1), the synchronization manifold becomes
stable when the coupling strengths between the
oscillators exceed a critical value ε∗. This thresh-
old ε∗ depends on the individual oscillator dynam-
ics (limit-cycle oscillators are easier to synchronize
than chaotic systems) and on the graph topology.
Indeed, locally coupled networks are very resistant
to synchronization, whereas global couplings facili-
tate synchronization and can significantly lower the
synchronization threshold.

2.2. Eigenvalue methods

An important step in the research on network syn-
chronization is the Wu–Chua conjecture [Wu &
Chua, 1996]. Although it is not true in general
[Pecora, 1998; Pogromsky & Nijmeijer, 2001], it
shows how the second largest eigenvalue λ2 of the
connectivity matrix G influences the synchroniza-
tion condition.

2.2.1. The Wu–Chua conjecture

This conjecture involves a relation between the
eigenvalue λ2 and the synchronization threshold in
networks of various sizes. The conjecture is as fol-
lows. If a network with n1 number of oscillators syn-
chronizes at the coupling ε∗n1

, then another similarly
coupled network of size n2 will synchronize at ε∗n2

,
such that the following relation is preserved:

ε∗n1
λ2(n1) = ε∗n2

λ2(n2),

where λ2(n1) and λ2(n2) are the second largest
eigenvalues of G for the n1 and n2 networks, respec-
tively. In other words, it claims that the synchro-
nization threshold ε∗ in a network of an arbitrary
size can be predicted from synchronization in two
coupled oscillators (since λ2(2) = −2):

ε∗n =
2ε∗2

|λ2(n)| , (2)

where ε∗2 is the coupling threshold for synchroniza-
tion in network (1) composed of two oscillators.

Wu and Chua examined the stability of the
least stable transversal mode associated with the
eigenvalue λ2, assuming that when this mode was

stable, all other transversal modes would remain
stable. For coupled systems which undergo short-
wave bifurcations [Pecora, 1998] and desynchro-
nize with increasing coupling, this assumption can
fail. Examples include x-coupled Rössler oscillators.
Belykh et al. [2000] have linked these desynchro-
nization bifurcations to the equilibria disappearance
and the presence of different invariant sets lying
outside the synchronization manifold.

The conjecture is true if applied to individual
transversal modes. Therefore, in networks of limit-
cycle and chaotic oscillators (e.g. Lorenz, double-
scroll, and Hodgkin–Huxley-type models) where
there is no desynchronization with increasing cou-
pling, it serves as a guide to global synchronization
and correctly predicts the synchronization thresh-
old for different coupling schemes and number of
oscillators n (for a detailed discussion, see [Pecora,
1998]).

2.2.2. Master stability function

A more universal method called the Master Sta-
bility Function [Pecora & Carroll, 1998] takes into
account not only the second eigenvalue λ2, but the
eigenratio λ2/λn, where λn is the lowest eigenvalue
of G. This method shows that when considering
the stability of synchronization for the entire net-
work, one must examine the stability diagrams cor-
responding to different eigenvalues (not only to λ2)
and make sure that all modes are stable at the
chosen coupling.

This powerful approach to the local stability of
the synchronization manifold is based on the calcu-
lation of the maximum transversal Lyapunov expo-
nent and is widely used in studies of synchronization
in complex networks (see, e.g. [Barahona & Pecora,
2002; Nishikawa et al., 2003]).

2.3. Connection graph stability
method

The eigenvalue methods are difficult to apply ana-
lytically for irregular graphs. Moreover, for net-
works of oscillators with a time-varying coupling
(where the connectivity matrix is time-dependent),
the use of methods based on the eigenvalues of the
connectivity matrix and the Lyapunov exponents
is often impossible (the linearized system becomes
time-dependent and may fail to provide the stability
results).

Recently, Belykh et al. [2004a, 2004b] have
developed a new approach, the Connection Graph
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Stability (CGS) method, based on the calculation
of the path lengths in the networks. The main step
of the method is to choose a path Pi,j from node i
to node j, for any pair of nodes (i, j) and then to
calculate the total length of all chosen paths pass-
ing through an edge k on the network connection
graph. The coupling constant that guarantees com-
plete synchronization is proportional to this sum,
or rather, the maximal value of this sum when k
varied.

Theorem 1 [Belykh et al., 2004a] (sufficient con-
ditions). The synchronization manifold of the
system (1) is globally asymptotically stable if

εk(t) >
a

n
bk(n,m)

for k = 1, . . . ,m and for all t.

(3)

Here, a = 2ε∗2 is the double coupling strength suffi-
cient for global synchronization of two oscillators.1

The quantity bk(n,m) =
∑n

j>i; k∈Pij
|Pij | is the sum

of the lengths of all chosen paths Pij which pass
through a given edge k that belongs to the coupling
graph.

The first step of the method is to calculate the
parameter a and to prove that two coupled oscil-
lators globally synchronize when exceeding a. This
condition has to be proven for each particular sit-
uation (for the concrete individual system and the
matrix P ).

The details of this proof for coupled Lorenz sys-
tems can be found in [Belykh et al., 2003; 2004a].
As an illustrative example, in the Appendix, we
derive the proof for global stability of synchroniza-
tion between Hindmarsh–Rose neuron models and
calculate an upper bound for the synchronization
threshold ε∗2.

The second step is to calculate bk(n,m). To
do so, we first choose a set of paths {Pij |i, j =
1, . . . , n, j > i}, one for each pair of vertices i,
j, and determine their lengths |Pij |, the number of
edges in each Pij . Then, for each edge k of the con-
nection graph we calculate the sum bk(n,m) of the
lengths of all Pij passing through k.

For a given choice of paths Pij we obtain for
each εk a lower bound (3). If, in a given coupled
network, all lower bounds on the coupling strengths

1
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Fig. 1. Example of a network for which the choice of the
shortest paths between the nodes is not optimal for calculat-
ing bk.

εk are satisfied, Theorem 1 guarantees complete
synchronization. Often, all coupling strengths in a
network are equal, i.e. εk = ε for all k. In this case
the lower bound for ε is ε∗ = maxk(a/n) bk(n,m).
This amounts to determining the edge k such that
the sum of the lengths of all paths through k is
maximal (the weakest link).

Clearly, the bound ε∗ we obtain by this method
depends on the choice of the paths Pij . The num-
ber of possible choices of paths is normally huge.
However, most of these choices are clearly subop-
timal. Usually, one takes for Pij the shortest path
from vertex i to vertex j. Sometimes, however, a
different choice of paths can lead to lower bounds
(3). The following example supports this claim
and shows how to apply Theorem 1 to a concrete
network.

Example 1. Consider the network (1) shown in
Fig. 1 and calculate bk. Choose the shortest paths
between the nodes: P12 = a, P13 = b, P14 = bd,
P15 = ae, P16 = af , P23 = c, P24 = cd, P25 = e,
P26 = f , P34 = d, P35 = ce, P36 = cf , P45 = dce,
P46 = dcf , P56 = fe. Calculate the sum of path
lengths passing through edge

a : ba = |P12| + |P15| + |P16| = 1 + 2 + 2 = 5
b : bb = |P13| + |P14| = 1 + 2 = 3
c : bc = |P23| + |P24| + |P35| + |P36| + |P45| + |P46|

= 13

1More precisely, under the condition (3),
P

j>i ‖Pxj − Pxi‖2 is a global Lyapunov function, where in (3) a = 2ε∗2 and ε∗2 is
the minimum coupling strength between two oscillators such that ‖Px2 − Px1‖2 is a global Lyapunov function.
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d : bd = |P14| + |P24| + |P34| + |P45| + |P46| = 11
e : be = |P15| + |P25| + |P35| + |P45| + |P56| = 10
f : bd = |P16| + |P26| + |P36| + |P46| + |P56| = 10

and take the maximum bc = 13 as an upper bound.
Now change P23 from c to ab and recalculate the
sum of path lengths (this change only affects edges
a, b and c). Hence,

a : ba = |P12| + |P15| + |P16| + |P23| = 7
b : bb = |P13| + |P14| + |P23| = 5
c : bc = |P24| + |P35| + |P36| + |P45| + |P46| = 12.

Thus, the maximum sum has been reduced to
bc = 12, and consequently it gives a lower upper
bound ε∗ for the synchronization threshold. In other
words, by redistributing the chosen paths, we have
decreased traffic load on the most loaded edge c.
Here, the load of a node quantifies the communica-
tion traffic passing through it.

Changing P36 from cf to abf , one gets even
lower bounds: ba = 10; bb = 8, bc = 10, bf = 11 such
that the final synchronization threshold becomes
ε∗ = a · 11/6. This also shows that homogeneity
of load distribution often (but not always) favors
synchronization.

Note that if we admit coupling coefficients εk

that depend on the edge k, then a “synchronization
threshold” would be a vector ε∗1, . . . , ε∗m such that
for all vectors ε1, . . . , εm with ε1 > ε∗1, . . . , εm > ε∗m
complete synchronization is achieved. In this set-
ting, synchronization thresholds are not unique.
Indeed, the two choices of paths lead to two bounds
on synchronization thresholds that are not compa-
rable. The first one is

ε∗a =
5a
6

, ε∗b =
3a
6

, ε∗c =
13a
6

,

ε∗d =
11a
6

, ε∗e =
10a
6

, ε∗f =
10a
6

,

whereas the second is

ε∗a =
10a
6

, ε∗b =
8a
6

, ε∗c =
10a
6

,

ε∗d =
11a
6

, ε∗e =
10a
6

, ε∗f =
10a
6

.

It is also worth noticing that the value bk/n can
be replaced by 1/|λ2| coming from the eigenvalue
method. In this context, bk/n can be thought of as
a graph-based estimate of 1/|λ2|. In fact, bound (2)

is the best possible for networks admitting global
synchronization and an analytical derivation of a
(cf. Theorem 1). Coming from the sum of the path
lengths, the estimate given in Theorem 1 is some-
what suboptimal, but it has the advantage that it
can be analytically obtained not only for regular,
but also for quite irregular networks. Also, it allows
one to link explicitly the conditions for the stability
of synchronization with the average path length of
a wide class of the coupling graphs.

As the study of Laplacian eigenvalues pervades
many mathematical disciplines that use graphs,
there is no surprise that there exists an embedding
approach to estimate λ2 [Guattery & Miller, 2000].
The essence of this embedding method is that a
complete graph H is embedded into the connection
graph G, and both H and G have the same num-
ber of nodes. Any edge from node i to j in G is
expressed as path(s) in H, thus forming the embed-
ding matrix Γ. The matrix Γ depends on the choice
of these paths. The main step is to choose the paths
in the embedding, according to Kirchoff’s laws. The
error of λ2 estimation is proportional to log2(n) in
the worst case such that the approximation is not
tight but still reasonable. A nice aspect of this graph
method, closely related to the CGS method, is that
it allows us to interpret synchronization in terms of
Kirchoff’s laws.

3. Application of the CGS Method

3.1. Regular networks

In [Belykh et al., 2004a, 2004b] the method was
applied to networks with different coupling topolo-
gies. Examples include star coupling, 2K-nearest
neighbor coupling in a ring, and a globally coupled
network obtained from a ring of 2K nearest neigh-
bor coupled oscillators by adding a weak global cou-
pling. Especially the last two examples are highly
nontrivial, but the method allowed one to achieve
an excellent result with only moderate effort.

Here, we show how to determine bk/n for net-
works with other coupling configurations. Then, we
summarize the results.

Example 2. We start with a coupling scheme com-
posed of n nodes, where two star-coupled networks
are connected by one edge through their hubs.
Figure 2(a) illustrates this network topology. To
find an upper bound for the synchronization thresh-
olds, we shall follow the steps of the above study.
Here, the choice of paths between the nodes is
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(a)

(b)

Fig. 2. (a) Graph with n nodes, where two star-coupled
networks are connected by one edge through their hubs.
(b) Instance of a scale-free graph, grown by attaching new
nodes at random (one node at each time step) to previously
existing nodes. Blue color indicates the two nodes with the
most links.

unique. The most heavily loaded edge K linking the
two central nodes gives the maximum value of bk/n.
Calculate now the total length of all shortest paths
passing through edge K. The path from node 1 to
node 2 is comprised of one edge. The path from
node 1 (2) to a secondary node of the right (left)
star consists of two edges. The length of the path
between any two secondary nodes of the right and
left stars equals 3. Therefore, we obtain

bK = 1 + 2 · 2
(n

2
− 1

)
+ 3

(n

2
− 1

)2
=

3n2

4 − n
.

Finally, we have bK/n = 3n/4−1 and, consequently,
ε∗ = a(3n/4−1) as an upper bound for the network
synchronization.

Similarly, we derive bk/n for a network of two
stars connected by one edge through their sec-
ondary nodes, and for a one-dimensional array with

Table 1. Graph theoretical quantity bk/n calculated for
main coupling configurations and showing how graph topol-
ogy influences the synchronization threshold ε∗.

Connection Graph max
k

bk

n

path graph (n is even)
n2

8

path graph (n is odd)
n2

8
− 3n2

8
+

n

4

ring graph (n is even)
n2

24

ring graph (n is odd)
n2

24
− 1

24

star graph
2n − 3

n

2 connected stars (center to center)
3n

4
− 1

2 connected stars (through
5n

4
− 3

two secondary nodes)

2K nearest neighbor coupled

“ n

2K

”3
„

1 +
65K

4n

«

n
graph (any K)

complete graph
1

n

zero-flux boundary conditions (path graph). Table 1
summarizes the results.

Note that bk/n becomes close to the optimal
value 1/|λ2| (the eigenvalue method) when the num-
ber of oscillators n is large. For example, the path
graph is associated with the second largest eigen-
value λ2 = −4 sin2(π/2n). When n is large, the
value 1/|λ2| ∼= n2/π2 ∼= n2/9.87 is nearly identical
to bk/n = n2/8 (see Table 1).

It is clear that among tree graphs, the path
graph has the largest bk/n and, consequently,
the worst synchronization properties, and the star
graph has the lowest bk/n and synchronization
threshold. Naturally, the complete graph providing
direct information flow between any two nodes has
the lowest bk/n for all graphs with n nodes. In gen-
eral, adding an edge to the connection graph G with
fixed n will always result in decreasing or constant
bk. The proof is trivial, adding an edge creates more
possible paths between the nodes and thus a clever
choice of the paths will lead to decreasing or con-
stant bk.
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The upper bound ε∗ > abk/n for the ring of 2K-
nearest neighbor nodes (cf. Table 1) is particularly
interesting in the context of the relation between
synchronization and graph topology. The bound is
ε∗ = (a/n) · (n/2K)3(1 + (65/4)(K/n)), therefore
ε∗ is in direct proportion to L = n/2K, the average
path length of the coupling graph for the ring of
2K-nearest neighbor coupled oscillators.

3.2. Scale-free networks

In any large-scale complex network, some nodes are
more highly connected than the others (for a review
on complex networks, see [Strogatz, 2001]). Empiri-
cal studies show that the connectivity distributions
in many real-world networks have the power law
form P (k) ∼ k−γ , where P (k) is the fraction of
nodes that have k links, and γ is a positive real num-
ber. The power laws have no characteristic scale,
therefore such networks were called “scale-free” by
Barabási and Albert [1999]. Barabási and Albert
[1999] proposed a way of creating a growing scale-
free graph by attaching new nodes at random to
previously existing nodes (starting from a network
of m0 nodes and adding m1 nodes at every time
step). The probability of attachment is proportional
to the number of links to the target node. The result
is that richly connected nodes get richer, leading to
the formation of hubs [see Fig. 2(b)].

Synchronization in scale-free networks has been
numerically studied, by calculating the eigenvalues
of the connectivity matrix [Wang & Chen, 2002;
Nishikawa et al., 2003]. In particular, it was shown
that the synchronizability of a scale-free dynamical
network is robust against random removal of nodes,
but it is fragile to specific removal of the most highly
connected nodes [Wang & Chen, 2002]. The eigen-
values for scale-free (random) matrices are hard to
find analytically. Typically, one randomly generates
a large number of scale-free networks and translates
the statistics of the connection matrices into the
statistics of the synchronization thresholds.

The CGS method promises to allow an ana-
lytical (probabilistic) treatment of synchrony in
scale-free networks. This amounts to finding a com-
binatorial algorithm which maps a set of chosen
paths in the growing network from one step to
another, starting from the network with m0 nodes.
However, this problem requires a separate care-
ful study and remains open. Here, we consider
another problem: Can the synchronization proper-
ties of a scale-free network be estimated by means

of networks with a regular connection graph with
the same number of nodes?

Generating a large number of scale-free graphs,
grown from a network with m0 = 2 by attaching
one node (m1 = 1) at each step, we notice that their
structures are, to some extent, close to a graph of a
few star-networks, connected from center to center.
Therefore, we can use bk/n = (3n/4−1), calculated
for a graph of two center-to-center connected stars
(cf. Example 2), as a rough estimate for the aver-
aged bk/n in the scale-free networks with m0 = 2
and m1 = 1. These specific scale-free graphs are
trees. Hence, the choice of paths between the nodes
is unique, and the computational complexity of cal-
culating bk is practically equal to determining the
second largest eigenvalue λ2. Thus, an optimal value
bk/n can be calculated numerically with moderate
effort and compared with bk/n = (3n/4 − 1).

In Fig. 3, we see the function bk/n calculated
numerically for the scale-free networks for differ-
ent n and averaged at each step over 20 realiza-
tions (when n is small and only a few different
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number of nodes

b k/n
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nd
 1

/|λ
2|

b
k
/n for the scale−free network

b
k
/n for 2 connected stars

1/|λ
2
| for the scale−free network

1/|λ
2
| for 2 connected stars

Fig. 3. Averaged bk/n calculated numerically for scale-
free networks for different n (red circles). Analytical curve
bk/n = (3n/4 − 1) for the network of two connected stars
(green curve). The two curves are close for n < 90. This
shows that synchronization properties of scale-free networks
are close to those of a regular network with the same number
of nodes and composed of several coupled stars. Numerically
calculated curves 1/|λ2| for the two networks give an addi-
tional support to this statement.
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networks can be generated, bk/n is calculated and
averaged over all possible networks). These values
bk are depicted by red circles. The curve bk/n =
(3n/4 − 1) for the network of two-connected starts
closely follows the numerical curve bk/n for the
scale-free networks in the region where n is not too
large (n < 90). This shows that the synchronization
properties of scale-free networks of intermediate size
are to a high degree of precision the same as the reg-
ular networks of connected starts. In additional sup-
port of this claim, we have applied the eigenvalue
value approach to synchronization in such scale-free
networks and two-connected stars and obtained the
qualitatively same result (see Fig. 3).

Note that a regular network composed of three
stars that are all connected from center to center
through a unique, additional node gives a better
approximation for the scale-free networks.

3.3. Role of the average path length

The semi-random graphs having small-world or
scale-free properties have a smaller average path
length, when compared to locally coupled networks.
This property is often associated with the hetero-
geneity in the scale-free distribution of connectivi-
ties (it is known that such heterogeneity tends to
reduce the average path length, see, e.g. [Nishikawa
et al., 2003]). Intuition says, the smaller the average
path length of a network, the more efficient is the
communication between oscillators, and therefore
the lower the synchronization threshold will be. As
we have shown in the Sec. 3.1, this is often true and
in specific cases can be made rigorous [Pogromsky
et al., 2001]. Globally coupled networks have a very
short average path length L = 1 and are easy to syn-
chronize. Whereas, the locally coupled systems with
L = n3/8 (for a ring of oscillators) are very resistant
to synchronization. Then the following question
arises: is the average path length always impor-
tant for synchronization, especially for complex net-
works? Nishikawa et al. [2003] have observed the
opposite to hold. Using the Master Stability Func-
tion method and numerically calculating the sec-
ond largest eigenvalue λ2, they have shown that
scale-free networks with a homogeneous distribu-
tion of connectivity were more synchronizable than
heterogeneous ones, even though the average path
length was larger. The authors have explained this
intriguing behavior by examining the load distribu-
tion on nodes. It is stated that increased concentra-
tion of load on center nodes, or hubs, results in loss

of synchronization. However, this plausible state-
ment is not always correct: the star-graph can grow
unbounded such that for large n the central node
(hub) becomes heavily loaded, but the synchroniza-
tion threshold remains the same (as λ2 = 1 for a
star graph).

A simple example can show that the aver-
age path length is not always important for syn-
chronization. Consider a complete graph with 1000
nodes. For this network, the synchronization thresh-
old ε∗ is very low: bk/n = 1/1000 for any edge
k and the average path length is short, L = 1.
Now add one node with only one edge K to this
graph. The average path length for this network,
L = 1+(2/n) ∼= 1, did not substantially change. At
the same time, bK/(n + 1) = 2 − (1/(n + 1)) ∼= 2
becomes close to bk for the star-graph (2 instead of
1/1000) such that addition of one node completely
changes synchronization behavior of the network.
This is a proof that the average path length is unim-
portant in this case, and what always matters for
synchronization is the weakest link. Therefore, like
in a famous TV game, we always have to find the
Weakest Link. In our study, this is the link hav-
ing the maximum traffic load on it. This edge is a
bottle neck for synchronization of the whole net-
work and requires the maximum coupling strength
ε∗ = maxk εk to synchronize all the oscillators of
the network (this edge is associated with the most
unstable transversal mode defined by λ2).

4. Conclusions

In this paper, we have proceeded with the applica-
tion of the CGS method to the study of global syn-
chronization in regular and complex networks. This
method is based on graph theoretical reasoning and
reveals a clear connection between synchronization
and graph theory. It gives upper bounds for global
synchronization thresholds in networks of mutually
coupled oscillators. The dependence of the bounds
on the graph topology and number of cells is to
a high degree of precision the same as the depen-
dence of the real limit of complete synchronization
that is determined by numerical simulation. Only
the multiplicative factor a that is mainly related to
the dynamics of the individual cells is higher in the
rigorous bounds of the CGS method with respect
to the factor obtained by numerical simulations.

Note that we can also use the eigenvalues of
the connectivity matrix for the Lyapunov function
approach. In this way we may obtain, in the case
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of constant connection matrices, a better bound
for the global synchronization threshold than with
the CGS method. However, this eigenvalue based
method may be difficult to apply for irregular
graphs, it gives a less direct relation to graph
theoretical quantities and in general, it fails to
provide an analytically derived bound for time-
dependent coupling coefficients. The CGS method is
directly applicable to networks of slightly nonidenti-
cal oscillators (up to 10−15% parameter mismatch.)
In this case, perfect synchronization cannot exist
anymore, but approximate synchronization is still
possible and therefore similar global stability condi-
tions of approximate synchronization can be derived
by means of the CGS method and the technique
developed by Belykh et al. [2003].

Applying both eigenvalue and CGS methods,
we have shown that synchronization in scale-free
networks can often be described by means of a reg-
ular network with the same number of nodes and
composed of several coupled stars. We have also dis-
cussed the role of the average path length in the
network synchronization and proved by a simple
argument that the average path length is not always
important. What is always important for efficient
synchrony is a balance between the average path
length and load distributions (the sum of the cho-
sen paths passing through each edge, resulting in
the concept of the weakest link).
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Appendix

In this appendix, we show how to calculate ana-
lytically an upper bound ε∗2 for global synchro-
nization in the network (1) of two x-coupled

Hindmarsh–Rose (HR) neuron models [Hindmarsh
& Rose, 1984].

The single model reads


ẋ = y + αx2 − x3 − z + I

ẏ = 1 − dx2 − y

ż = µ(r(x − c) − z),
(A.1)

where x represents the membrane potential, and y
and z are associated with fast and slow currents,
respectively. α, d, r, I, c, µ are parameters, and µ
is small.

The HR model displays chaotic dynamics in a
wide region of parameters. The typical parameters
for the chaotic bursting’s appearance are α = 3,
I = 3.281, d = 5, r = 4, c = −1.6 and µ = 0.002
[Huerta et al., 1997].

Consider two x-coupled HR models. The equa-
tions of motion are the following:


ẋ1 = y1 + αx2
1 − x3

1 − z1 + I + ε(x2 − x1)
ẏ1 = 1 − dx2

1 − y1

ż1 = µ(r(x1 − c) − z1)
ẋ2 = y2 + αx2

2 − x3
2 − z2 + I + ε(x1 − x2)

ẏ2 = 1 − dx2
2 − y2

ż2 = µ(r(x2 − c) − z2)

(A.2)

To test global stability of the synchronization
manifold D = {x1 = x2, y1 = y2; z1 = z2}, we have
to consider the difference equations and study their
stability.

Introducing the notation for the differences

X = x2 − x1, Y = y2 − y1, Z = z2 − z1

and using simple algebraic expressions

x3
2 − x3

1 =
(x2 − x1)((x2 − x1)2 + 3(x2 + x1)2)

4
,

x2
2 − x2

1 = (x2 − x1)(x2 + x1),

we obtain the system for the difference variables


Ẋ = Y +
(

αU − 3U2

4
− 2ε

)
X − X3

4
− Z

Ẏ = −dUX − Y

Ż = µ(rX − Z),

(A.3)

where U = x2 + x1.
The origin (X = 0, Y = 0, Z = 0) is an equi-

librium of system (A.3). Its stability amounts to the
stability of the synchronization manifold.

The proof that the origin can be globally stable
involves the construction of a Lyapunov function,
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a smooth, positive definite function that decreases
along trajectories of system (A.3).

Consider the Lyapunov function

W =
1
2
X2 +

γ

2
Y 2 +

1
2µr

Z2, (A.4)

where γ is a positive auxiliary parameter to be
defined.

Calculating the time derivative of W with
respect to system (A.3), we obtain

Ẇ = −(AX2
1 − BX1Y1 + γY 2

1 )− X4
1

4
− Z2

1

r
, (A.5)

where A = (3U2/4 − αU + 2ε) and B = (1− γdU).
The derivative Ẇ is negative along trajectories

if the quadratic form S = AX2 − BXY + γY 2 is
positive definite. This holds true if the following two
conditions are satisfied:

(i) A = 3U2/4−αU +2ε > 0. The roots of the equa-
tion A = 0 are: U1,2 = 2(α ± √

α2 − 6ε)/3. Hence,
the equation A = 0 has no solutions for

ε >
α2

6
.

Therefore, under this condition, A > 0. Note
that in this stability condition, we have man-
aged to get rid of the variable U, correspond-
ing to the x-coordinate of the attractor in the
regime of synchronous bursting. This gives the
conditions which explicitly depend on the system
parameters.

(ii) γA − B2/4 = (3 − γd2)U2 − 2(α − d)U +
8ε − 1/γ > 0. This is true under the conditions

ε >
(α − d)2

8(3 − γd2)
+

1
8γ

, γ <
3
d2

.

Collecting all the conditions, we obtain an
upper bound on the coupling strength sufficient
to achieve globally stable synchronization in sys-
tem (A.2)

ε∗2 = max
(

α2

6
,

(α − d)2

8(3 − γd2)
+

1
8γ

)
, γ <

3
d2

.

(A.6)

The auxiliary parameter γ is chosen such that γ <
3/d2. In a chaotic region, d = 5, therefore one can
choose γ = 0.1.

Coming from sufficient conditions, the bound
(A.6) gives an overestimate for the real synchroniza-
tion threshold: 2.25 (predicted) versus 0.5 (actual)
for the above mentioned parameters. However, it
guarantees that synchronization arises and remains
globally stable in a concrete network with increas-
ing coupling. This makes the use of the CGS method
possible and allows us to predict the synchroniza-
tion thresholds in the network (1)–(A.1) with an
arbitrary connection graph.

Using similar arguments based on the con-
struction of a Lyapunov function for the difference
variables, one can prove global stability of syn-
chronization for many other coupled limit-cycle or
chaotic systems.


