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Abstract. We study some mechanisms responsible for synchronous oscillations and loss of synchrony at phys-
iologically relevant frequencies (10–200 Hz) in a network of heterogeneous inhibitory neurons. We focus on the
factors that determine the level of synchrony and frequency of the network response, as well as the effects of mild
heterogeneity on network dynamics. With mild heterogeneity, synchrony is never perfect and is relatively fragile.
In addition, the effects of inhibition are more complex in mildly heterogeneous networks than in homogeneous
ones. In the former, synchrony is broken in two distinct ways, depending on the ratio of the synaptic decay time
to the period of repetitive action potentials (τs/T), whereT can be determined either from the network or from
a single, self-inhibiting neuron. Withτs/T > 2, corresponding to large applied current, small synaptic strength
or large synaptic decay time, the effects of inhibition are largely tonic and heterogeneous neurons spike relatively
independently. Withτs/T < 1, synchrony breaks when faster cells begin to suppress their less excitable neighbors;
cells that fire remain nearly synchronous. We show numerically that the behavior of mildly heterogeneous networks
can be related to the behavior of single, self-inhibiting cells, which can be studied analytically.
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1. Introduction

Synchronous activity has been observed in many re-
gions of the brain and has been implicated as a cor-
relate of behavior and cognition (Gray, 1994; Llin´as
and Ribary, 1993). In the hippocampal formation,
where such activity has been studied most thoroughly,
neurons discharge in several behaviorally important
synchronous rhythms (Buzs´aki, 1986). Among these
patterns are the theta (4–12 Hz) and gamma (20–80 Hz)
rhythms, which appear as nested rhythms under con-
ditions of active exploration and paradoxical sleep, as
well as hippocampal sharp waves (∼0.5 Hz), which
occur along with embedded fast ripples (∼200 Hz)

under conditions of rest and slow wave sleep (Bragin
et al., 1995; Ylinen et al., 1995). Here, we investi-
gate some mechanisms responsible for generating syn-
chronous oscillations throughout the physiologically
relevant range of frequencies (10–200 Hz).

Two crucial results point to the importance of inhi-
bitory interneurons in generating synchronous rhythms
in the hippocampal formation. First, it has been shown
in intact animals that interneurons fire robustly and
synchronously in both the theta-gamma state and in
the sharp wave-ripple state (Bragin et al., 1995; Ylinen
et al., 1995). Second,in vitro experiments have demon-
strated that a functional network containing interneu-
rons alone can support synchronous gamma activity
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(Whittington et al., 1995). These and other experi-
mental results have spurred both analytic (Ernst et al.,
1995; Gerstner et al., 1996; Hansel et al., 1995; van
Vreeswijk et al., 1994) and numerical (Jeffreys et al.,
1996; Traub et al., 1996a, 1996b; Wang and Buzs´aki,
1996; Whittington et al., 1995) studies of synchrony
among inhibitory interneurons. Among the principal
conclusions of such studies are that stable synchrony
is supported by inhibition that is slow compared with
neuronal firing rates and that firing rate decays linearly,
eventually saturating, as a function of the decay time
constant of inhibition (τs). When the synaptic coupling
is extremely fast, the coupling tends to push the neu-
rons toward antisynchrony (Friesen, 1994; Perkel and
Mulloney, 1974; Skinner et al., 1994; van Vreeswijk
et al., 1994; Wang and Rinzel, 1992).

Synchronous oscillations generatedin vivo are al-
most certainly the product of interactions among neu-
rons with some (unknown) degree of heterogeneity in
excitatory drive and intrinsic excitability. Much of the
earlier work in the area has not explored the effects of
heterogeneity in intrinsic spike rates (Ernst et al., 1995;
Gerstner et al., 1996; Jeffreys et al., 1996; Traub et al.,
1996a, 1996b; van Vreeswijk et al., 1994; Whitting-
ton et al., 1995). Tsodyks et al. (1993) considered a
network of integrate-and-fire oscillators with heteroge-
neous external drive and all-to-allexcitatorycoupling.
They found that for an infinite number of oscillators,
those with an external drive below a critical value would
be synchronized and those above the critical value
would be asynchronous. This coexistence around the
critical value persisted in the limit of vanishing het-
erogeneity. Golomb and Rinzel (1993) considered a
heterogeneous network of all-to-all coupled inhibitory
bursting neurons and found regimes of synchronous,
antisynchronous, and asynchronous behavior when the
width of the heterogeneity was changed. They con-
sidered a parameter regime that was synchronous for
small heterogeneity. Wang and Buzs´aki (1996) consid-
ered a hippocampal interneuron network with hetero-
geneity in the external drive and network connectivity.
They found numerically that for physiologically plau-
sible parameters, coherent activity is only possible in
the gamma range of frequencies.

Our purpose here is to understand more fully the
implications of small levels of heterogeneity for the
degradation of synchrony in networks of inhibitory
fast spiking neurons and the mechanisms by which
this degradation occurs. To this end, we have begun
a coordinated set of analytic and numerical studies of
the problem. In this article, we numerically analyze

a network of interneurons applicable to the CA1 re-
gion of the hippocampus. We consider slow inhibition
and heterogeneity in the external drive. We find that
small amounts of heterogeneity in the external drive
can greatly reduce coherence. In addition, we find that
coherence can be reduced in two qualitatively different
ways depending on the parameters—either by a tran-
sition toasynchronywhere the cells fire independently
of each other, or throughsuppressionwhere faster cells
suppress slower cells.

The reaction of a network to heterogeneity is shown
in the paper to be correlated with the dependence of
firing frequency on the time constant of synaptic de-
cay. We find in self-inhibiting cells or synchronous
networks that this dependence divides into two asymp-
totic regimes. In the first (the tonic-inhibition ortonic
regime), inhibition acts as if it were steady-state and
only weakly affects discharge frequency. In the sec-
ond (the phasic-inhibition orphasic regime), time-
varying inhibition firmly controls discharge frequency.
There is a gradual crossover between these regimes.
The presence of a neuron or network in the tonic or
phasic regime can most easily be determined by ex-
amining the ratio of the synaptic decay time constant
to discharge period (τs/T). Discharge periodT can
be obtained from the full network or from a reduced
model including only a single cell with self-inhibition.
τs/T is large (>2 for our parameters) and varies lin-
early withτs in the tonic regime.τs/T is small (<1)
and only logarithmically dependent onτs in the pha-
sic regime. However, ifτs is too small (¿1), the
phasic regime is departed and anti-synchrony is pos-
sible. Networks of weakly heterogeneous (less than
5%) cells generally exhibit asynchrony (defined here
as the state of phase dispersion) in the tonic regime.
In the phasic regime, cells generally exhibit a form
of locking, including synchrony, harmonic locking
(locking at rational ratios), and suppression. These re-
sults can be demonstrated analytically using a reduced
model with mutual and self-inhibition (Chow et al.,
1997).

We conclude that mild heterogeneity in inhibitory
networks adds effects that are not accounted for in pre-
vious analyses but that are tractable under our current
framework. In particular, we show that the prediction
that slow inhibition leads to synchrony, made under as-
sumptions of homogeneity (Ernst et al., 1995; Gerstner
et al., 1996; van Vreeswijk et al., 1994), must be mod-
ified in the presence of mild heterogeneity. Thus, the
new framework provides a context for understanding
previous simulations (Wang and Buzs´aki, 1996). In
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particular, it explains the mechanisms underlying asyn-
chrony (phase dispersion) with slow decay of inhibi-
tion. These mechanisms differ from those underlying
the loss of synchrony with faster-decaying inhibition.

2. Methods

2.1. Numerical Simulations

Simulations were carried out using single-compart-
ment neurons with inhibitory synapses obeying first-
order kinetics. Membrane potential in each point
neuron obeyed the current balance equation

C
dVi

dt
= Ii − INa − IK − I L − Is, (1)

whereC = 1µF/cm2, Ii is the applied current,INa =
gNam3

∞h(Vi − VNa) and IK = gK n4(Vi − VK ) are
the Hodgkin-Huxley type spike generating currents,
I L = gL(Vi − VL) is the leak current andIs =∑N

j (gs/N)sj (Vi − Vs) is the synaptic current. The
fixed parameters used were:gNa = 30 mS/cm2,
gK = 20 mS/cm2, gL = 0.1 mS/cm2, VNa = 45 mV,
VK = −80 mV, VL = −60 mV, Vs = −75 mV. These
parameters are within physiological ranges and give the
high spike rates typical of hippocampal interneurons.
The phenomena described here seem largely indepen-
dent of specific neuronal parameters.

The activation variablem was assumed fast and
substituted with its asymptotic valuem∞(v) = (1 +
exp[−0.08(v + 26)])−1. The inactivation variableh
obeys

dh

dt
= h∞(v) − h

τh(v)
, (2)

with h∞(v) = (1 + exp[0.13(v + 38)])−1, τh(v) =
0.6/(1 + exp[−0.12(v + 67)]). The variablen obeys

dn

dt
= n∞(v) − n

τn(v)
, (3)

with n∞(v) = (1+ exp[−0.045(v + 10)])−1, τn(v) =
0.5 + 2.0/(1 + exp[0.045(v − 50)]).

The gating variablesj for the synapse is assumed to
obey first order kinetics of the form

dsj

dt
= F(Vj )(1 − sj ) − sj /τs, (4)

whereF(Vj ) = 1/(1 + exp[−Vj ]).

The ODEs were integrated using a fourth-order
Runge-Kutta method. The free parameters were scan-
ned across the following ranges: for applied current
Ii , 0–10µA/cm2; for gs, the maximal synaptic con-
ductance per cell, 0–2 mS/cm2; for the synaptic decay
time constantτs, 5–50 ms.

2.2. Calculation of Coherence

As a measure of coherence between pairs of neurons,
we generated trains of square pulses from the time do-
main responses of each of the cells (Fig. 1). Each pulse,
of height unity, was centered at the time of a spike peak
(resolution= 0.1 ms); the width of the pulse was 20%
of the mean firing period of the faster cell in the pair
(0.2T1 in Fig. 1). We then took the cross-correlation at
zero time lag of these pulse trains. This is equivalent
to calculating the shared area of the unit-height pulses,
as shown in Fig. 1D. We took coherence as the sum
of these shared areas, divided by the square root of the

Figure 1. An example of the coherence measure used in this work.
Panels A and B show idealized periodic spike traces with periods
T1 andT2 > T1. Panel C shows the pulse trains compared in the
algorithm. The solid line corresponds to Trace 1 and the dotted line
to Trace 2. Each pulse has unit height, width= 0.2T1, and is centered
at the appropriate spike peak. Panel D shows the shared area of the
two pulse trains in graphical and numerical form.
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product of the total areas of each individual pulse train.
For the example shown in Fig. 1, our algorithm gives
coherence of 0.35.

Our approach differs from the algorithm used by
Wang and Buzs´aki (1996), in which trains of unit-
height pulses are correlated for a bin width equal to
or greater than the neuronal time scale. The difference
between the two algorithms can be appreciated by con-
sidering the contribution made to the coherence mea-
sure by two spikes (in two separate neurons) occurring
with time differencetd. The Wang and Buzs´aki (1996)
algorithm would see these as perfectly coherent if the
spikes are in the same time bin and incoherent if they
are not. The answer depends on where the bin edges
fall, with probability of a coherence “hit” falling to zero
when the bin width is less thantd. In their algorithm
coherence is a function of the bin width, and averaging
across the population of cells ameliorates effects due to
the placement of bin edges. In our algorithm, the two
spikes make a contribution to coherence that is continu-
ously distributed between 0 (td > 20% of firing period)
and 1 (td = 0). Although both algorithms give results
that depend on the percentage of the firing period con-
sidered significant, our measure allows us to examine
coherence in small networks with less discretization er-
ror. This change is important here specifically because
we analyze small networks that phase-lock with a short
but measurable phase difference.

We mapped coherence versusIi , gs, andτs for net-
works of 2, 10, and 100 cells with all-to-all inhibitory
coupling. In networks withN = 2, coherence is plot-
ted in the maps. In larger networks, the plots show the
average of the coherence measure taken for all pairs of
neurons.

3. Results

3.1. Single Self-Inhibited Neuron

We first consider the firing characteristics of a sin-
gle self-inhibited neuron or, equivalently, a network of
identical, synchronized, mutually inhibitory neurons.
These simulations validate predictions from analytic
work on simpler models (Chow et al., 1997) and de-
termine the ranges of the phasic and tonic regimes in
parameter space. Firing frequency of the single neuron
was tracked over the parameter space ofIi , gs, andτs.
Figure 2A shows sample time-domain traces for three
values of Ii (0.4, 1.6 and 9.0µA/cm2). Like mam-
malian interneurons, the modeled system of differential

equations produces action potentials at rates up to
250 Hz. Figure 2B shows discharge frequency as a
function of Ii , for several values ofgs. For large values
of gs (lower traces), this curve is roughly linear. For
smaller values (upper traces), discharge frequency rises
along a somewhat parabolic trajectory. For negative
values ofIi , the self-inhibited neuron can fire at arbi-
trarily low frequencies (data not shown), indicative of
a saddle-node bifurcation and synchrony through slow
inhibition (Ermentrout, 1996). In Fig. 2C we show
discharge frequency versusτs for several values ofIi ,
andgs. The dependence of the frequency onτs for the
lower two traces is similar to what was observed in the
full network andin vitro by Whittington et al. (1995).
The phasic and tonic regimes are clearly illustrated in
Fig. 2D, in which the ratioτs/T is plotted versusτs for
various values ofIi andgs. For largeIi (top traces),
τs/T is large and linearly related toτs, indicative of the
tonic regime. In contrast, for smallIi (bottom trace),
τs/T is small and depends only weakly onτs, indica-
tive of the phasic regime. For our model and level of
heterogeneity, parameter sets that giveτs/T < 1 are
in the phasic regime; sets that giveτs/T > 2 are in the
tonic regime.

Presence in either the phasic or tonic regime is de-
pendent on parameters other thanIi . Generally, the
tonic regime is characterized by strong applied current
and a relatively weak synapse so that the firing period
is much faster than the synaptic decay time. The phasic
regime occurs when either the applied current is weak
and/or the synapse is strong so that the firing period is
locked to the decay time.

3.2. Two-Cell Network

We simulated networks of two mutually inhibitory cells
with self-inhibition. We include self-inhibition because
it better mimics the behavior of a large network. In
these and all other network simulations, mutual and
self-inhibition are of equal weight. In networks of
two interneurons with identical properties but differ-
ent initial conditions, the cells quickly synchronize
(phase-lock with zero phase difference) over the en-
tire examined range ofIi , gs, andτs (data not shown).
Slow-firing cells tend to synchronize more quickly than
fast-firing cells, but the exact delay before synchroniza-
tion depends on initial conditions and was not examined
systematically. Antisynchrony is not stable in the pa-
rameter regime we considered, but could be with very
small values ofτs.
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Figure 2. Behavior of the single, self-inhibited neuron. A. Time-domain responses of the self-inhibited neuron (gs = 0.25 mS/cm2, τs = 10
ms) for three values ofIi (from bottom to top: 0.4, 1.6, and 9.0µA/cm2). Horizontal scale bar: 20 ms. Vertical scale bar: 50 mV. B. Neuronal
discharge frequency versus applied currentIi for several values ofgs (from top to bottom: 0.05, 0.45, 0.85, 1.65 mS/cm2). τs = 10 ms. C. Firing
frequency versusτs. From bottom to top,(gs, Ii ) = (0.45, 2.0) (solid line), (0.45, 4.0) (dashed line), (0.2, 6.0) (dotted line), and (0.05, 10.0)
(dashed-and-dotted line). Conductances have units of mS/cm2. Currents have units ofµA/cm2. D. The ratio of the synaptic decay time constant
(τs) to the neuronal discharge period (T), plotted versusτs. Different line types represent the same values ofgs and Ii , in the same order, as in
panel C.

When the inputIi to each neuron is made mildly
heterogeneous (intrinsic spike rates<5% different), a
more complex picture emerges. Under the conditions
of mild heterogeneity modeled here, but not necessar-
ily under conditions of greater heterogeneity (Golomb
and Rinzel, 1993), the behavior of the two-cell network
falls into one of four qualitative states, as exemplified
by the traces of membrane potential and inhibitory con-
ductance versus time in Fig. 3. For smallgs, large
Ii , and largeτs—conditions associated with the tonic
regime—the phasic component of synaptic inhibition
received by each cell is small (Fig. 3A). The neurons in-
fluence each other’s firing frequencies, but firing times
are independent. We refer to this phase-dispersed state
as theasynchronous state. As the phasic component

of inhibition is increased, the phasic regime is ap-
proached. Within the phasic regime lie three quali-
tative states. For appropriate choices of the level of
inhibition, the two-cell network enters a phase-locked
state with a nonzero phase difference (Fig. 3B). We
will continue to use the termsynchronyto refer to this
near-synchronous regime. For this model, heterogene-
ity of some sort (in this case, heterogeneity of intrinsic
firing frequencies) is a necessary and sufficient con-
dition for near, as opposed to pure, synchrony (Chow
et al., 1997). The size of the phase difference depends
on the parameters chosen. With further increases in
the level of inhibition, the faster cell begins to sup-
press its slower partner, leading to what we termhar-
monic locking(Fig. 3C). In this example, cells fire in
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Figure 3. Plots of membrane potential (Vm) versus time for two heterogeneous neurons at four different points in (Ii , gs, τs)-space. In all cases,
the solid (dotted) line is the more (less) excitable cell. Also plotted in each panel isgs(t), the time-varying synaptic conductance (in mS/cm2)
received by each of the two cells. A. Asynchrony withI1 = 9.0, I2 = 9.9 µA/cm2; gs = 0.25 mS/cm2; τs = 10 ms. B. Near-synchrony with
I1 = 1.6, I2 = 1.78 µA/cm2; gs = 0.25 mS/cm2; τs = 10 ms. C. Harmonic locking withI1 = 9.0, I2 = 9.9 µA/cm2; gs = 0.5 mS/cm2;
τs = 10 ms. D. Suppression withI1 = 1.6, I2 = 1.78µA/cm2; gs = 0.5 mS/cm2; τs = 10 ms.

a 4 : 3 ratio, and exert temporally complex effects on
each other during the course of one cycle (∼50 ms).
Finally, with enough inhibition, the faster neuron in-
hibits its slower counterpart totally, in what we term
suppression(Fig. 3D). In suppression, the subthresh-
old dynamics of membrane potential in the suppressed
cell are exactly phase locked to those of the faster cell.
This exact relationship holds because our simulations
do not include a synaptic delay term.

Without self-inhibition, this harmonic-locking
regime is very small and not seen in the analogous
parameter space (data not shown). Our heuristic ex-
planation for this difference is as follows. Without
self-inhibition, once the slower neuron is suppressed,
the instantaneous preferred frequencies of the two cells
diverge. The faster cell is uninhibited and, by firing

faster, adds more inhibition to the slower cell, mak-
ing it more difficult for the slower cell to escape. With
self-inhibition, each of the cells in the two-cell net-
work receives an identical synaptic signal, effectively
making the two cells more homogeneous. The added
homogeneity increases the size of the region in which
harmonic locking occurs at relatively small locking ra-
tios.

In order to observe network behavior over a large
parameter range, we used the relatively simple measure
of firing coherence (see Methods). A given level of
coherence does not uniquely determine the qualitative
behavior of the network (asynchronous, synchronous,
harmonic, or suppressed). However, the structures of
coherence maps are stereotyped, and coherence maps
can be correlated to the four qualitative network states.
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Figures 4A–B show three-dimensional plots of co-
herence in a two-cell network, plotted versusτs and
gs for low (I1 = 1.6 and I2 = 1.78µA/cm2) and high
(I1 = 9 andI2 = 9.9µA/cm2) applied currents. (The
gray scale, which does not relate to coherence, is dis-
cussed below.) Even though the differences in in-
trinsic (uncoupled) firing frequencies for the two cells
are small (<5% in each case), coherence is high and
smoothly varying, corresponding to synchrony, only
over a small region of parameter space. The extent
of the synchronous region increases asτs decreases.
Increasing the heterogeneity reduces the size of the
synchronous region. For differences greater than a few
percent in the intrinsic (uncoupled) frequencies, the

Figure 4. Coherence maps in (τs, gs)-space. Top row: Coherence
versusτs andgs for the two-cell network, withI1 = 1.6 and I2 =
1.78µA/cm2 (A), I1 = 9.0 andI2 = 9.9µA/cm2 (B). Middle row:
Coherence versusτs and gs for the two-cell network, withI1 =
1.64 andI2 = 1.74µA/cm2 (C), I1 = 9.2 and I2 = 9.7µA/cm2

(D). Bottom row: Coherence maps for 10 cells withIi uniformly
distributed in the intervals [1.6, 1.78] (E), [9.0, 9.9] (F). In all maps,
the gray scale gives the ratioτs/T (see scale bar).

synchronous region was dramatically reduced in size
(data not shown).

For a givenτs, synchrony is broken in two distinct
ways if gs is either too small or too large. For large
Ii , largeτs, and (especially) smallgs, the phasic cou-
pling between the two cells is weak and they fire asyn-
chronously (i.e., with dispersed phase). In this state,
which is particularly large on the left side of Fig. 4B,
coherence has a value of about 0.2, corresponding to the
expected value of our coherence measure with “mem-
ory” equal to 20% of the spiking period. For largegs,
high levels of coherence are lost when the faster cell be-
gins to suppress the slower cell, resulting in harmonic
spiking. The particular pattern of harmonic spiking
can change dramatically with small changes in param-
eters, resulting in the jagged coherence regions seen in
Figs. 4A–B. Again, the harmonic region is particularly
noticeable with largeIi , as in Fig. 4B.

Eventually, with large enoughgs, the full suppres-
sion state can take hold, and coherence plummets to
give a very flat region of coherence at a value of 0.
This state, favored by largegs and largeτs, occupies a
large region on the right side of Fig. 4A.

We argued in the discussion of Fig. 3 that the net-
work’s presence in the asynchronous state is associated
with the tonic regime, and that the transition from asyn-
chrony to locking is associated with the transition from
the tonic regime to the phasic regime. To demonstrate
this effect, we have gray-scale-coded the coherence
maps of Fig. 4 according to the value ofτs/T obtained
from single, self-inhibited cells with the same values
of τs and total inhibitiongs andIi taken as the average
of the range seen in the heterogeneous population.

The single-cell value ofτs/T is useful as an indi-
cator of the qualitative state of all the cells in the net-
work because all the cells that are not suppressed fire
at similar frequencies. This result is demonstrated by
Fig. 5, which shows plots ofτs/T for four conditions:
the N= 1 case (solid lines), the N= 2 case with differ-
ences in intrinsic rates of around 4% (dashed lines) and
2% (dashed-and-dotted lines); and the N= 10 case with
maximal heterogeneity of around 4% (dotted lines).
In all cases with more than one cell, a pair of traces
corresponding to the fastest and slowest cells of the
simulations are shown. In all cases, the traces follow
similar trajectories until the slowest cell is suppressed
(indicated by an abrupt end of the lower branch be-
fore the rightmost point is reached). This similarity in
τs/T (and henceT) for all unsuppressed cells is seen
in both the phasic (Fig. 5C) and tonic (Fig. 5D, right
side) regimes.



               
P1: SGR

Journal of Computational Neuroscience KL523-01-White December 13, 1997 10:17

12 White et al.

Figure 5. Plots ofτs/T versusgs (A–B) andτs (C–D) for networks of size N= 1, 2, and 10. For the N= 2 (dashed lines) and N= 10 (dotted
lines) cases, values ofIi were evenly distributed between the inclusive limits shown, as in Figs. 4A–B and 4E–F, giving about 4% maximum
heterogeneity in intrinsic firing rates. For the N= 2∗ case (dashed-and-dotted lines),I1 andI2 were set to the same values as in Figs. 4C–D, giving
about 2% heterogeneity. For N= 1, Ii is the center point of the interval. For all cases with N> 1, two traces are shown, representing values
from the fastest and slowest neurons from the simulations. Suppression of the slowest cell is represented by early terminations of the curves.

Returning to Fig. 4D, the value ofτs/T as a predictor
of transitions in qualitative state and hence coherence
implies that we should see transitions from asynchrony
when τs/T drops below∼2. As Figs. 4A–B show,
this approximate relationship does hold. Furthermore,
factors that changeτs/T (e.g., changingIi ; cf. Figs. 3A
and 3B) have predictable effects on the extent of the
asynchronous state in (τs, gs)-space.

Figures 4C–D show similar results with less het-
erogeneity (I1 = 1.64, I2 = 1.74µA/cm2 for panel C;
I1 = 9.2, I2 = 9.7µA/cm2 for panel D; these values
approximate the mean± one standard deviation for
uniform distributions with limits as in Figs. 4A–B).
In these cases, the same qualitative coherence map is
evident, with a somewhat larger region of coherence.
The qualitative coherence regions correspond to the
same qualitative states from Fig. 3.

3.3. Large Networks

We also simulated all-to-all connected networks of 10
and 100 heterogeneous inhibitory neurons and found
qualitatively similar results. Figures 4E–F show the
coherence plots over the same parameter space as
Figs. 4A–B for a network of 10 heterogeneous cells.
The level of inhibition per synapse,gs/N, scales with
N to keep the level of inhibition per postsynaptic cell,
gs, constant. For the 10-cell case, applied current
Ii is uniformly distributed through the same ranges
as in panels A–B ([1.6, 1.78] for panel E; [9.0, 9.9]
for panel F). Again, there are four qualitative states:
an asynchronous state for smallgs, more prevalent
with higher Ii ; a near synchronous state; a harmonic
state; and a suppressed state. For the 10-cell network,
the transition to suppression is smoother than in the
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two-cell case. Cells fall out of the rhythm to suppres-
sion one at a time, leading to a relatively smooth drop
in coherence. At the highest values ofgs, coherence
has not yet dropped to zero because some cells are
still able to synchronize with the fastest neuron of the
network. In the harmonic state, examination of time-
domain traces (data not shown) reveals harmonic pat-
terns, with a cluster of cells in synchrony while the
slower cells drop in and out of the population rhythm.
The coherent region for the 10-cell network is larger
than in Figs. 4A–B. Applied currents (and hence intrin-
sic frequencies) of the two neurons in panels A–B are at
the limits of the range of applied currents in the 10-cell
network, making the effective level of heterogeneity
smaller in the ten-cell case. The close agreement be-
tween panels C–D and E–F supports this contention.

Figure 6. Two-dimensional slices through coherence maps. Left column: coherence versusgs at τs = 15 ms, forIi uniformly distributed in
the ranges [1.6, 1.78] (A) and [9.0, 9.9] (B). Shown are coherence for 100 cells (solid line), 10 cells (dotted line; data from Figs. 4E–F), 2 cells
at the limits of the distribution ofIi (dashed line; data from Figs. 4A–B), and 2 cells at intermediate values ofIi (dashed-and-dotted line; data
from Figs. 4C–D). Right column: coherence versusτs at gs = 0.5 mS/cm2, for low (C) and high (D) values ofIi (specific values as in A and
B, respectively). Line types have the same meaning as in A–B.

We also performed a limited number of simulations
of a 100-cell network with the same architecture, at pa-
rameter values representing orthogonal slices through
the three-dimensional coherence maps. Results from
these simulations are shown in Fig. 6, along with slices
from the coherence maps of Fig. 4. In Figs. 6A–B,
coherence is plotted versusgs for a fixed value ofτs =
15 ms and at two levels of applied current. In Figs.
6C–D, coherence is plotted versusτs for a fixed value of
gs = 0.5 mS/cm2. Results from the 100-cell (N= 100)
and 10-cell (N= 10) cases are quite similar, at both
low (panels A, C) and high (panels B, D) levels of
applied current. These results support the argument
that the qualitative behavior of the network does not
change with N, and thus that predictions based on
single-cell analysis and simulations are applicable to
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moderately heterogeneous networks of arbitrary size.
Results are shown for both levels of heterogeneity in
two-cell networks. The dashed lines (N= 2), which
are slices through the coherence maps of Figs. 4A–B,
have lower coherences that reflect the relatively large
amounts of heterogeneity in these cases. The dashed-
and-dotted lines (N= 2*) show coherence values for
slices through Figs. 4C–D, with closer intrinsic fre-
quencies chosen to approximate the standard deviations
of the appropriate uniform distributions. These slices
more nearly match the 10- and 100-cell cases.

Results from Figs. 5 and 6 also demonstrate the close
relationship between the ratioτs/T and coherence
(as well as underlying qualitative states). Values of
τs/T < 2 from Fig. 5 are almost invariably associated
with one of the locked states. Values ofτs/T > 2, on
the other hand, give rise to the asynchronous state, as-
sociated in Fig. 6 with regions of flat coherence at a
value of 0.2 (e.g., the leftmost portion of Fig. 6B and
the rightmost portion of Fig. 6D).

4. Discussion

We show that the behavior of the firing frequency of a
single self-inhibited cell can give insight into the net-
work frequency and coherence. In particular, the ra-
tio of the synaptic decay constantτs to the neuronal
firing periodT has rough predictive value in determin-
ing whether a mildly heterogeneous network is syn-
chronous or asynchronous. This predictive value only
holds with mild heterogeneity, however; greater hetero-
geneity leads to a mixture of qualitative states (Golomb
and Rinzel, 1993), which invalidates our analyses.

We also emphasize the importance of even mild het-
erogeneity in affecting network dynamics. Previously,
it had been argued that slowly decaying inhibition gen-
erally had a synchronizing influence (Gerstner et al.,
1996; Terman et al., 1996; van Vreeswijk et al., 1994).
However, for mildly heterogeneous cells, the relation
of the frequency (or period) to the synaptic decay time
must also be considered. For homogeneous cells, the
synaptic coupling is only required to align the phases in
order to obtain synchrony. For mildly heterogeneous
cells, the coupling must both align the phases and en-
train the frequencies. The latter is more difficult for
the network to achieve. It occurs only when the inhibi-
tion is strong enough so that firing period is dominated
by the decay time. However, if the inhibition is too
strong then the slower cells will never fire. Thus, there

are two ways to destroy full network synchrony. The
first is through effective decoupling where the cells
tend to fire asynchronously. The second is through
suppression, in which the neurons with higher intrin-
sic rates fire in near-synchrony and keep their slower
counterparts from firing. Between synchrony and sup-
pression harmonic locking is also possible. This occurs
when the suppression of the slower cell is temporary
but lasts longer than the period of the faster cell. We
should note that antisynchrony, not seen in the pa-
rameter regimes presented here, can become stable
with very fast synapses (i.e.,τs/T ¿ 1) (Friesen, 1994;
Perkel and Mulloney, 1974; Skinner et al., 1994; van
Vreeswijk et al., 1994; Wang and Rinzel, 1992).

For even mildly heterogeneous cells, synchrony in
which all inhibitory cells participate is possible only
over a small region of parameter space that decreases
as the heterogeneity is increased. The region where
synchrony occurs in a large network of known (mild)
heterogeneity and connectivity can be approximated
from a two-cell network. The frequency of firing and
conditions allowing synchrony can be estimated analyt-
ically from a reduced model neuron with self-inhibition
(Chow et al., 1997). As in large networks (Traub et al.,
1996a), the frequency in single cells depends on the
applied current, the synaptic strength, and the synaptic
decay time. In the synchronous region, the firing period
depends linearly on the decay time and logarithmically
on the other parameters so that frequency will depend
directly on the decay rate. However, the contribution
from the logarithmic factor can be fairly large and thus
must be calculated explicitly. This can be estimated an-
alytically from the reduced model (Chow et al., 1997)
or from simple simulations of a single, self-inhibiting
cell (see Fig. 2).

The result that the value ofτs/T from single-cell
simulations has predictive value for the qualitative state
and coherence of a network of arbitrary size is intrigu-
ing and potentially useful, because it points the way to
determining the qualitative and quantitative behavior of
a neuronal network based on simple behavior that can
be studied numerically or even analytically. However,
the predictive capabilities of this index should not be
overestimated. A careful examination of Fig. 4 shows
that the mapping betweenτs/T and asynchrony is
not precise. The value ofτs/T at which the transition
will occur is dependent on many factors, including the
level of heterogeneity and, in all likelihood, the level
and form of connectivity in the network. The value
of τs/T alone is not sufficient to determine the point
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of transition from synchrony to harmonic locking and
suppression, even in a model of known heterogeneity
and architecture. Making this determination requires
knowledge ofIi andgs in addition toτs/T (Chow et al.,
1997).

Studies of the two-cell network were successful in
elucidating the qualitative states of the larger circuit,
though the exact form of transitions from asynchrony
to synchrony and synchrony to suppression is differ-
ent in detail for our simulations of the two-cell and
N-cell cases. In general, the behavior of the two-cell
network matches that of the N-cell circuit better in the
asynchronous state, associated with the tonic regime,
than in the harmonic and suppression states, associated
with the phasic regime. This result is expected from our
theoretical framework since the tonic regime is defined
as the regime in which only the tonic level of inhibi-
tion is important. Since we normalized the synaptic
strength by N, the net amount of inhibition is indepen-
dent of the network size. Thus, we take this result as
additional evidence that our hypothesized mechanisms
of loss of coherence are correct.

Our numerical results are similar to those of Wang
and Buzs´aki (1996), but our explanations differ con-
siderably. In heterogeneous networks, they also saw
a decline in coherence with both low and high firing
rates. They attributed the decline in synchrony for low
rates to two factors. First, they point out that cells are
more sensitive at low firing rates than at higher rates
to changes in applied current, a source of heterogene-
ity in both studies. This point is correct, but in our
work we controlled for this factor, using smaller per-
cent differences in small currents than in large currents
to achieve similar percent differences in intrinsic firing
rates, and we still saw a drop-off in coherence at low
rates. Second, Wang and Buzs´aki (1996) cite what they
call a “dynamical” effect, in which inhibition is fast
enough to destabilize the synchronous state. Previous
work (van Vreeswijk et al., 1994; Wang and Rinzel,
1992) shows that the outcome of such dynamical ef-
fects forhomogeneousnetworks is antisynchrony. In
our parameter regime, the loss of coherence inhetero-
geneousnetworks at low firing rates (i.e., withτs/T
small) is associated with the phasic regime and is due
to suppression of firing in slower cells. Wang and
Buzsáki (1996) make the phenomenological argument
that the loss of synchrony at high firing rates is related
to a need for greater density of synaptic connectiv-
ity. We considered all-to-all connectivity and found
that loss of coherence associated with high firing rates

(tonic regime) is caused by a loss of too much of the
phasic component of inhibition. Furthermore, we ar-
gue that one can approximate the parameters for which
this loss of coherence occurs by analyzing the single,
self-inhibitory cell. It should be possible to generalize
these results and arguments to the case with less than
all-to-all coupling.

It has been suggested that the selection of the
network frequencyin vivo is determined by the tonic
excitation and the parameters regulating the synaptic
coupling (Traub et al., 1996a). Our results support this
hypothesis. However, we have demonstrated that with
heterogeneous cells, synchrony may not be possible
at all frequencies. In particular, a network of this kind
seems unlikely to support synchronous firing at 200 Hz,
a frequency that seems too fast to be synchronized
by GABAA receptors withτs ∼ 15 ms (andτs/T ∼ 3).
Our framework implies that this result, which has been
seen in simulations before (Wang and Buzs´aki, 1996),
holds in general for heterogeneous cells in the tonic
regime.

Our results emphasize the difficulty of generat-
ing synchronous oscillations in interneuronal networks
over a large range of frequencies, such as in the transi-
tion from the gamma/theta mode to the sharp wave/fast
ripples mode. At gamma frequencies, the factorτs/T
should be less than 1 with typical values ofτs. Thus,
full synchrony at gamma frequencies is possible but re-
quires careful regulation of the system to prevent sup-
pressive effects. The question of whether or not the
suppression we see is incompatible with physiologi-
cal data cannot be answered, because it is extremely
difficult to estimate the number of interneurons partic-
ipating in the rhythm. We believe that this issue can
be explored, and our model tested, by examining the
power of the gamma field potential in a brain slice asτs

is modified by pentobarbital. Our model predicts that
the power in this signal should decrease asτs rises and
suppression becomes more evident. A negative result
in these experiments would indicate that our model is
missing a fundamental element. One such element is
intrinsic or synaptic noise, which can act to release
neurons from suppression (White, unpublished obser-
vations).

The more difficult goal for our model to achieve
is that of firing synchronously at ripple (200 Hz) fre-
quencies, as has been reported in the behaving animal
(Ylinen et al., 1995). One or more of several conceiv-
able explanations may underlie this apparent robust-
ness in hippocampal function at high frequencies. First,
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it is possible, but unlikely, that heterogeneity in the in-
trinsic firing frequencies of interneurons is very low
(<4%). Second, the operant value ofτs may be lower
than we believe; a value of 5 ms would conceivably
allow synchrony at 200 Hz with levels of heterogene-
ity of around 5%. Third, each interneuron may fire
not at 200 Hz, but rather at a lower frequency of, say,
100 Hz, during sharp waves. Under this explanation,
the 200-Hz ripple would be generated by clusters of
two or more populations of neurons spiking indepen-
dently. Finally, some factor(s) not considered here may
enhance synchrony at high frequencies. Gap junction-
mediated electrical coupling among interneurons, for
which some evidence exists in the hippocampal region
CA1 (Katsumaru et al., 1988), is perhaps the most
likely such factor (Traub, 1995).
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