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The problem of growing complexity of the dynamics of the coupled phase oscillators as the number 

of oscillators in the chain increases is considered. The organization of the parameter space (parameter of 

the frequency detuning between the second and the first oscillators versus parameter of dissipative 

coupling) is discussed. The regions of complete synchronization, quasiperiodic regimes of different 

dimensions and chaos are identified. We discuss transformation of the domains of different dynamics as 

the number of oscillators grows. We use the method of charts of Lyapunov exponents and modification of 

the method of the chart of dynamical regimes to visualize two-frequency regimes of different type. Limits 

of applicability of the quasi-harmonic approximation and the features of the dynamics of the original 

system which are not described by the approximate phase equations are discussed for the case of three 

coupled oscillators.  
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Introduction 

In the theory of oscillations and nonlinear dynamics there is a fundamental problem concerning 

dynamics of coupled self-oscillators [1-9]. Coupled oscillators are common in radio-physics, electronics, 

biophysics, chemistry and etc. [1-18]. The system of coupled van der Pol oscillators is probably the 

simplest one [1-5]. Such models as Brusselator [10-11] and electronic oscillators [3,15-18] are also widely 

investigated.  

Note, that two coupled self-oscillators demonstrate a very complex picture of the possible effects and 

this complexity still continues to evolve as our understanding becomes deeper. There are classical effects 

such as mode-locking of the oscillators with different ratios of the frequencies and two-frequency quasi-

periodic regimes. In the case of dissipative coupling the “oscillator death” is also possible [1, 19]. This 

effect is observed experimentally in the system of coupled electronic [20], optical [21], chemical [22, 23], 

biological [24] and etc. oscillators. Quasi-harmonic approximation and phase equations approach was used 

in [25] to study the effects of the combined dissipative and reactive types of coupling, the case of coupled 

oscillators with nonidentical control parameters was considered in [26], while non-isochronism of the 

oscillators was taken into account in [27]. Some effects of the synchronization picture such as 

multistability, chaos and non-isochronism were discussed in [28-33]. In a series of the works such factors as 

nonlinear coupling [34, 35], “delay coupling” [36, 37], coupling “via a bath” [38], and etc. were considered 
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too. Bifurcations of different regimes of the coupled oscillators were investigated in detail in [3, 39]. 

Such a wide field of research is due to a variety of physical effects and mechanisms, as well as the 

fact that the dynamics of a system of coupled oscillators can be discussed at different levels. For example, 

we can study directly the dynamics of the original system, the quasi-harmonic approximation for the slow 

complex amplitude and finally the phase approximation equations. 

The problem of studding the three-frequency quasi-periodic dynamics (for example, two driven 

coupled oscillators or three coupled oscillators) is more complex and many-sided. In one of the most 

fundamental work [40] a system of two coupled rotation maps is discussed as a model of coupled 

oscillators. The frequency detuning parameters plane is analyzed and a variety of bifurcations observing in 

coupled maps is discussed. Experimental studies of three-frequency quasi-periodicity in coupled electronic 

oscillators were carried out in [41]. In [42] the authors investigated a model of two van der Pol oscillators 

with reactive coupling excited by an external periodic force. For weak coupling and small amplitude of 

external force the dominant three-frequency quasi-periodicity was observed, and in the case of large 

coupling chaotic behavior becomes possible and typical. Three coupled oscillators were studied 

theoretically in [43-45], and experimental study of electronic device was described. The authors showed 

that saddle-node bifurcation of stable and unstable two-frequency tori lead to the three-frequency quasi-

periodicity. In [46, 47] the authors investigated three-frequency quasi-periodicity and transition to chaos in 

the system of three coupled Lorentz system. Three coupled van der Pol oscillators with reactive type of 

coupling were investigated as a model describing the biological circadian rhythms [48]. In [12] the model 

of three coupled van der Pol oscillators is applied to the analysis of the problem of synchronous generation 

of thee coupled vircators (microwave electronics). The dynamics of ring of three phase oscillators was 

discussed in [49, 50], and networks of four or more coupled oscillators were discussed in [51, 52]. It 

should be noted, however, that the works, which report the observation of four-frequency quasiperiodicity, 

are rare. For example, in [53] the authors have presented results of experimental observation of four-

frequency oscillations in driven semiconductor system with pn-junctions. 

Recently new interesting aspects of the problem of synchronization of two oscillators by external 

force were revealed in [53-59]. In a series of papers [53-55] mechanisms of synchronization of resonant 

limit cycles on a torus were established and discussed and they appeared to be different from those of 

synchronization of the “general case” limit cycle. The corresponding experiment is described in [57]. In 

[56] phase equations describing the excitation of two coupled self-oscillators by external force were 

obtained and analyzed. The authors have shown that saddle-node bifurcation of stable and unstable 

invariant curves solutions of phase equations accounts for appearance of three-frequency oscillations and 

this corresponds to the similar bifurcation of 2D tori in original system. In [58] the authors analyze the 

same parameter plane using the method of the charts of Lyapunov exponents. This method revealed a large 

number of resonant two-frequency quasi-periodic regimes. The authors have also shown that 

synchronization picture is characterized by two qualitatively different situations. These situations correspond 

to a regime of mode-locking of two autonomous coupled oscillators and to a regime of their beats. 



Synchronization of three coupled oscillators by the external force was discussed in a similar way in [59]. 

In present work we develop the methods used in Refs. [56-59] for studying the forced coupled 

oscillators and apply them to the problem of the synchronization phenomena in the chain of coupled phase 

oscillators. The number of the oscillators in the chain will be increased gradually, so we will observe the 

quasi-periodic regimes of growing dimension. We will vary the frequency detuning between the second 

and the first oscillators and coupling parameter to study relative position of the regions of complete 

synchronization, quasi-periodic regimes and chaos in the parameter plane. Note, that in most works 

devoted to the chains of oscillators, authors have usually considered the case of a large number of the 

elements in the chain and specific (for example linear or random) law of variation of the eigen-frequencies 

of the oscillators in the chain [1, 61, 62]. In this case, the important aspects of the synchronization picture 

which occurs in the intermediate case (3-5 elements in the chain) are not revealed. 

Another issue which we will discuss by the example of a system of three coupled oscillators is what 

features of synchronization picture will remain valid, when we pass from the system of phase equations to 

the original system of coupled van der Pol oscillators. It turns out, that there are some nontrivial situations, 

when the phase approximation is not “working” even for small values of the control parameters. The 

interesting regime called “broad-band two-frequency synchronization” can be observed in the original 

system. This regime is due to the special position of the central oscillator sins it is a subject of a greater 

friction from neighbors. This regime causes a dramatic increase in the range of frequency detuning over 

which two-frequency synchronization occurs. In other words, two-frequency synchronization can in 

principle occur for arbitrarily large frequency differences at finite coupling strengths. Moreover, we will 

show that characteristic sequences of bifurcations, which are typical for phase model and are associated 

with the possibility of two- and three-frequency quasi-periodicity, may be destroyed. We will also present 

and discuss the results for the case of the large values of the control parameters as well as for the case of 

non-identical oscillators. 

 

Part 1. Phase dynamics of the three coupled self-oscillators. 

1.1. Phase equations. 

Let us consider a system of three dissipatively coupled van der Pol oscillators (Fig.1):  
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Here  is an excitation parameter in each independent oscillator; 1  and 2  are frequencies detuning 

between the second and the first oscillators and the third and the first oscillators, respectively;   is the 

coupling coefficient. The frequency of the first oscillator is assumed to be normalized by one. 

In the case when all parameters in system (1) are small, it may be analyzed in terms of complex 

amplitudes (quasi-harmonic approximation) [1-3, 8, 9] and we have obtainer the next “truncated equation”  
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Here )(ta , )(tb  and )(tс  are the complex amplitudes of the oscillators which are varying slowly in 

comparison with the basic oscillations with the unit frequency. The parameter   is eliminated in these 

equations via a change of the variables and parameters. 

Following the Refs. [1-3], we introduce real amplitudes R, r, v and phases 3,2,1  as 1Re



i

a , 

2


i
reb , 3

i
vec  and assume that the motion takes place close to the unperturbed limit cycles of the 

oscillators, i.e. 1 vrR . Then we obtain the following phase equations: 
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Let us introduce the relative phases of the oscillators  

21  ,         32  .                                                  (4) 

Then we rewrite the system (3) in the next form 
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The equations (5) are the phase equations (phase approximation) of the system (1), that we wanted to 

obtain. 

 

1.2. Complete synchronization of the three oscillators and its destruction. 

Complete synchronization is the simple regime in the system (5). It is the regime when the exact 

phase locking of all oscillators takes place. Phase portrait plotted on the ),(   plane for this case is 

presented in Fig.2а. One can see that the system (5) has four equilibrium points. They are stable and 

unstable nodes and two saddles. Stable node corresponds to the complete synchronization.  

Let us find bifurcations of the equilibrium points of the system (5). For this aim we use the next 

method. (It is easily generalized to a larger number of oscillators).  

The condition of the exact phase locking of all oscillators is 321   . Then 0  and 0 . In 

this case the equations (5) may be solved for the sine of phases: 
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If 1sinsin   then we obtain  
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We fix one of the frequency detuning, for example 2 , and consider organization of the parameter 

plane ( 1 ,  ). The bifurcation lines given by the conditions (7) and (8) are represented in Fig.3. They 

define two classical synchronization tongues with the top at the points  

21      and    .2 21                                                   (9) 

These points are denoted by arrows in Fig.3. The intersection of these tongues gives the region of complete 

synchronization P. There are four equilibrium points (one stable and three unstable points) of the system 

(5) in the region P (Fig.2а). The stable equilibrium corresponded to the regime then all three oscillators are 

phase locked.  

When we go outside the region P and intersect the left border indicated as SNP1, four equilibrium 

points merge in pairs. The phase portrait for this case is shown in Fig.2b. After this equilibrium points 

disappear and one can see stable and unstable invariant curves on the ),(   plane (Fig.2c). So, the regime 

of the complete synchronization is destroyed with an appearance of the two-frequency quasi-periodic 

oscillations. One can see in Fig.2c that the stable invariant curve corresponds to the oscillations of the 

phase  near the equilibrium state. Because  is the relative phase of the first and the second oscillators, it 

means that the first and the second oscillators are partially phase locked. If we intersect the right border of 

the region P, equilibrium points merge in pairs but in accordance with another rule (Fig.2d). As a result, 

the complete synchronization also destroys. In this case the system (5) demonstrates the two-frequency 

quasi-periodic regime when the relative phase  oscillates (Fig.2e). It is a regime of the partially phase 

locking of the second and the third oscillators. 

It is easy to see that the destruction of the complete synchronization corresponds to the special type 

of the bifurcation, when there are two saddle-node bifurcations of the equilibrium points at the same time. 

Let us explain the mechanism of the observed behavior. One can see from the equations (6), that its 

solutions appear in pairs. The phases 1  and 2  are the solutions of the first equation in (6). And the 

phases 1  and 2  are the solutions for the second equation in (6). So there are four equilibrium points: 

( 1 , 1 ), ( 1 , 2 ), ( 2 , 1 ), ( 2 , 2 ). These points are placed in the vertices of the rectangle on the phase 

plane. And theirs stable and unstable manifolds organize closed heteroclinic contour (Fig.2а). Let us vary 

one of the combinations of the parameters in (6), for example 
3

2 21 
. Then, we obtain, that while 1  

and 2  are constant, 1  and 2  are moving close to each other. (This is shown by arrows in Fig.2b). If the 

condition (6) is satisfied, the phases 1  and 2  are merged. After this bifurcation there are two manifolds, 

from which stable and unstable invariant curves arise.  



If we will vary another combination in (6), the solutions 1  and 2  will merge. As a result, another 

pair of the manifolds occurs (Fig.2d). This situation takes place when we are moving through the right 

border (SNP2 ) of the region P.  

The lines SNP1 and SNP2 of the saddle-node bifurcations are finished in the common point  

,
2

2c   
2

2 c .                                                        (10) 

We can find this point if we combine the conditions (7) and (8).  

In work [13] the same point is called as saddle node fan. So we indicated this point as SNF in Fig.3. 

SNF point corresponds to the co-dimension-2 bifurcation. All four equilibrium points are moving towards 

the one point and disappear there. It means that the region of the complete synchronization has a threshold 

value of the coupling parameter. It was not observed in the case of two coupled oscillators.  

One can see also the saddle-node bifurcation of the invariant curves if we will vary the frequency 

detuning 1 . In such case the stable and unstable invariant curves are moving towards each other, merge 

and disappear. Two-frequency quasi-periodic regime destroys and the three-frequency quasi-periodic 

regime arises. Fig.2f shows the flow of phase trajectories that corresponds to such three-frequency quasi-

periodic regime. 

 

1.3. Different regimes of the three coupled oscillators. 

In the previous section we have described the simplest regimes that are observed in the system of 

three coupled oscillators. Now, let us analyze the parameter plane of the system (5) in more detail using the 

numerical methods. Following Ref.[33] we use the method of the construction of charts of the Lyapunov 

exponents. We calculate all Lyapunov exponents 21,   of the system (5) at each grid point of the 

parameter plane ),( 1  . Then we color the points on the plane in accordance with values of the Lyapunov 

exponents to visualize the domains of the corresponding regimes: 

a) P is the region of the stable equilibrium point (complete phase locking). The Lyapunov exponents 

are 0,0 21  , 

b) 2T  is the region of the two-frequency quasi-periodic regime. The Lyapunov exponents are 

0,0 21  , 

c) 3T  is the region of the three-frequency quasi-periodic regime. The Lyapunov exponents are 

0,0 21  . 

Note that the two-frequency quasi-periodic regime 2T  corresponds to an attractor in the form of the 

two-frequency torus in the terms of the original system (1). Accordingly, the three-frequency torus 

corresponds to the three-frequency quasi-periodic regime 3T .  

The chart of the Lyapunov exponents plotted using the method which was mentioned above is 

presented in Fig.4. Firstly, note that the region P of the complete phase locking of all oscillators 



corresponds to the results of the analytical investigation. The region of the three-frequency quasi-periodic 

regimes occupies the lower part of the chart. The domains of the two-frequency quasi-periodic regimes 

look like the synchronization tongues. The tops of these tongues lie on the axis 1.  

Different types of the resonant two-frequency regimes correspond to the different tongues. They 

admit a simple classification. The invariant curves on the “phase square” (  20 ,  20 ) are 

attractors of the system (5) (Fig.2). These curves can be classified using the factor w=p:q. Here p and q are 

the numbers of crossings of the invariant curve with the sides of the “phase square” [34]. At the same time 

we must take into account only essential intersections. If the trajectory goes through the upper boundary 

outside the “phase square” and enters inside it through the lower boundary, then p is increased by one. 

Otherwise, p is decreased by one. The number q is calculated by similar way. 

Because the phase space is 2π-periodic with respect to the variables  and , the phase dynamic may 

be observed on the torus [34] (see Fig.5). In this case the two-frequency quasi-periodic regimes correspond 

to the closed attracting orbits on the surface of the torus (Fig.5а). The three-frequency quasi-periodic 

regimes correspond to a trajectory which covers the torus densely (Fig.5b). Factor w=p:q is a winding 

number in this case. It is a rational number for the two-frequency regimes and an irrational number for the 

three-frequency regimes.  

For the more detail description and classification of the observed regimes we add the winding 

number chart of the two-frequency regimes to the chart of the Lyapuniv exponents [35]. For this we 

compute values of the numbers p and q in each point on the parameter plane. Then we calculate the 

winding number w=p:q. Thereafter, we color point on the parameter plane in different colors in accordance 

with the value of number w=p:q. 

Fig.6 shows the winding number chart plotted for the more interesting fragment of the parameter 

plane in the neighborhood of the point SNF. The winding numbers for the main two-frequency regimes are 

indicated in Fig.6. The light grey tone designates the three-frequency regimes, which are diagnosed as non-

periodic regimes.  

The largest tongues of the resonant two-frequency regimes have winding numbers w=0:1 and w=1:0 

(Figs. 5 and 6). These tongues correspond to the regimes of the phase locking between the first and the 

second oscillators (Fig.2c) and between the second and the third oscillators (Fig.2e). One can see also less 

wide tongues with the winding numbers w=1:2 and w=2:1. In this case phases are infinitely increasing. 

As one can conclude from Fig.6а the SNF point is an important example of the codimention-2 

bifurcation in the system with the three-frequency quasi-periodicity. The regimes of the complete 

synchronization, partial locking between the pairs of oscillators (first-second and second-third) and the 

three-frequency quasi-periodicity are observed near this point. In turn, there is a set of regions of the two-

frequency regimes inside the region of the three-frequency quasi-periodicity. The widest regions 

correspond to the winding numbers 1:2 and 2:1, 1:3 and 3:1 etc. (Fig.6b). All these regions have the tops at 

SNF point. And the borders of all regions are the lines of saddle-node bifurcation for corresponding 



invariant curves.  

An existence of these SNF points is an important feature of the problem of three-frequency quasi-

periodicity. The similar points are discussed in the work [13] for the case of coupled rotation maps (see 

Fig.4.21 in [13]). The similar points are observed also in the works [31-33] for the problem of the forced 

synchronization of the two coupled phase oscillators.  

 

Part 2.  Dynamic of the three coupled van der Pol oscillators. 

2.1. The case of the small value of the control parameters. 

In the part 1 we have discussed the dynamics of the system (1) using the phase approximation. Now, 

let us consider the initial system (1). In this case, the dynamics of the system depends on the value of the 

parameter λ. Let us consider the case of small values of the parameter . Then we may compare results 

obtained for the phase model (5) with results obtained for the system (1). The chart of the Lyapunov 

exponents for the system (1) for 1.0  and 05.02   is presented in Fig.7a. The method of plotting this 

chart and the color palette are the same as for the phase model.  

One can see that the domain of the complete synchronization has the threshold on the coupling 

parameter. The enlarged fragment of the chart is shown in Fig. 7a. It is similar to the case of the phase 

model (5). At the same time, there are some differences. Let us discuss these differences in more detail.  

At first, there is a region of “oscillator death” (OD). This is a region where the system (1) has no 

oscillations because of the large dissipative coupling [1, 19]. This regime is observed when   (Fig.7a). 

Note, that the line   is indicated by an arrow in the Fig.7.  

The wide band of the two-frequency quasi-periodicity indicated as PBS in the parameter range 

 2/  is another new feature (Fig.7a). This regime is possible for arbitrarily large frequency 

detuning 1 . The possibility of an existence of wide band of synchronization regime is known for two 

dissipatively coupled oscillators [62, 63] and is called broadband synchronization. However, it was 

observed in the case of unequal control parameters ( 21  ). In this case in the region of 21   only 

the first oscillator is significantly suppressed due to the dissipative coupling. As a result, the second 

oscillator is dominant. So the system of two coupled oscillators demonstrates a regime of the broadband 

synchronization.  

An appearance of the similar features in our case seems to be paradoxical, because all oscillators are 

identical in control parameters. The reason is that the coupling perturbs differently oscillators in the chain 

(Fig. 1) even if the control parameters are identical. A qualitative explanation for this effect is presented 

below.  

Let us "turn off" successively in each equation of the system (1) the action from the two other 

oscillators. Physically, it may be realized if we introduce very large detuning of the frequencies of the 

oscillators. In this case, we obtain equations for single oscillators with smaller (due to the coupling) 

effective values of the control parameter 
* . So we have: 



 for the first and the third oscillators control parameter is )(*  , 

 for the second oscillator control parameter is )2(*  . 

Thus, the condition that the first and the third oscillators are not damped by the coupling is  . 

For the second oscillator, this condition is  2 . The specific role of the second oscillator can be easily 

understood physically. Indeed, the first and the third oscillators are affected by only the one neighbor. The 

second oscillator is affected by the two neighbors (Fig. 1). That is why the second oscillator is more 

damped than the first and the third oscillators. This fact is connected with the geometry of the chain. For 

example, this feature is not observed for the oscillators coupled in the ring. 

Thus, in the band  2/  the second oscillator is suppressed and easily locked by one of its 

neighbors. As result, we observe a regime that can be called a partial broadband synchronization (PBS).  

The presence of "non-identity" associated with the unequal position of the oscillators in the chain 

may result in that the condition of applicability of the phase approximation is not satisfied even if the 

control parameter is small. For example, in Fig.7b we present the chart of the Lyapunov exponents for 

2.0  and 15.02  . For this value of detuning 2  the threshold value of the coupling corresponding to 

the complete synchronization is approximately equal to 2/ . It is a value when the first oscillator is 

fully suppressed by the coupling. Accordingly, the phase approximation (which is based on the 

approximation of the unperturbed orbit) is no longer applicable. As a consequence, the characteristic shape 

of the "sharp bend" corresponding to the point SNF is not observed. The lower boundary of the 

synchronization region looks like a smooth line. 

In Fig.8a,b we present the bifurcation lines corresponding to Fig.7. Enlarged fragments of a region 

near the threshold of the complete synchronization are shown in the bottom row of the Fig.8 The enlarged 

fragment in Fig.8a demonstrates that this region has more complicated structure than the same region in 

the phase model. The SNF point is destroyed. Now the saddle-node bifurcations of the stable and unstable 

regimes do not occur simultaneously. They have their own bifurcation lines. Threshold of the complete 

synchronization has the form of a smooth line, not a tip. The cusp point of the unstable regimes lies in the 

vicinity of destroyed SNF point. Three unstable limit cycles merge together in this cusp point. In Fig.8b 

one can see that saddle-node bifurcation curve with an increasing of the amplitude of the force is replaced 

by Neimark-Sacker bifurcation curve. The Neimark-Sacker bifurcation curve ends at the point of the 

resonance 1:1. This is similar to the case of the classical synchronization [4]. The boundary of the region of 

the complete synchronization becomes smoother in Fig.8b. In addition, the cusp point of unstable cycles is 

located already so far away that we can not longer talk about the picture, which is characteristic for the 

SNF point. 

 

2.2. The case of the large values of the control parameters. 

The case when the control parameter value is small was discussed above. Now let us consider the 

case when it is comparable with the unity. So the phase approximation is obviously inefficient. In addition, 



we consider for generality the situation when the control parameters of the oscillators are not equal:  
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                               (11) 

The chart of the Lyapunov exponents and typical phase portraits of the system (11) are given in 

Fig.9. They are plotted for 3.11  , 9.12  , 8.13  , 5.12  . In this case, there is no leading oscillator 

inside the main tongue of the complete synchronization. Oscillators have orbits with approximately equal 

size (Fig.9a). However, the phase portraits are different from circles. It may be associated with the 

deviation from the quasi-harmonic approximation. 

With the increasing of the coupling parameter  all oscillators are suppressed one by one. It is seen 

also in the organization of the parameter plane. In our case parameters obey 312 2/  . The central, 

i.e. the second, oscillator is damped firstly. Then the first oscillator is damped. And only then the third 

oscillator is damped. Consequently there are two types of broadband synchronization in Fig.9: 

 complete broadband synchronization СBS at 31  , 

 partial broadband synchronization PBS at 12 2/  .  

The corresponding boundary values of coupling parameter are indicated by arrows in Fig.9.  

In the first case, all three oscillators are phase locked. A typical regime of broadband synchronization 

occurs due to the dominance of the least excited third oscillator. Other oscillators are suppressed by the 

coupling. Accordingly, the sizes of the limit cycles of the first and the second oscillators are approximately 

equal, but much less than the size of the limit cycle of the third oscillator (Fig.9b). (See the scales on the 

axes in the phase portraits.)  

In turn, in the band 12 2/   only the second oscillator is suppressed by the coupling. In this 

case, it is easily phase locked by the first oscillator, which is more excited. As a result, the regime of the 

partial broadband synchronization occurs. It corresponds to the two-frequency quasi-periodicity.  

The most significant changes occur in the region of the three-frequency quasi-periodicity. New 

tongues of the two-frequency regimes appear inside it. Phase portraits of the oscillators for the two most 

typical tongues are presented in Fig.9c,d. In this case, the damping effect is negligible for all three 

oscillators. Now the central oscillator is dominant, because it has the largest value of the control parameter 

132  . At the same time, inside each of these two tongues there is an oscillator, which is mostly 

quasi-periodically perturbed - it is the third oscillator in Fig.9c and the first oscillator in Fig.9d. It 

corresponds to the fact that the first and the second oscillators are phase locked in the first case, and the 

second and the third oscillators are phase locked in the second case. 

This fact may be explained by introducing the rotation numbers of the oscillators relative to each 

other. For this we choose the Poincare section for each oscillator. The conditions for the Poincare sections 

are 0x , 0y  and 0z  for the first, the second and the third oscillators, correspondingly. We calculate 



the number of returnings of the phase trajectory in each section zyx NNN ,,  for a long period of time. 

Then we define the rotation number of the first oscillator in relation to the second one as 
y

x

N

N
 21  and 

the rotation number of the second oscillator in relation to the third one as 
z

y

N

N
 32 . (These rotation 

numbers are not the same as the factor w introduced in the section 1.3. The quantity w characterizes the 

relative positions of the three main spectral components in a small neighborhood of the central frequency 

of the oscillators, i.e. 0  in our case in Fig.9.)  

Fig.10 shows the rotation numbers 21  and 32  as the function of the frequency detuning 
1

  for a 

fixed level of the coupling. This level of the coupling is indicated by the white dotted line in Fig.9. One 

can see the typical plateaus at 3:121    and .1:332    Thus, in this case, we observe multiple 

synchronization of the oscillators with a ratio of 1:3 of the main spectral components. Although the two-

frequency torus is a phase portrait of the system, these regimes have no analogue in the phase 

approximation. It can be assumed that the boundaries of the corresponded tongues of the two-frequency 

regimes in Fig.9 are the lines of the saddle-node bifurcations. (At least in the case of small values of the 

coupling.)  

 

Part 3. Phase dynamics of the four phase oscillators. 

3.1. Phase equations and a condition of the complete synchronization. 

Let us increase the number of the oscillators and consider the chain of the four dissipatively coupled 

van der Pol oscillators: 
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                          (12) 

Following the section 1.1, we obtain the equations for the phases of oscillators: 
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Here we use the relative phases of the oscillators: 

21  ,  32  .  43  .                                               (14) 

Let us find the conditions for the complete synchronization of the system (13), for which we set 

0  . Then we obtain the following equations from (13): 
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                                                         (15) 

There are eight equilibrium points located at the corners of the box in the phase space ),,(  , 

provided all equations in (15) have solutions. Two of the box faces can move closer with the variation of 

any combinations of the parameters in the right side of (15). As a result, all eight equilibrium points merge 

in pair and simultaneously disappear as soon as one of the values of the sine function of the phase variables 

is becomes equal to 1 . The picture is similar to the phase system (5), but it is embedded in the three-

dimensional phase space. Assuming each sine of the phase variables in (13) equal to 1 , we obtain the 

following conditions: 

4

321 
 ,                                                            (16) 

,
2

321 
                                                             (17) 

.
4

3 321 
                                                           (18) 

The relations (16-18) determine the three tongues in the parameter plane ),( 1  . The tops of these 

tongues are at 

.3

,

,
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321

321




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                                                                  (19) 

Now we shall discuss the saddle-node bifurcations of equilibrium points, which are responsible for 

the destruction of the complete synchronization. As in the case of three coupled oscillators, we use the 

parameter plane ),( 1   and the relations (16-18). The conditions (16) and (18) define the four lines in this 

plane (Fig.11). The center of two symmetrical tongues in Fig.11a corresponds to the point with coordinates 

321   and 
2

3 . As in the case of three coupled oscillators, both tongues do not correspond 

to the equilibrium regimes at small coupling. However, now even the overlapping of these two tongues, 

which is shown in Fig.11a by the light gray color, may not correspond to the stable equilibrium regimes. It 

depends on the position of the third tongue (17). 

In order to classify the regimes of the system (13) we follow the relative position of the tongue (17) 

and the region shown in the light gray color in Fig.11. The ordinates of their tops are 321   and 

321  , respectively. Let us consider the change of the relative position of these regions with the 

decreasing of the frequency mismatch 2 . Fig.11a shows the configuration occurring when the condition 



2

3
2


  is valid. The corresponding region of the complete synchronization of all four oscillators is 

shown by the dark gray color (red color on-line). The regime of complete synchronization has in this case 

the threshold value in the coupling parameter. We find it by combining the relations (16) and (18): 

3

23 
c ,    

3

23 
 c .                                                  (20) 

The tongues in Fig.11a move closer one by one with a decreasing of the frequency detuning 2 . The 

point of intersection of tongues boundaries moves to another branch when 
2

3
2


 . And the situation 

shown in Fig.11b takes place. The form of the region of the complete synchronization of the four coupled 

oscillators changes in this case. And the threshold value of coupling depends no longer on 2 . It 

corresponds to the value  

2

3c ,     23 c .                                                       (21) 

Then the situation is repeated symmetrically. Thus, there are two possible types of the region of the 

complete synchronization of four coupled oscillators. They are shown in Fig.11a and b. 

 

3.2. Different regimes of the system of four coupled oscillators. 

Now let us discuss the organization of the parameter space of four coupled oscillators in detail. 

Fig.12a shows a chart of the Lyapunov exponents of the system (13) on the parameter plane ),( 1  . The 

system (13) is characterized already by the three Lyapunov exponents. Hence, the regimes of the four-

frequency quasi-periodicity and chaos are now possible. Areas of different regimes in Fig.12a are marked 

as follows: 

a) P is the region of the stable equilibrium point (i.e. the complete phase locking). The Lyapunov 

exponents are 0,0,0 321  , 

b) 2T  is the region of the two-frequency quasi-periodic regime. The Lyapunov exponents are 

0,0,0 321  , 

c) 3T  is the region of the three-frequency quasi-periodic regime. The Lyapunov exponents are 

0,0,0 321  , 

d) 4T  is the region of the four-frequency quasi-periodic regime. The Lyapunov exponents are 

0,0,0 321  , 

e) C is the region of chaos. The Lyapunov exponents are 0,0,0 321  . 

The values of other parameters are chosen as 1=0.3 and 2=1. In this case we have the most 

complex configuration of a region of the complete synchronization (Fig.11b).  

In Fig.12a one can see the region of the complete synchronization P. It corresponds to the results of 



an analytical review presented in Fig.11b. The region of the complete synchronization adjoins the domains 

of the two-frequency regimes, except the points 1, 2, and 3 indicated by arrows. In these points the region 

of the complete synchronization has a "point" contacting with the region of the three-frequency quasi-

periodicity.  

The tops of the tongues of two-frequency regimes on the axis of frequency detuning parameter are 

destroyed. It is unlike the case of three coupled oscillators (compare Fig.12 and Fig.4). The region of the 

two-frequency quasi-periodicity is surrounded by the region of the three-frequency regimes located mostly 

above the line 3.0 . The four-frequency quasi-periodicity is dominant at lower values of coupling. 

However, there are two tongues of the three-frequency regimes at very small values of coupling. The tops 

of these tongues are located on the frequency axis. There are also the regions of chaos for the system of 

four coupled oscillators. But these regions are very small and are located on the border of the three- and 

four-frequency regimes.  

The chart of the winding numbers is added to the chart of the Lyapunov exponents (Fig.12b). The 

regions of different two-frequency resonant regimes are shown on this chart by different colors. The two-

frequency regimes are indicated by the winding numbers rqpw :: . Here p, q and r correspond to the 

numbers of significant intersections of the invariant curve with the sides of the phase cube in the space of 

the relative phases of oscillators ),,(  .  

 

3.3. Co-dimension-2 and -3 situations. 

There are three points of co-dimension-2 marked by the numbers 1, 2 and 3 on the Fig.12a. The pairs 

of different lines of the saddle-node bifurcations of equilibrium points are converged at these points. The 

enlarged fragments of Fig.12b in the vicinity of the points 1 and 2 are shown in Fig.13. 

Firstly, we consider a neighborhood of the point marked in Fig.12a by the number 1 (Fig.13a). Its 

structure is similar to the structure of a neighborhood of SNF point. Indeed, all winding numbers have the 

form rqw ::0 . It means that the first and the second oscillators are partially locking. (Their relative 

phase oscillates with the limited amplitude and does not increase. Zero index in the winding number 

corresponds to this fact.) The system (13) is clustered as shown in Fig.14a. And the remaining two indices 

rq :  are similar to the winding number in the case of three coupled oscillators (see Fig.6). Thus, the 

dynamics of the system (13) is similar to the case of three coupled oscillators. And the sub-system consists 

from the first and the second partially locked oscillators.  

It is easy to see from Fig.13b that a similar situation occurs in the neighborhood of the second SNF 

point. The second and the third oscillators are partially locked in this case. It is shown schematically in 

Fig.14b. In this case the winding numbers are in the form of rpw :0: .  

A similar situation occurs also in the neighborhood of the third point of intersection of the saddle-

node bifurcations. One can see from Fig.12b that the winding numbers in this case are in the form 

0:: qpw  . It corresponds to the situation when the third and the fourth oscillators are partially locked 



(Fig.14c). However, the form of the regions is not typical for the SNF point. Indeed, the presence of the 

regions with the winding numbers 0:1: qp  and 1:0: qp  is characteristic to this point in its small 

neighborhood. However, these regions are separated from the point 3 in Fig.12c. Correspondingly, the 

location of the regions of the resonant regimes with the winding numbers 2:1:0, 3:2:0, 4:3:0, etc. looks 

differently.
1
  

Let us return to Fig.11. It is easy to see that via tuning the frequency mismatch 
2

  we can achieve a 

situation when two "corners" on Fig.11b merge. Thus, a new situation of co-dimension-3 takes place. In 

this case all three lines (16-18) are intersecting at one point. We can easily obtain the condition of 

realization of this co-dimension-3 bifurcation by the combining the relevant equations. It is 
2

3
2


 .  

The situation before the threshold of this bifurcation corresponds to the two points of SNF type 

(Fig.13a). Thus, this bifurcation can be interpreted as a mergence of two such points.  

Fig.15 shows the chart of the winding numbers at the point of such bifurcation. One can see that the 

SNF type points are destroyed. Now the regions of different types converge at one point. These regions 

correspond to a partial locking of the first and the second oscillators ( rqw ::0 ) and also to a partial 

locking of the second and the third oscillators ( rpw :0: ). However, these two groups are clearly 

separated by the tongue with the winding number 1:0:0w . This tongue corresponds to the partial 

locking of the three oscillators. They are the first, the second and the third oscillators.  

Beyond the threshold of bifurcation when 2/32  , the set of tongues with the winding numbers 

0:: qpw   occurs between the regions 0:1:0  and 0:0:1 . These tongues correspond to a partial locking 

of the third and the fourth oscillators. Thus, all the three variants of clustering are presented in the vicinity 

of the codimension-3 point, each type of clustering corresponds to the phase locking of one of the pairs of 

oscillators.  

 

Part 4. On the road towards multidimensional tori. 

The discussed above method of the analysis of the phase equations can be extended to the case of the 

larger number of oscillators. For example, for the five coupled oscillators we have the following equations 

instead of equations: 
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1
 Note that the presented discussion is based on visual estimates of the form of the charts obtained numerically. The detailed 

bifurcation analysis of the two-frequency quasi-periodic regimes is necessary for a more strict justification and identifying 

picture details.  



Let us set 0   for the equilibrium points searching. We use the algorithm described 

above. We express sin  through sin  in the first equation and substitute it into the second equation. Then 

we express sin  through sin  in the second equation, and so on. As a result, we obtain the following 

expressions for the sine of the four phase variables: 
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                                         (23) 

This system has 16 equilibrium points at the vertices of a four-dimensional parallelepiped in the four-

dimensional phase space ),,,(   if all the equations (23) have solutions. Similarly to the case of three 

or four coupled oscillators, the three-dimensional faces of this parallelepiped may move close one to 

another with the variation of the parameter combination in (23). As a result, the saddle-node bifurcation 

takes place and all 16 points are merging in pairs and simultaneously disappear.  

The condition 1sinsinsinsin   leads to the following relations: 
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                                          (24) 

Now there are four tongues on the plane ),( 1  . Two tongues have the same smaller slope 1/5. And 

two tongues have greater slopes (2/5 and 3/5). It is easy to show that the region of intersection of these 

tongues may have no more than four "corners". These “corners” correspond to the co-dimension-2 points. 

Fig.16 shows a qualitative picture that illustrates the corresponding configuration.  

The presence of this configuration can be explained as follows. Organization of the parameter plane 

obtained by means of the first and the fourth lines from (24) and supplemented by the third line from (24) 

is similar to the case of three coupled oscillators. It follows from (24) that this region has three "corners", 

when the condition 
2

4
3


  is satisfied. In this case the region of complete synchronization has a 

threshold in the coupling parameter. It is determined by the relations  

2

4c ,      234
2

3
c .                                                (25) 

This picture must be supplemented by two lines which define the second tongue (24) (Fig.16). And if 



this tongue includes the point (25), this point determines the threshold of a region of the complete 

synchronization.  

As an illustration, in Fig.17 we present a Lyapunov exponents chart for the case of five oscillators. In 

this case, a region of five-frequency quasiperiodicity 
5

T  arises, which is shown in Figure 17 in green. For 

large values of the frequency parameter 1  (the right edge of the Fig.17a) the cascade of saddle-node 

bifurcations of quasi-periodic regimes with successively increasing dimension can be observed. Enlarged 

fragment of the chart in Fig. 17b illustrates the emergence of chaos at intermediate values of the coupling 

parameter. You can also see a system of fan-shaped two-frequency resonant tongues. 

It is easy to see that in addition to the codimension-2 and -3 situations, described in the previous 

paragraph, we can achieve a situation of higher co-dimension-4 by varying the required number of 

parameters. In this case three points of co-dimension-2 are merging. It takes place under the following 

condition  
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And the coordinates of corresponding point on the plane ),( 1   are 
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The discussed results may be generalized to any number of the coupled oscillators. If we have (N +1) 

coupled oscillators, then there are N tongues on the parameter plane of frequency detuning and coupling. 

The region of the complete synchronization is obtained as the overlap of all these tongues. One can see 

here an analogy with the well-known interpretation of the synchronization of chaos. It follows from this 

interpretation that synchronization of chaos is due to an intersection of the synchronization tongues of the 

unstable periodic orbits built into the chaotic attractor [1]. The difference is that in the case of multi-

frequency synchronization the number of tongues is finite and less than the number of coupled oscillators 

by one. And there are certain rules of calculating the tops of the tongues and their boundaries.  

The boundary of the region of the complete synchronization is formed by lines of the saddle-node 

bifurcations. All N2  equilibrium points are merging in pairs at these lines. This boundary has "corners". 

They are co-dimension-2 points. The curves of the saddle-node bifurcations of equilibrium states of 

different types are meeting in these points. At the same time the regime when all oscillators are not phase 

locked is observed in the regions of small coupling.  

 

Conclusion. 

The ensembles of a small number (three to five) of oscillators demonstrate complex behavior, 

characterized by the coexistence of domains of full synchronization, quasiperiodicity of different 

dimension, and chaos. We present here a two-parameter picture corresponding to the plane of the 

frequency detuning parameter and the coupling parameter. To do this, Lyapunov’s exponents charts, were 

constructed, visualizing the domains of quasi-periodicity of different dimensions, illustrating their relative 



positions. This method is effective for the analysis of such systems and accessible for modern computers, 

because the bifurcation analysis of quasi-periodic regime is too complex. 

In the system of three coupled phase oscillators the region of the complete synchronization has a 

threshold value of coupling parameter. This threshold is associated with a co-dimension-2 point. The 

regions of complete synchronization, of pairwise partial synchronization and of the three-frequency quasi-

periodicity are merging at this point. The region of the three-frequency quasi-periodicity involves the 

system of the tongues of the two-frequency resonant regimes. These regimes can be classified using the 

rational winding numbers. In the phase space there is a heteroclinic contour in the vicinity of this point. Its 

destruction is responsible for the occurring of two-frequency quasi-periodicity. The contour shrinks to a 

point directly at the co-dimension-2 point (SNF). These points are typical and important for the phase 

systems demonstrating three-frequency quasi-periodicity.  

Additional features are revealing when we return from phase equations to the original system of 

differential equations. In the range of values 
2

 the second oscillator in the chain is suppressed by 

the coupling. As result, we observe a regime that can be called two-frequency broadband synchronization. 

In this case, the second oscillator is partially locked by its neighbors. And the phase locking is possible for 

an arbitrarily large frequency detuning. The possibility of this effect, which was established earlier for non-

identical systems, is associated with the selected position of the central oscillator. It is subjected to twofold 

friction from its two neighbors. 

Mutual arrangement of bifurcation curves responsible for the destruction of complete synchronization 

changes significantly compared to the phase equation case. SNP lines typical for the phase equations are 

splitting into two lines now. The first line corresponds to the saddle-node bifurcation of stable cycle. The 

second line corresponds to the saddle-node bifurcation of unstable saddle cycles. The co-dimension-2 

bifurcation point typical for phase equations is destroyed too. Two different SNP lines are converging to 

this point. The cusp point arises at the borderline of existence of unstable cycles in the corresponding 

region.  

In the initial system of three coupled van der Pol oscillators new tongues of the two-frequency tori 

arise in the region of the three-frequency quasi-periodicity for the large values of control parameters. They 

correspond to the phase locking of the pairs of the oscillators with following ratios of the eigen- 

frequencies: 1:3, 1:5, etc. In a system with non-identical parameters complete broadband synchronization 

is possible in the region, where coupling suppresses two oscillators.  

In a system of four coupled phase oscillators the region of the complete synchronization also borders 

the region of the two-frequency regimes except for selected points at which it has a "point" contact with 

the region of the three-frequency quasi-periodicity. These points correspond to the intersection of two lines 

of saddle-node bifurcation of equilibrium states of different types. Their neighborhoods may demonstrate 

three types of clustering in the system, with one pair of oscillators partially locked. Last system is to some 

extent similar to a chain of three oscillators. However, there are some differences in the regions of the two-



frequency regimes in the case of strong coupling.  

These differences are most significant near the co-dimension-3 point, which correspond to the 

intersection of three lines of the saddle-node bifurcation of equilibrium states. This region is the most 

representative concerning the variety of types of the observed regimes. In its neighborhood, at the same 

time, there are three types of clustering, corresponding to the phase locking of the one of the pairs of 

oscillators. In addition, there are tongues of two-frequency tori that do not correspond to clustered states. 

These tongues are immersed in the region of chaos. The chaos transforms into the four-frequency quasi-

periodic regimes with the decreasing of the coupling parameter.  

In the case of four coupled phase oscillators the four-frequency quasi-periodic regimes are 

dominating. However, there are two narrow tongues of the three-frequency quasi-periodic regimes in the 

region of very small coupling.  

The above described algorithm of searching for the domain of complete synchronization in the chain 

of phase equations can easily be extended to the case of a larger number of phase oscillators. The specific 

type of the saddle-node bifurcation accounts for the destroying of the regime of complete synchronization. 

At the points of this bifurcation curve all the equilibrium points existing in the system are merging 

pairwise and annihilate simultaneously. N conditions define N tongues in the parameter plane (frequency 

detuning – coupling parameter). Region of the complete synchronization corresponds to the domain of 

overlap of all tongues. 
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Figure captions. 

 

Fig.1 Schematic representation of a system of three coupled self-oscillators. 

 

Fig.2 (color on-line). Phase portraits of the system (5) for 0.12  . a) 5.01  , 75.0 , b) 25.01  , 

75.0 , c) 25.01  , 25.0 , d) 25.11  , 75.0 , e) 75.01  , 25.0 , f) 0.11  , 

25.0 . 

 

Fig.3 (color on-line). Regions of the complete synchronization of three phase oscillators P (red color) and 

quasi-periodic regimes (white color) on the parameter plane ( 1 ,  ). The lines correspond to the 

conditions (7) and (8). SNP1,2 are a lines of the saddle-node bifurcation. SNF (saddle node fan) is a co-

dimension-2 bifurcation. 

 

Fig.4 (color on-line). Chart of the Lyapunov’s exponents for the system of three coupled phase oscillators 

(5) for 12  . The color palette is given and decrypted under the picture. The numbers indicate the 

tongues of the main resonant two-frequency regimes. These regimes are explained in the description of the 

Fig.5. 

 

Fig.5 Trajectories on the phase torus. a) resonant two-frequency regime with winding number w=1:2, b) 

three-frequency regime. 

 

Fig.6 (color on-line). a) The winding number chart of the system (5) in the region near of the point SNF. b) 

The fragment of the chart from Fig.a. Winding numbers are indicated in figure by numbers. P is a regime 

of the complete synchronization. 

 

Fig.7 (color on-line). Charts of the Lyapunov’s exponents for the system of three coupled van der Pol 

oscillators (1). a) 1.0 , 05.02  , b) 2.0 , 15.02  . OD is a region of “oscillator death”. PBS is a 

region of partial broadband synchronization. 

 

Fig.8 Bifurcation lines of the system (1). Values of the parameter correspond to the Fig.7a and Fig.7b. F is 

a line of the saddle-node bifurcation. H is a line of the Hopf bifurcation. C is the cusp point. NS is a line of 

the Neimark-Sacker bifurcation. R1 is a point of the 1:1 resonance. Line of the saddle-node bifurcation of 

the unstable cycle is shown by the dotted line.  



Fig.9 (color on-line). Chart of the Lyapunov’s exponents for the system of three coupled van der Pol 

oscillators (11) for 3.11  , 9.12  , 8.13  , 5.12  . a)-d) are phase portraits plotted at the 

corresponding points. CBS is a region of complete broadband synchronization. 

 

Fig.10 Rotation numbers 21  and 32  versus the frequency detuning 1  for the system (11). Values of 

the parameters are 3.11  , 9.12  , 8.13  , 5.12   and 32.0 . 

 

Fig.11 (color on-line). Different configurations of lines of the saddle-node bifurcations and a region of the 

complete synchronization P (red color) for the system of four coupled oscillators (13). 
c

  is the threshold 

of the complete synchronization. 

 

Fig.12 (color on-line). a) Chart of the Lyapunov’s exponents of the system of four coupled oscillators (13). 

b) The winding number chart for the same system. Values of the parameters are 2=0.3, 3=1. 

 

Fig.13 (color on-line). Enlarged fragments of the winding numbers chart in regions near the SNF points. a) 

Regions near the point indicated in Fig.12а by the number 1. b) Regions near the point indicated in Fig.12а 

by the number 2. Values of the parameters are 1=0.3, 2=1. 

 

Fig.14 Subdivision of the chain of four oscillators by clusters for the three types of the phase locked pair of 

oscillators. Parameters are chosen in such a way that the system of oscillators is near the point of the 

saddle-node bifurcation.  

 

Fig.15 (color on-line). The winding number chart for the case of the co-dimension-3 bifurcation (i.e. the 

bifurcation of two SNF points merging) takes place. Values of the parameters are 5.02  , 13  .  

 

Fig.16 (color on-line). Qualitative picture of the lines of saddle-node bifurcations and a region P of the 

complete synchronization (red color) for the five coupled oscillators (22). The numbers correspond to the 

number of equation in (24). 

 

Fig.17 Chart of the Lyapunov’s exponents for the system of five coupled phase oscillators and it’s 

enlarged fragment, ,2.02  9.03  , 24  . 
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