
1

CS-TR-2012-003, UTSA

Available online on Feb. 25, 2012; revised on March 14, 2012

Synchronization-Aware Energy Management for
VFI-based Multicore Real-Time Systems

(Extended Version)
Jian-Jun Han, Xiaodong Wu, Dakai Zhu, Hai Jin, Laurence T. Yang and Jean-Luc Gaudiot

Abstract—Multicore processors have emerged to be the popular and powerful computing engines to address the increasing

performance demands and energy efficiency requirements of modern real-time applications. Voltage and frequency island (VFI) was

recently adopted as an effective energy management technique for multicore processors. For a set of periodic real-time tasks that

access shared resources running on a VFI-based multicore system with dynamic voltage and frequency scaling (DVFS) capability,

we study both static and dynamic synchronization-aware energy management schemes. First, based on the enhanced MSRP

resource access protocol with a suspension mechanism, we devise a synchronization-aware task mapping heuristic for partitioned-

EDF scheduling. The heuristic assigns tasks that access similar set of resources to the same core to reduce the synchronization

overhead and thus improve schedulability. Based on the result task-to-core mapping, static energy management schemes with both a

uniform and different scaled frequencies for VFIs are studied. To further exploit dynamic slack for more energy savings, we propose an

integrated synchronization-aware slack management framework to appropriately reclaim, preserve, release and steal slack at runtime

to slow down the execution of tasks subject to the common voltage/frequency limitation of VFIs and timing/synchronization constraints

of tasks. Taking the additional delay due to task synchronization into consideration, the new scheme allocates slack in a fair manner

and scales down the execution of both non-critical and critical sections of tasks for more energy savings. Simulation results show that,

the synchronization-aware task mapping scheme can significantly improve the schedulability of tasks. The energy savings obtained

by the static scheme with different frequencies for VFIs is close to that of an optimal INLP (integer non-linear programming) solution.

Moreover, compared to the simple extension of existing solutions for uniprocessor systems, our dynamic scheme can obtain much

better energy savings (up to 40%) with comparable DVFS overhead.

Index Terms—Real-time systems; Multicore; Shared resources; Voltage frequency island (VFI); Energy management; DVFS;

✦

1 INTRODUCTION

T He performance of modern computing systems has been

significantly improved in last few decades with increasing

processing frequency and level of integration. However, such

performance improvements came at the cost of drastically

increased power consumption, which has promoted energy to

be a first-class system resource and energy management to be

an important research area. In the past decade, many hard-

ware and software power management techniques have been

proposed for various computing systems from battery-powered

embedded computing devices that have limited energy budget

to high performance servers that are connected directly to the

power grid [6], [15], [41], [43], [49], [57].

The basic principle for saving energy in computing systems

• J.-J. Han, X. Wu, H. Jin and L. T. Yang are with School of Com-

puter Science and Technology, Huazhong University of Science and

Technology, Wuhan 430074, China. E-mail:jasonhan@mail.hust.edu.cn,

xiaodongwu@smail.hust.edu.cn, hjin@hust.edu.cn.

• D. Zhu is with the Computer Science Department, University of Texas at

San Antonio, San Antonio, TX 78249. E-mail: dzhu@cs.utsa.edu.

• J.-L. Gaudiot is with the Department of Electrical Engineering and

Computer Science, University of California, Irvine, CA 92697-2625.

Email:gaudiot@uci.edu.

is to operate system components at low-performance (and thus

low-power) states, whenever possible [6], [42]. For instance,

as a widely-deployed power management technique, dynamic

voltage and frequency scaling (DVFS) reduces simultaneously

the supply voltage and processing frequency of processors to

save energy when performance demand is low [50]. How-

ever, considering its importance and the variety of computing

systems, effective energy management remains to be one

of the grand challenges for both research and engineering

communities [30].

The emergence of multicore architecture, which integrates

multiple processing cores on a single chip [40], has quickly led

us into a new multicore computing era. The central idea is to

exploit the parallelism in applications for higher performance

and better energy efficiency. For instance, an application can

be executed in parallel on multiple cores where each core runs

at a lower frequency to achieve a given performance and save

energy. Considering its great features of high-performance

and energy efficiency, multicore has been adopted by major

chip manufacturers and several lines of multicore processors

have been developed (e.g., Intel Core2 Quad [31] and AMD

Phenom [23]). Note that, most state-of-the-art commercial

multicore processors have a common power supply voltage

2

for all cores on the chip [23], [31], which requires the cores

to run at the same frequency with limited power management

flexibility (and thus results in sub-optimal energy savings).

To support more flexible power management for multicore

systems, voltage and frequency island (VFI) technique has

been studied recently, where cores are partitioned into groups

and each group of cores on an island share one supply

voltage and have the same processing frequency [20], [32],

[39]. Several recent studies have investigated efficient VFI

configurations and showed that having an independent VFI for

each core can provide the most flexible support for managing

energy [22], [42]. However, as the number of cores on a single

chip continues to increase (where extensive research activity

is underway to build chips with tens and even hundreds of

cores [11], [29]), the potential energy gains of such a per-core

VFI option are likely to be too modest to justify the increased

design complexity and the associated area overhead of the

required supply voltages and on-chip voltage regulators [28],

[33]. With the development of fast on-chip voltage regulators,

VFI has been adopted in some modern multicore processors,

such as Intel Itanium i7 [2] and IBM Power 7 series [1].

Real-time systems have been deployed in a wide range of

applications (such as vehicle control systems and multimedia

processing), which generally have various timing constraints.

Considering the increasing performance demands and parallel

nature of computation tasks (e.g., processing multi-channel

video/audio signals), it is expected that multicore processors

will become the computing engines in real-time embedded

systems as well. For instance, several multicore processors

have been developed for automotive electrical control units

(ECUs) [4], [48]. Although many energy management schemes

have been studied for real-time systems based on the popular

DVFS technique [6], [7], [15], [41], [43], [49], [57], the

common supply voltage and frequency limitation for the cores

on a multicore chip (or VFI) brings additional complications

and much less work has focused on energy management for

multicore-based real-time embedded systems [21], [51].

In real-time systems, tasks may need to exclusively ac-

cess re-usable shared resources (such as global variables or

I/O channels). Such resource contention can lead to priority

inversion, where a lower-priority task accesses a shared re-

source non-preemptively and blocks the execution of a higher-

priority task [44]. The additional blocking time due to priority

inversion can significantly affect the schedulability of tasks

and result in very low system utilization. To tackle such

task synchronization problems, several lock-based resource

access protocols have been studied for both uniprocessor

(e.g., PCP [44], [47] and SRP [8]) and multiprocessor (e.g.,

MSRP [26] and FMLP [10]) real-time systems to guarantee all

tasks meet their deadlines when accessing shared resources.

Based on these resource access protocols, a few studies have

investigated energy management schemes for real-time tasks

under synchronization constraints [17], [35], [54]. However,

these studies have focused exclusively on uniprocessor systems

and, to the best of our knowledge, there is no existing work

on the problem for multiprocessor systems. Note that, for

the execution of real-time tasks governed by the resource

access protocols in multiprocessor systems, the schedulability

analysis generally relies on the worst-case waiting time due

to synchronization requirements [8], [26]. As such analysis

can be very pessimistic, there exist great opportunities to

slow down the execution of tasks and thus save energy.

Moreover, considering the increasing popularity of multicore-

based realtime embedded systems, it has become a necessity

to develop effective energy management schemes for tasks that

access shared resources in such systems.

As the first work to address this problem, we consider VFI-

based multicore real-time systems and study both static and

dynamic synchronization-aware energy management schemes

for a set of periodic tasks that access shared resources.

Specifically, by extending the MSRP [26] and OMLP [12]

resource access protocols and focusing on partitioned-EDF

scheduling, we study a synchronization-aware task mapping

heuristic. It assigns tasks that access similar set of resources to

the same core to reduce the blocking and waiting time among

tasks, which can significantly improve tasks’ schedulability.

Then, we study static schemes that exploit such opportunities

and assign scaled frequencies for VFIs to save energy.

Moreover, to exploit the vast amount of dynamic slack at

runtime due to workload variations of real-time tasks as well as

less than the worst-case synchronization overhead, we propose

an integrated synchronization-aware slack management frame-

work to appropriately reclaim, preserve, release and steal slack

to further slow down the execution of tasks while taking the

common voltage/frequency limitation of VFI-based multicore

systems into consideration. In addition to non-critical sections

of tasks, different from most existing techniques, we consider

slowing down the execution of tasks’ critical sections as well.

The scheme ensures tasks’ time constraints by incorporating

the additional delay due to scaled execution into the analysis.

Finally, the proposed schemes are evaluated through extensive

simulations.

The remainder of this paper is organized as follows. Sec-

tion 2 reviews closely-related research on task synchronization

and energy management in real-time systems. In Section 3,

we present the system models and basic notations before

discussing the resource access protocol adopted in this work.

Synchronization-aware task mapping and static energy man-

agement schemes are presented in Section 4. In Section 5,

the integrated slack management framework and the dynamic

synchronization-aware energy management scheme are ad-

dressed. Simulation results are presented and discussed in

Section 6 and Section 7 concludes the paper.

2 RELATED WORK

Since the seminal work of Weiser et al. on reducing energy

consumption in processors [50], based on the DVFS tech-

nique, many energy management schemes have been studied

considering different systems, scheduling policies and tasks

with various timing constraints. Although the vast majority of

energy management studies in real-time systems have focused

on uniprocessor systems (e.g., [6], [15], [34], [36], [41],

[43], [45]), significant research effort has also been made for

energy management in multiprocessor real-time systems [7],

[18], [51], [56]. However, considering the complications of

3

common voltage/frequency limitation in multicore processors,

the research on energy management for multicore real-time

systems is rather limited [9], [21], [46].

Based on the partitioned scheduling policy, Aydin and Yang

studied the problem of how to partition real-time tasks to

processors for minimizing energy consumption for multipro-

cessor systems [7]. They showed that, for earliest deadline first

(EDF) scheduling, balancing the workload among all proces-

sors evenly gives the optimal energy consumption. However,

the general partition problem for minimizing energy consump-

tion in multiprocessor real-time system is NP-hard [3], [7]. For

frame-based and periodic real-time tasks, Chen et al. proposed

a series of approximation algorithms for maximizing energy-

efficiency of multiprocessor systems, with and without leakage

power being considered [14], [16].

In [27], Goh et al. introduced a gradient-based real-time

scheduling of dependent tasks for heterogeneous embedded

multiprocessor systems, where ILP was adopted to improve

energy efficiency. For systems with large number of proces-

sors, Chu et al. developed a nonlinear ILP-based mapping

policy with pruning heuristics to map tasks to processors for

energy savings in heterogeneous multiprocessor systems [19].

In [52], for real-time streaming applications on multicore

systems, Xu et al. studied a hill climbing based scheme

for energy savings while exploiting pipelining to satisfy the

throughput requirements. More recently, Choi and Melhem

studied the interplay between parallelism of an application,

program performance and energy consumption [18]. For an

application with given ratio of serial and parallel portions

and the number of processors, the authors derived optimal

frequencies allocated to the serial and parallel regions in an

application to either minimize the total energy consumption

or minimize the energy-delay product [18].

Considering workload variations in real-time tasks and the

dynamic slack generated at runtime, Zhu et al. studied global

scheduling based energy management scheme for real-time

multiprocessor systems, where the slack sharing technique is

used for load balancing and thus better energy savings [56].

For soft real-time applications running on multicore systems,

Bautista et al. recently studied a novel fairness-based power

aware scheduler that utilizes the global frequency for all

cores at the same time and evaluated the power efficiency of

multicore processors [9]. The scheduler pursues to minimize

the number of DVFS transitions by increasing or decreasing

the voltage and frequency of all the cores simultaneously.

Along the same line of assuming all cores on a chip share

the same frequency, Seo et al. studied one dynamic re-

partitioning algorithm for real-time systems which balances

the task loads on the cores at runtime to optimize overall power

consumption [46].

More recently, Devadas and Aydin proposed an on-line

scheduling scheme which tries to put the idle processing cores

into sleep state for the reduction in energy consumption [21].

Considering the under-utilized systems and assuming that a

task can be executed in parallel, Lee et al. introduced an

energy-saving scheduling scheme that turns off rarely used

cores [38]. In [42], Qi and Zhu studied energy efficiency for

different partitioning of cores to VFIs and proposed an asym-

metric buddy VFI configuration that can effectively support

various workload with great energy savings.

For real-time tasks that access non-preemptable shared

resources, several resource access protocols have been studied

for uniprocessor real-time systems, such as Priority Ceiling

Protocol (PCP) [47] and Stack Resource Policy (SRP) [8].

The protocols have been extended for multiprocessor real-

time systems, such as MPCP (Multiprocessor PCP) [37] and

MSRP (Multiprocessor SRP) [26], to tackle the blocking

caused by tasks on different processors accessing the same

global shared resources. In [24], Easwaran et al. studied

a parallel PCP (P-PCP) resource-sharing protocol for fixed-

priority tasks in multiprocessor systems and developed the

corresponding schedulability conditions. More recently, Block

et al. introduced a Flexible Multiprocessor Locking Protocol

(FMLP) [10] and Brandenburg et al. studied suspension-based

optimal locking protocols (namely, OMLP) [12]. Both FMLP

and OMLP are applicable to global and partitioned scheduling.

Based on the resource access protocols, a few studies have

focused on energy management with task synchronization for

uniprocessor systems. Jejurikar and Gupta studied a static Uni-

form Slowdown with Frequency Inheritance (USFI) scheme,

where a job inherits the maximum frequency of its blocked

jobs when it executes a critical section [35]. With intuition

that executing low priority tasks at a higher speed can be

more effective to reduce the blocking time between tasks,

Chen et al. studied two static frequency assignment algorithms

for uniprocessor systems with task synchronization to reduce

voltage/frequency switching overhead caused by DVFS and to

obtain better energy savings [17]. However, both studies did

not consider dynamic energy management.

In [54], Zhang and Chanson proposed a Dual-Speed (DS)

algorithm for uniprocessor systems, where two (i.e., high and

low) speeds are calculated off-line for each task to satisfy

the feasibility condition under the worst-case scenarios. At

runtime, when no job is blocked, the low speed with slack

reclamation is applied for energy savings. However, when

blocking occurs, the high speed is needed to guarantee dead-

lines of blocked tasks.

Different from all existing work that has focused on unipro-

cessor systems, in this paper, we focus on the energy man-

agement problem for VFI-based multicore real-time systems

with shared resources. We study both static and dynamic

synchronization-aware schemes for periodic tasks, which ex-

ploit spare system utilization and dynamic slack, respectively,

for energy savings.

3 PRELIMINARIES

In this section, we first layout the scope of this work by

presenting the system, task and resource models and stating

our assumptions. Moreover, the resource access protocol,

which extends MSRP [26] by incorporating the idea of suspen-

sion (from OMLP [12]), and the corresponding schedulability

conditions for partitioned-EDF scheduling are discussed.

3.1 System and Power Models

We consider real-time systems with a multicore processor,

which consists of nc processing cores {O1, . . . ,Onc} that

4

have identical functions and capabilities. The multicore pro-

cessor is assumed to adopt the voltage and frequency island

(VFI) technique and the cores are organized into ng VFIs,

where each VFI consists of a sub-group of cores, denoted as

{G1, . . . , Gng}. For simplicity, we assume that the VFIs are

homogeneous 1 and each of them contains the same number

of cores. That is, nc is assumed to be a multiple of ng and,

for the ith VFI, there is |Gi| = nc/ng (i = 1, · · · , ng).

Each VFI is assumed to have a DVFS-enabled voltage

supply that can provide nd discrete supply voltages vi and

corresponding highest processing frequencies fi (1 ≤ i ≤ nd).
Cores on the same VFI share the common DVFS-enabled volt-

age supply and have the same processing frequency. However,

considering that cores can be easily put into power saving

states [1], [2], each core is assumed to have two states: active

and sleep. When a core does not have workload to process,

it becomes inactive and can be put to sleep state for energy

savings. When all cores on one VFI are in sleep state, we can

power off the VFI to save more energy.

For the widely used CMOS technology, dynamic power

dissipation is generally a dominant component, which is

quadratically related to supply voltage and linearly related to

processing frequency [13]. However, with scaled feature size

and increased level of integration, leakage power has been

ever-increasing and it has become a necessity for effective

energy management to consider both dynamic and leakage

power components [5], [15], [36]. In this work, we adopt the

power model 2 utilized in [46], where the power consumption

of the system with a multicore processor is given by:

Psys =

nc
∑

i=1

~i · Pd(f(Oi)) + Pl(f(Oi)) (1)

Here ~i indicates the state of core Oi. When Oi is active,

~i = 1; otherwise ~i = 0. When core Oi is active and operates

at frequency f(Oi) (and corresponding voltage v(Oi)), its

dynamic power consumption can be given as [13]:

Pd(f(Oi)) = Cef · v(Oi)
2 · f(Oi) (2)

The leakage power Pl(f(Oi)), which exists even when a

core is put to sleep, can be given as [46]:

Pl(f(Oi)) = Lg · (v(Oi) · Isub + |Vbs| · Ik) (3)

Isub = K3 · e
K4·v(Oi) · eK5·Vbs (4)

where Isub and Ik are leakage currents and Vbs, Lg , K3, K4

and K5 are system-dependent constants [46].

Note that energy is the integral of power over time. From the

above equations, we can see that, although reducing processing

frequency can lower the energy consumption due to dynamic

power, the energy consumption due to leakage power will

increase. Therefore, there exists a critical frequency fcrit,
below which more energy may be consumed [5], [15], [36],

[42]. To simplify our discussion, we assume that the minimum

available frequency f1 ≥ fcrit. The maximum frequency is

1. Although it is possible to have heterogeneous VFIs that contain different
number of cores [42], such options can increase processor design complexity.

2. Note that, similar power models have been adopted in other recent work
on power management [5], [15], [36].

assumed to be fmax = fnd, which is normalized to 1 as

we consider normalized frequencies. Moreover, we assume

that the overhead caused by voltage and frequency changes

is negligible (or such overhead can be incorporated into slack

reclamation or the worst-case execution time of tasks [56]).

Although Equation 1 represents a much simplified power

model, we point out that the synchronization-aware power

management schemes studied in this work do not depend on

the specific power model. As long as the voltage/frequency

levels and the corresponding power consumption form a con-

vex relation, the schemes studied in this paper can be applied.

3.2 Task and Resource Models

We consider a set of nt periodic real-time tasks Γ =
{T1, . . . , Tnt}, where each task Ti has a period pi that is also

its relative deadline. The jth job (or task instance) of task Ti

is denoted by Ji,j , which arrives at time (j − 1) · pi and has

to complete by its absolute deadline j · pi. Unless specified

otherwise, the terms task and job are used exchangeably in

the remainder of this paper.

The system has a set of nr global resources SR =
{R1, . . . ,Rnr}, which are shared by all tasks. The resources

are non-preemptable but serially re-usable. To ensure exclusive

access of shared resources, a task can only access a shared

resource in its critical sections. For task Ti, there are Ncs(Ti)
number of critical sections and its jth critical section is

denoted by zi,j , during which the task will access resource

s(zi,j) ∈ SR. The worst-case execution time (WCET) for

the jth critical section of task Ti at the maximum processing

frequency is ccs(zi,j).
In this work, we assume that there are no nested critical

sections since they occur rather infrequently in practice and

can be dealt with by group locks [10]. That is, a task can

only access one resource at any time. Suppose that the WCET

of all non-critical sections of task Ti is cns(Ti), the WCET

of task Ti at the maximum frequency fmax can be given as

ci = cns(Ti) +
∑Ncs(Ti)

j=1 ccs(zi,j).
When a task is executed at a lower frequency, its execution

time is assumed to scale linearly, which has been a widely

adopted assumption in other recent work [15], [46]. Hence, if

task Ti runs at scaled frequency f(Ti) (f1 ≤ f(Ti) < fmax),

its execution time will be ci
f(Ti)

.

The subset of global resources that are accessed by task

Ti is denoted as SRi. Here, a task may access a global

resource multiple times. Therefore, the number of distinct

global resources accessed by task Ti is no more than the

number of its critical sections (i.e., |SRi| ≤ Ncs(Ti)).

2T

Time

Non-critical section

critical section accessing 1R

1T

critical section accessing 2R

1p

2p

1c

2c

Fig. 1: An example of tasks and resource access patterns.

For example, Figure 1 shows a task system with two tasks

(i.e., T1 and T2) and two shared global resources (i.e., R1 and

5

R2). Here, the first task T1 has three critical sections, during

which it accesses the resource R1 twice and the resource R2

once. Similarly, for task T2, it accesses the resources R1 and

R2 once and twice, respectively. We can have SR1 = SR2 =
{R1,R2}.

3.3 Resource Access Protocols and Schedulability

Due to synchronization requirements, global resources have to

be accessed exclusively in task’s critical sections that are not

preemptable. Therefore, the execution of a task, regardless of

its priority, can be blocked when it attempts to access a global

resource that is held (and accessed) by another task. Hence,

the exact sequence of tasks accessing the resources depends

on not only the scheduling algorithm but also the resource

access protocol.

In this work, based on partitioned-EDF scheduling, we

adopt a suspension-based resource access protocol that extends

MSRP [26] and OMLP [12]. Specifically, when a task attempts

to access a global resource that is held by another task running

on a different core, instead of allowing the task to spin-lock

with busy-waiting as in the original MSRP [26], the extended

protocol suspends the task’s execution and lets the core run

other tasks to improve system performance [12]. However, to

limit resource access requests issued by tasks from a core,

there exists a resource access contention token guarded by a

binary semaphore on each core. Only after a task obtained the

token of its core, can it issue a resource access request.

With the suspension mechanism and resource access con-

tention tokens on the processing cores, the basic steps and

rules for the extended resource access protocol can be sum-

marized as follows [12], [26]:

• Rule 1: A task Ti needs to obtain the contention token

on its processing core before issuing a resource access

request. If it fails (because of another task on the same

core holding the token), the task is put into the prioritized

waiting queue of the core’s contention token;

• Rule 2: Once a task Ti obtained the contention token

of its core, task Ti can issue a request to access its

resource Ra. If Ra is free, task Ti will lock and access

it by executing the critical section non-preemptively;

Otherwise, if Ra is currently held by another task (on

a different processing core), task Ti will be added to the

FIFO queue of resource Ra and then is suspended;

• Rule 3: Once a task Ti is suspended on core Ok due to

waiting for a resource Ra held by a task on another core,

Ok will repeatedly execute the next highest priority task

Tj non-preemptively until either a) Ti is ready to access

resource Ra (i.e., Ra is released and Ti is the header task

in Ra’s FIFO queue); or b) Tj completes its execution;

or c) Tj attempts to execute one of its critical sections

(but failed since Ti holds Ok’s contention token);

• Rule 4: Once a task Ti finishes accessing a resource Ra

by completing a critical section, the task will release both

the contention token (such that other tasks on the same

core can have the opportunity to access resources) and

resource Ra. If the FIFO queue of Ra is not empty (i.e.,

there are tasks from other cores waiting for accessing

Ra), the header task is de-queued and starts accessing

resource Ra; otherwise, resource Ra is unlocked; After

that, task Ti becomes preemptable again.

From the protocol, we can see that the execution of a task

Ti on core Ok can be blocked at two different occasions: First,

when Ti tries to access a resource Ra that is currently held

and accessed by a task on another core, it has to wait in Ra’s

FIFO queue and the duration is denoted as global waiting time.

Second, when a low priority task (which has a later deadline

than Ti) on core Ok is in its critical section and accessing a

resource or is waiting for a resource (that is currently held and

accessed by a task on another core), Ti can be blocked and

the duration is denoted as local blocking time.

Hence, for the above resource access protocol, we can have

the following properties that are inherited directly from the

MSRP and OMLP protocols [12], [26]:

Property 1. For local blocking time, a task can be blocked at

most once by a low priority task on the same core [26].

Property 2. The local blocking time for a task is upper-

bounded by the longest duration for executing a low priority

task’s critical section (including the low priority task’s global

waiting time, if any) on the same core [26].

Property 3. For any core, at any given time, there exists

at most one task that is either a) accessing a resource; or

b) suspended and waiting for a resource (which is currently

accessed by a task on another core) [12].

Schedulability Condition: Note that, due to task synchro-

nization, the execution of a task takes longer because of local

blocking time and global waiting time. For a given partitioning

of tasks to cores, we discuss next the schedulability condition

for EDF on each core under the above resource access pro-

tocol. First, for the ease of presentation and discussion, we

define some necessary notations as follows:

• Ψk: represents the subset of tasks that are allocated to

processing core Ok;

• O(Ti): denotes the core to which task Ti is allocated;

• ttmax
i (Ra): is the maximum amount of time for task Ti

to access resource Ra once. It equals to zero if task Ti

does not access Ra (i.e., Ra /∈ SRi); otherwise, we have:

ttmax
i (Ra) = max{ccs(zi,x)|∀zi,x : s(zi,x) = Ra} (5)

• tpmax
k (Ra): refers to the maximum amount of time for

any task on core Ok to access resource Ra once;

• BW (zi,j): indicates the maximum amount of time that

task Ti waits for executing its critical section zi,j ;

• BWi: denotes the worst-case global waiting time that can

be experienced by task Ti to access all its resources,

BWi =

Ncs(Ti)
∑

j=1

BW (zi,j) (6)

• Bi: is the maximum local blocking time for task Ti.

Next, we calculate BWi and Bi for task Ti on core Ok

under the resource access protocol discussed above. Suppose

that task Ti attempts to access resource Ra in its critical

6

section zi,j and is put into the FIFO queue of Ra due to

task synchronization. Recall that nc is the number of cores

in the system. From Property 3, at most (nc − 1) requests to

access resource Ra, which have been issued by tasks on cores

other than Ok, can precede task Ti’s request.

For the request issued by a task on core Om (m ̸= k), the

worst-case amount of time to access resource Ra once is:

tpmax
m (Ra) = max{ttmax

x (Ra)|∀Tx ∈ Ψm} (7)

Therefore, the maximum global waiting time for task Ti on

core Ok when executing its critical section zi,j will be:

BW (zi,j) =
∑

∀Om,m̸=k

tpmax
m (s(zi,j)) (8)

Substituting BW (zi,j) in (6) with (8), we can obtain BWi,

the worst-case global waiting time for task Ti to access all

its resources. From Property 1, task Ti on core Ok can only

be blocked at most once by a task Tx where Tx ∈ Ψk and

px > pi. Therefore, according to Property 2, we have

Bi = max{BW (zx,y) + ccs(zx,y)|∀zx,y : Tx ∈ Ψk,

px > pi, 1 ≤ y ≤ Ncs(Tx)} (9)

Note that, with the suspension-based resource access pro-

tocol, tasks can utilize the processing cores more efficiently

(especially, Rule 3 of the protocol). However, such an approach

cannot reduce the worst-case blocking and waiting times as

calculated above. Therefore, based on the feasibility results

for MSRP [8], [26], we can get the following proposition.

Proposition 1. For a given task-to-core mapping, the tasks

are schedulable under EDF on their cores if, for every core

Ok (k = 1, . . . , nc), there is:

∀Ti ∈ Ψk,
Bi

pi
+

∑

∀Tj∈Ψk,pj≤pi

cj +BWj

pj
≤ 1 (10)

4 SYNCHRONIZATION-AWARE TASK MAPPING

AND STATIC POWER MANAGEMENT SCHEMES

In [7], without considering task synchronization, Aydin and

Yang showed that the maximum energy savings can be ob-

tained with balanced workload among all processors. How-

ever, finding the optimal partitioning of tasks to processors

for minimizing energy consumption in multiprocessor real-

time systems is NP-hard. Note that, the problem of energy

management with task synchronization in multicore real-time

systems being considered in this paper is a generalization of

what being considered in [7]. Thus, it is NP-hard as well.

In what follows, we first give the formalized problem

description of task-to-core mapping for minimizing energy

consumption, under the constraints of task synchronization

and common voltage/frequency limitation of VFIs. Then, we

focus on efficient task-to-core mapping heuristics for mini-

mizing energy consumption while taking task synchronization

into consideration. Specifically, we propose a synchronization-

aware task mapping heuristic that tries to partition tasks that

access the similar group of resources to the same processing

core. From Equation 10, we can see that such mapping

can improve tasks’ schedulability with reduced blocking and

waiting time due to task synchronization. With improved

schedulability, the mapping also provides better opportunity

to slow down the execution of tasks for more energy savings.

Finally, based on the result mapping of tasks to cores, the

static scheme considers two frequency assignment approaches:

a uniform scaled frequency for all VFIs and different frequency

for each VFI.

4.1 Formal Problem Description

Note that, it can be more energy efficient to assign more than

one frequencies for VFIs to execute tasks in different intervals.

However, exploring the full extent of this direction is well

beyond the scope of this paper and will be addressed in our

future work. In this paper, we focus on schemes that assign a

single frequency for each VFI. Before presenting the problem

description, some auxiliary notations are defined as follow:

• ξi,j : indicates whether task Ti is mapped onto core Oj

or not;

• φi,j : denotes whether core Oi is assigned the jth discrete

processing frequency fj or not;

• G(Oi): corresponds to the VFI to which core Oi belongs;

• f(Oi): refers to the processing frequency of core Oi;

• f(Ti): is the processing frequency of task Ti.

Note that, both task synchronization constraints and VFI

common frequency limitation need to be considered. Thus,

with the objective of finding the proper task-to-core mapping

and the scaled frequencies of VFIs to minimize energy con-

sumption for a set of periodic tasks running on a VFI-based

multicore systems, the problem can be formalized as:

Minimize Psys (11)

Subject to:

ξi,j ∈ {0, 1} (i = 1, · · · , nt, j = 1, · · · , nc) (12)

nc
∑

j=1

ξi,j = 1 (i = 1, · · · , nt) (13)

φi,j ∈ {0, 1} (i = 1, · · · , nc, j = 1, · · · , nd) (14)

nd
∑

j=1

φi,j = 1 (i = 1, · · · , nc) (15)

f(Oi) =
nd
∑

j=1

(φi,j · fj) (i = 1, · · · , nc) (16)

f(Oi) = f(Oj), if G(Oi) = G(Oj)

(i = 1, · · · , nc, j = 1, · · · , nc)
(17)

f(Ti) =

nc
∑

j=1

(ξi,j · f(Oj)) (i = 1, · · · , nt) (18)

7

Ui = max







Bj

pj
+

pm≤pj
∑

∀Tm:ξm,i=1

cm·fmax

f(Tm) +BWm

pm
|∀Tj : ξj,i = 1







(i = 1, · · · , nc)

(19)

Ui ≤ 1 (i = 1, · · · , nc) (20)

BWi =

Ncs(Ti)
∑

j=1

BW (zi,j) (i = 1, · · · , nt) (21)

Bi = max{BW (zx,y) +
ccs(zx,y) · fmax

f(Tx)
|∀zx,y :

ξx,k = 1 ∧ px > pi ∧ 1 ≤ y ≤ Ncs(Tx)}, if ξi,k = 1

(i = 1, · · · , nt)

(22)

BW (zi,j) =
∑

∀Om:m ̸=k

tpmax
m (s(zi,j)), if ξi,k = 1

(i = 1, · · · , nt, j = 1, · · · , Ncs(Ti))

(23)

tpmax
m (Ra) = max{ttmax

x (Ra)|∀Tx : ξx,m = 1}

(m = 1, · · · , nc, ∀Ra ∈ SR)
(24)

ttmax
i (Ra) =

max{ccs(zi,x)|∀zi,x : s(zi,x) = Ra} · fmax

f(Ti)

(i = 1, · · · , nt, ∀Ra ∈ SR)

(25)

For simplicity, we assume that no core is put into sleep

mode within the LCM (least common multiple of the tasks’

periods). Thus, we only need to consider minimizing the total

power consumption, which is given by Equation (11).

Equations (12) and (13) indicates that a task can only be

mapped onto one core. With discrete voltage/frequency setting

being considered, we assume that a core can only be assigned

one discrete processing frequency within [f1, fnd], as shown in

Equations (14), (15) and (16). The common voltage/frequency

limitation of a VFI is further indicated by Equation (17).

Moreover, the scaled frequency of a task is also subject to

the discrete voltage/frequency levels (see Equation (18)). For

a feasible schedule, the utilization of a core (see Equation (19))

can be calculated similar to Equation (31) in Section 4.2,

which has to be no more than one as shown in Equation (20).

Since VFIs can run at different frequencies independently,

the synchronization overhead of a task due to shared resource

access must conform to such speed settings. The worst-case

global waiting time and local blocking time of a task can

be obtained by Equations (21) and (22), which are derived

from Equations (6) and (9), respectively. Also, the maximum

global waiting time for a task to execute a critical section (see

Equation (23)), the maximum amount of time for any task on

a specific core to access a resource once (see Equation 24)

and that for a specific task to access a resource once (see

Equation 25) can be respectively calculated by modifying

Equations (8), (7) and (5).

From such a problem formulation, the optimal task-to-core

mapping (ξi,j) and the scaled frequency assignment of all

cores (φi,j) can be obtained with an INLP (Integer Non-

Linear Programming) approach. More specifically, we have

implemented such an INLP solution using Lingo tool [53].

4.2 Synchronization-Aware Mapping Algorithm

For partitioned scheduling in multiprocessor real-time systems,

several efficient mapping heuristics have been studied based

on task’s utilization, such as First-Fit (FF), Best-Fit (BF) and

Worst-Fit (WF). In particular, the Worst-Fit Decreasing (WFD)

heuristic aims at obtaining the partitioning with balanced

workload on each processor and has been exploited previously

for energy management [7]. When task synchronization is

considered, from Equation 10, the schedulability of tasks on

each core depends on not only the accumulated task utilization

(i.e., workload) but also the blocking and waiting time of tasks

due to accessing shared resources.

Hence, as a variation of WFD, our novel synchronization-

aware mapping scheme (denoted as SA-WFD) partitions tasks

to cores based on the resources that a task accesses in addition

to its utilization. First, to quantify the relationship of the

resources accessed by tasks, the resource similarity between

two tasks Ti and Tj is defined as ωi,j = |SRi ∩ SRj |. Recall

that SRi denotes the subset of resources that are accessed by

task Ti. That is, ωi,j represents the number of resources that

are accessed by both tasks Ti and Tj .

Second, instead of using task utilization as in the conven-

tional WFD heuristic, SA-WFD relies on estimated utilization

of tasks that takes the global waiting time into consideration.

Note that, from Equation 6, the accurate estimation of a

task Ti’s global waiting time BWi rather depends on the

task-to-core mapping. To ensure schedulability of tasks in

the worst-case scenario, more specifically, SA-WFD utilizes

the pessimistic estimated utilization (peui) of each task Ti

that incorporates its maximum global waiting time BWmax
i ,

regardless of a specific task-to-core mapping. More formally,

we have

peui =
ci +BWmax

i

pi
(26)

BWmax
i =

Ncs(Ti)
∑

j=1

BWmax(zi,j) (27)

BWmax(zi,j) =
∑

∀Tx∈Θ(zi,j)

ttmax
x (s(zi,j)) (28)

Here, the task set Θ(zi,j) contains up to (nc − 1) other

tasks that access the resource s(zi,j) and have the longest

access time. That is, whenever task Ti accesses a resource

s(zi,j), it is assumed to wait for other tasks, up to (nc − 1),

on different cores to access s(zi,j) for the longest time. If no

other task accesses the resource s(zi,j), there are Θ(zi,j) = ∅
and BWmax(zi,j) = 0.

Based on the resource similarity and pessimistic estimated

utilizations of tasks, the basic steps of SA-WFD task mapping

scheme are summarized in Algorithm 1. First, the algorithm

calculates peui of tasks based on Equations 26, 27 and 28

8

Algorithm 1 The SA-WFD task mapping algorithm

Input: A set Γ of nt tasks; and nc processing cores;

Output: Ψj(j = 1, · · · , nc); system utilization U ;

1: for (each task Ti ∈ Γ) do

2: calculate BWmax
i from Equation 27;

3: calculate peui =
ci+BWmax

i

pi
;

4: end for

5: Initialize Ψj = ∅ (j = 1, · · · , nc);
6: Sort tasks in non-increasing order of peui (if peui = peuj

and i < j, Ti has higher priority and is in front of Tj);

7: for (each task Ti in above sorted order) do

8: Find core Ox with the maximum Ωx(i) (if more cores

have the same maximum Ω(i), the core with the mini-

mum EUx(Ψx) is chosen; if there is still a tie, the core

with smaller index is chosen);

9: if (EUx(Ψx ∪ {Ti}) ≤ maxncj=1 EUj(Ψj)) then

10: Allocate Ti to core Ox: Ψx = Ψx ∪ {Ti};

11: else

12: Find core Oy with the minimum EUy(Ψy) (if there

is a tie, the core with smaller index is chosen);

13: Allocate Ti to core Oy: Ψy = Ψy ∪ {Ti};

14: end if

15: end for

16: For each task Ti: based on Ψk (k = 1, · · · , nc), calculate

BWi and Bi from Equations 6 and 9, respectively;

17: For each core Ok: calculate Uk from Equation 31;

18: System utilization: U = max{Uk|k = 1, · · · , nc};

(lines 1 to 4). The task set for each core is then initialized

(line 5). Next, tasks are allocated to cores one at a time in the

descending order of their pessimistic estimated utilizations (tie

is broken to favor the task with smaller index). Here, different

from the conventional WFD heuristic that makes decisions

solely based on the accumulated utilization on each core, SA-

WFD considers both the utilization as well as the resource

similarity between tasks. For the next task Ti to be allocated,

we first find a core based on the overall resource similarity

between task Ti and core Ok, which is defined as:

Ωk(i) =
∑

∀Tj∈Ψk

ωi,j (29)

We choose the core Ox that has the maximum Ωx(i). In case

that there are more cores having the same maximum Ω(i), SA-

WFD chooses the core further based on the overall estimated

utilization of these cores, which is defined as:

EUx(Ψx) =
∑

∀Tj∈Ψx

peuj (30)

If there is still a tie, the core with smaller index is chosen

(line 8). Task Ti will be allocated to core Ox as long as such

allocation does not increase the maximum overall estimated

utilization of cores (lines 9 and 10). That is, provided that the

estimated workload on cores is in balance, SA-WFD tries to

allocate the tasks that access similar group of resources to the

same core as such allocation can reduce blocking and waiting

time of tasks and thus improve their schedulability.

However, if the allocation of task Ti to core Ox would

increase the maximum overall estimated utilization of all cores

(which may result in unbalanced workload on cores), SA-WFD

will select the cores following the original principle of WFD.

That is, the core Oy that has the minimum overall estimated

utilization will have the task Ti (lines 12 and 13).

Once the mapping of tasks to cores (i.e., Ψk, k = 1, · · · , nc)
is determined following the above steps, the global waiting

time BWi and local blocking time Bi of each task Ti can

be calculated from Equations 6 and 9, respectively (line 16).

Then, based on the schedulability condition represented by

Equation 10, we calculate the utilization of each core Ok (line

17), which is defined as follows:

Uk = max
∀Ti∈Ψk







Bi

pi
+

pj≤pi
∑

∀Tj∈Ψk

cj +BWj

pj







(31)

Finally, the system utilization (U) is found as the maximum

of Uk of all cores (line 18). Note that, if U > 1, it means

that our SA-WFD scheme fails to obtain a feasible task-

to-core mapping. Otherwise (i.e., U ≤ 1), the task sets Ψk

(k = 1, · · · , nc) represent the feasible mapping of tasks to

cores and each set Ψk is schedulable on core Ok under the

EDF scheduling (see Equation 10).

Complexity of SA-WFD: Suppose that the maximum number

of critical sections of a task is a constant. From Equations 27

and 28, finding out the maximum waiting time for each task

can be done in O(nt · log(nt)) time, where nt is the number

of tasks in the system. Therefore, the pessimistic estimated

utilizations of all tasks can be calculated in O(nt2 · log(nt))
time (i.e., the first for-loop in Algorithm 1). Then, sorting

the tasks according to the estimated utilization can be done

in O(nt · log(nt)) time. When mapping tasks to cores (the

second for-loop in Algorithm 1), finding the appropriate core

for each task requires the calculation of overall resource

similarity and can be done in O(nc · nt) time, where nc is

the number of available cores. Thus, the complexity for the

second for-loop can be found as O(nc · nt2). Similarly, the

complexity for lines 16, 17 and 18 can be found as O(nt2),
O(nc·nt2) and O(nc), respectively. Therefore, the complexity

of SA-WFD can be found as O(max{log(nt), nc} · nt2).

An Example: Next, we further illustrate how our SA-WFD

task-to-core mapping heuristic works through a concrete ex-

ample. Here, we consider a multicore system with three cores

(O1,O2 and O3). For simplicity, the maximum processing

frequency of cores is normalized to fmax = 1 and there are 10
frequency levels from 0.1 to 1 with the step of 0.1. The task

set contains six tasks that will access two global resources.

The timing parameters of the tasks are shown in Table 1 and

their resource access patterns are shown in Figure 2.

First, the maximum global waiting time of the tasks are

calculated according to Equation 27, which are shown in

Table 2. For clarity, the intermediate parameters and the

pessimistic estimated utilizations of tasks are also shown in

Table 2. From the tasks’ estimated utilizations, we can see

9

TABLE 2: The maximum waiting time and estimated utilizations of tasks; and the final task-to-core mapping for the example.

Ti ttmax
i (R1) ttmax

i (R2) BWmax(zi,1) BWmax(zi,2) BWmax
i peui O(Ti) BWi Bi BWi/Ss Bi/Ss

T1 0 1 3 - 3 2+3
10

= 0.5 O2 2 0 2.5 0

T2 2 0 2 2 4 7+4
30

= 0.367 O1 2 0 2.5 0

T3 0 1 3 - 3 2+3
10

= 0.5 O3 1 3 1.25 3.75

T4 0 2 2 - 2 4+2
30

= 0.2 O3 1 0 1.25 0

T5 1 0 3 - 3 3.1+3
10

= 0.61 O1 1 3 1.25 3.75

T6 1 0 3 - 3 2+3
10

= 0.5 O2 2 0 2.5 0

2
T

1
R

3
T

1
T

2
R

5
T

6
T

4
T

0.6 1.6

1
2c =

2
7c =

3
2c =

4
4c =

5
3c =

6
2c =

1
10p =

2
30p =

3
10p =

4
30p =

5
10p =

6
10p =

3.1

Fig. 2: An example: task and resource access patterns.

TABLE 1: The timing parameters of tasks

Ti ci pi ui(
ci
pi

) Ncs(Ti) {s(zi,j)} {ccs(zi,j)}

T1 2 10 0.2 1 {R2} {1}
T2 7 30 0.233 2 {R1,R1} {2,2}
T3 2 10 0.2 1 {R2} {1}
T4 4 30 0.133 1 {R2} {2}
T5 3.1 10 0.31 1 {R1} {1}
T6 2 10 0.2 1 {R1} {1}

that the order of tasks to be allocated under SA-WFD will be

T5, T1, T3, T6, T2 and T4.

Initially, there is no task on any core and Ψj = ∅
(j = 1, 2, 3). The allocation of tasks T5 and T1 results in the

following partition: Ψ1 = {T5}, Ψ2 = {T1} and Ψ3 = ∅,

which is the same as WFD since these two tasks access

different resources. For task T3, it accesses the same resource

(R2) as task T1 and has the preference of being allocated

to core O2. However, if task T3 were allocated to core O2,

its overall estimated utilization (1.0) would be more than the

current maximum overall estimated utilization of all cores

(0.61). In this case, the same as in WFD, core O3 is chosen

as it has the minimum overall estimated utilization and we

have Ψ3 = {T3}. Similarly, task T6 will be allocated to

core O2 that results in Ψ2 = {T1, T6}. Moreover, there is

maxj{EUj(Ψj)} = EU2(Ψ2) = 1.0.

For task T2, which accesses the same resource R1 as that of

tasks T5 and T6, both cores O1 and O2 have the same overall

resource similarity Ω1(2) = Ω2(2) = 1. Here, core O1 has

smaller overall estimated utilization (EU1(Ψ1) = 0.61) and

will be task T2’s preference. Note that, allocating task T2 to

core O1 leads to EU1(Ψ1 ∪ {T2}) = 0.977, which is smaller

than that of core O2 (which has the current maximum overall

estimated utilization 1.0). That is, SA-WFD finally allocates

task T2 to core O1 and there is Ψ1 = {T5, T2}.

Following the same steps, after task T4 is allocated, the

final task-to-core mapping can be obtained as: Ψ1 = {T5, T2},

Ψ2 = {T1, T6} and Ψ3 = {T3, T4}. From this mapping,

the final BWi and Bi for each task can be calculated by

Equations 6 and 9, respectively, which are also shown in

Table 2. Then, from Equation 31, we can get the utilizations

on the cores as U1 = 0.71, U2 = 0.8 and U3 = 0.6,

respectively. Finally, the system utilization can be determined

as U = max3j=1{Uj} = 0.8.

For comparison, based solely on tasks’ utilizations (as

shown in Table 1), the order of tasks being allocated under

the conventional WFD is T5, T2, T1, T3, T6 and T4. The

result WFD mapping can be found as ΨWFD
1 = {T4, T5},

ΨWFD
2 = {T2, T6} and ΨWFD

3 = {T1, T3} as shown in

Table 3. Based on the mapping, we can further get the

utilizations for the cores as UWFD
1 = 0.81, UWFD

2 = 0.6
and UWFD

3 = 0.8 from Equation 31, and thus we have

UWFD = max3j=1{U
WFD
j } = 0.81.

Although the task set is schedulable under both WFD and

SA-WFD, the average utilization for cores under WFD is

higher than that of SA-WFD. Moreover, from Section 6.2, we

can see that SA-WFD can significantly improve the schedula-

bility of tasks.

TABLE 3: The result task-to-core mapping of WFD

Ti O(Ti) BW (zi,1) BW (zi,2) BWi Bi

T1 O3 2 - 2 0
T2 O2 1 1 2 0
T3 O3 2 - 2 0
T4 O1 1 - 1 0
T5 O1 2 - 2 3
T6 O2 1 - 1 3

4.3 Static Uniform Slowdown Scheme

Taking the common voltage/frequency limitation for cores on

a VFI into consideration, the simplest static approach is to

assign a uniform scaled frequency for all (cores and) VFIs.

Recall that the execution time of a task is assumed to scale

linearly with its running speed. When all tasks are executed

at the scaled speed U , from Equations 6, 9 and 31, we know

that the blocking and waiting times of tasks as well as system

utilization are all scaled linearly. To ensure the schedulability

of tasks on all cores, the uniform frequency can be safely

found as Ss = fl+1, where fl < U ≤ fl+1 [34]. Hence, for

the previous example, we have Ss = 0.8 for the SA-WFD

10

mapping. In contrast, Ss = 0.9 for the WFD mapping.

Schedulability of Uniform Slowdown Scheme: For the

uniform slowdown scheme, we can directly derive the new

sufficient feasibility condition for any processing core Ok from

Equation (10) as:

∀Ti ∈ Ψk,





Bi

pi
+

pj≤pi
∑

∀Tj∈Ψk

cj +BWj

pj



 ·
1

Ss
≤ 1 (32)

Hence, the system utilization with a given scaled frequency

Ss can be found as U(Ss) = max{Uk(Ss)|k = 1, · · · , nc},

where Uk(Ss) can be obtained from Equation 31.

Lemma 1. The uniform scaled frequency scheme guarantees

the schedulability of all tasks if U(Ss) ≤ 1.

Proof: We prove the claim by contradiction, which is

similar to the proofs in [8], [54]. Suppose that this claim is

false and a job Ji,j on core Oa(Ti ∈ Ψa) misses its deadline

at time t. This implies that Ji,j’s deadline is t. We find a time

point t′ before t, which is the latest time such that no active

job which arrived before t′ has a deadline equal to or sooner

than t on Oa. By appropriately choosing t′, Oa is never idle

during [t′, t]. If such t′ does not exist, we let t′ = 0 .

We define A as the set of jobs that arrived in the time

interval [t′, t] on Oa and have deadlines equal to or sooner

than t. Let Jm,n (if any exists) be a job with deadline later

than t on Oa, which is waiting for or accessing a resource

at time t′. Observe that Jm,n must issue a request for this

resource prior to time t′: if not, Jm,n is preempted at time t′

and cannot continue its execution until time t subject to our

adopted resource access protocol.

According to above assumptions and analysis, the maximum

execution time of Jm,n in [t′, t] is upper-bounded by Bi

Ss

according to a given feasible task-to-core mapping (e.g., SA-

WFD). Let X = t− t′. During [t′, t], the maximum processor

demand by jobs pertaining to set A ∪ {Jm,n} is:

fmax

Ss
·

(

Bi +

pk≤pi
∑

∀Tk∈Ψa

(ck +BWk) · (⌊
X − pk

pk
⌋+ 1)

)

Since Ji,j misses its deadline at time t, the total processor

demand in [t′, t] exceeds X . Then, we have:

fmax

Ss
·

(

Bi +

pk≤pi
∑

∀Tk∈Ψa

(ck +BWk) · (⌊
X − pk

pk
⌋+ 1)

)

> X

For ∀Jk,x(Jk,x ∈ A), we have X
pk

≥ ⌊X
pk
⌋ and pk ≤ pi ≤

X . Then, there is:

fmax

Ss
·

(

Bi

X
+

pk≤pi
∑

∀Tk∈Ψa

(ck +BWk) · (
X − pk

pk
+ 1) ·

1

X

)

> 1

⇒
fmax

Ss
·

(

Bi

pi
+

pk≤pi
∑

∀Tk∈Ψa

ck +BWk

pk

)

> 1

which contradicts with Equation 32.

Algorithm 2 SA-WFD-Diff: find frequencies for VFIs

Input: A feasible task-to-core mapping Ψi(i = 1, · · · , nc),
where Ui ≥ Uj for 1 ≤ i < j ≤ nc;

Output: Scaled frequencies SGi
(i = 1, · · · , ng);

1: SG1
= Ss; //the first VFI has the highest frequency

2: for (each VFI represented by Gi, i = 2, · · · , ng) do

3: Find the lowest frequency fk(f1 ≤ fk ≤ SGi−1
) for

the remaining VFIs: Gi to Gng , such that:

4: //Recalculate BWj ,Bj , Uk with SG1
, . . . , SGi−1

, fx;

5: max{Uk|k = 1, . . . , nc} ≤ 1;

6: SGi
= fk;

7: i = i+ 1;

8: end for

4.4 One Frequency per VFI

Although SA-WFD aims at obtaining a workload-balanced

task-to-core mapping, the utilization on each core can vary.

Thus, instead of assigning a single uniform frequency, we can

assign individual frequencies for different VFIs on the chip to

get more energy savings.

Without loss of generality, for the result mapping of tasks

to cores, we assume that there is Ui ≥ Uj(1 ≤ i < j ≤ nc).
Otherwise, we can simply switch the task sets for the cores.

Moreover, we use G1 to represent the first VFI that consists of

the first group of nc
ng cores {O1, · · · ,O nc

ng
}, and so on. That is,

G1 has the most loaded cores while Gng has the least loaded

ones. Following the intuition that a VFI with less loaded cores

should have a lower frequency, the scaled frequencies for the

VFIs can be found iteratively as shown in Algorithm 2. Here,

the static processing frequency of VFI Gi is denoted by SGi
.

Initially, we assign Ss to the first VFI (line 1). From above

discussions, we know that it would be safe to assign Ss for

all other VFIs. However, for less loaded cores in other VFIs,

it is more energy efficient to have lower frequencies. Note

that, scaling down the frequency for one VFI will affect

the schedulability of tasks on other cores due to increased

global waiting time. Thus, for the remaining VFIs, we

find the lowest common frequency fk (which is no more

than Ss) that can guarantee the schedulability of tasks on

all cores (lines 3 to 5). That is, we need to re-calculate

all cores’ utilizations (and thus all tasks’ BWj and Bj)

with the new frequency. Please refer to the formalized

description of task mapping problem as stated in Section 4.1.

Then, fk is assigned to the second VFI (line 6). Repeat

the steps, the frequencies for all VFIs can be found iteratively.

Time complexity analysis: Suppose that the maximum

number of critical sections of a task and that of discrete

voltage/frequency levels are constants. The utilization

adjustment of VFIs can be done in O(nc · log(nc)) time.

From Section 4.1, finding out the maximum global waiting

time of a task requires O(nt) time; while calculating the

maximum blocking time for a task can also be done in

O(nt) time. The calculation of a core’s utilization (line 4 in

Algorithm 2) requires O(nt2) time. As the number of VFIs

is at most nc, the time complexity of SA-WFD-Diff can be

11

found as O(nc2 · nt2).

Schedulability Analysis of One Frequency per VFI: When

each VFI has a different scaled frequency, the sufficient

feasibility condition for any processing core Ok ∈ Gg can

be easily transformed from Equation 32:

∀Ti ∈ Ψk,





Bi

pi
+

pj≤pi
∑

∀Tj∈Ψk

cj
SGg

+BWj

pj



 ≤ 1 (33)

It is noteworthy that the synchronization overhead of task Ti

(e.g., BWi and Bi) has been scaled down from Equations 21

and 22 in Section 4.1. Following with similar reasonings of

Lemma 1, we can easily derive the following lemma.

Lemma 2. The static scheme with a different scaled frequency

for each VFI guarantees the schedulability of all tasks if the

original mapping is scheduleable.

5 ONLINE SYNCHRONIZATION-AWARE DVFS

It is well-known that real-time tasks typically take only a small

fraction of their WCETs at runtime [25]. The actual synchro-

nization overhead of a task is usually less than the worst-case

one that is determined at off-line stage as well. Moreover,

with the suspension-based resource access protocol, a core

can execute other tasks while a task is waiting for its resource

that is held by another task on different core (see Rule 3 in

Section 3.3), which can effectively reduce the actual timing

overhead due to task synchronization. Therefore, significant

amount of dynamic slack can be expected at runtime that could

be exploited for better energy savings.

However, different from most existing dynamic energy

management schemes [6], [41], [56], exploiting dynamic slack

for tasks with shared resources in VFI-based multicore real-

time systems introduces several new challenges.

• First, slowing down the execution of critical sections

when tasks access shared resources can affect the actual

waiting time of other tasks on different cores, which may

lead to deadline misses.

• Second, the amount of dynamic slack reclaimed by a task

and its scaled frequency need to conform to the common

frequency constraint for the cores on a VFI.

• Third, the pre-execution of tasks on a core when one of its

tasks is waiting for a resource requires non-trivial slack

management techniques.

To address these challenges, we propose a synchronization-

aware DVFS (SA-DVFS) framework that consists of a set of

slack management policies, which aim at fully and appropri-

ately utilizing dynamic slack to improve energy savings while

guaranteeing that there is no deadline miss at runtime even

with task synchronization being considered. In what follows,

to precisely describe our approaches, we distinguish the term

task from job.

As the foundation of our SA-DVFS framework, we first

review the essential ideas and basic operations of wrapper-

jobs, which have been studied as an effective slack manage-

ment mechanism for a single processor system under EDF

scheduling [55].

5.1 Slack Management with Wrapper-Jobs

A wrapper-job WJ represents a piece of dynamic slack with

two parameters (c, d): the size c that denotes the amount of

slack and the deadline d that equals to that of the job giving

rise to this slack. Wrapper-jobs are kept in a wrapper-job

queue (WJQ) with the increasing order of their deadlines (i.e.,

wrapper-jobs with smaller deadlines are in the front of WJQ).

The basic operations of wrapper-jobs and WJQ can be

summarized as follows [55]:

• GenerateSlack(c, d, WJQ): Create a wrapper-job WJ with

parameters (c, d) and add it to WJQ with increasing

deadline order. Here, all wrapper-jobs in WJQ represent

dynamic slack with different deadlines. Therefore, the

newly created WJ may merge with an existing wrapper-

job in WJQ if they have the same deadline;

• CheckSlack(d, WJQ): Find out the total size of all

wrapper-jobs that have their deadlines no later than d;

• ReclaimSlack(c, WJQ): Remove wrapper-jobs from the

front of WJQ with accumulated size of c. The last one

may be partially removed by adjusting its remaining size.

At runtime, unclaimed wrapper-jobs compete the processor

with ready jobs in a ready-job queue (RJQ) that are kept in

the increasing order of their deadlines as well (tie is broken to

favor the job of task with smaller index). When both queues

are not empty and the header wrapper-job WJh of WJQ has

earlier deadline (i.e., higher priority) than that of the header

ready job Jh of RJQ, WJh will wrap the execution of Jh
by lending its time to job Jh. When the wrapped execution

completes, job Jh returns its borrowed slack by creating a

new piece slack with the size of wrapped execution length and

Jh’s deadline (essentially, the slack is pushed forward with a

later deadline). When RJQ is empty, the header wrapper-job

WJh executes no-ops and the corresponding slack is wasted.

Interested readers can refer to [55] for more details.

After the static scheme obtains the feasible task-to-core

mapping and uniform scaled speed Ss (see Section 4), the

effective utilization for core Ok can be found as Uk(Ss) =
Uk·fmax

Ss
. If Uk(Ss) < 1, there exists spare capacity on

core Ok. To incorporate such spare capacity at runtime, a

dummy task Tk,0 with utilization uk,0 = 1 − Uk(Ss) can be

created for core Ok. Here, the period of Tk,0 can be set as

pk,0 = min{pi|∀Ti ∈ Ψk} (i.e., the minimum period of tasks

assigned to core Ok) [55]. The dummy task does not access

any resource and has its actual execution time always being

zero. Therefore, it will not affect the schedulability of other

tasks under EDF. Similarly, the dummy task scheme can be

applied to the SA-WFD-Diff, where each VFI can be assigned

an individual initial frequency, with only minor modifications.

Moreover, the dummy task can periodically transform the

spare capacity as dynamic slack (with the amount of pk,0 ·uk,0

for every period of pk,0), which can be reclaimed together with

other dynamic slack for more energy savings. In what follows,

we assume that the task set for each core Ok is augmented

with a dummy task (i.e., Ψk = Ψk + {Tk,0}). Furthermore,

with partitioned-EDF scheduling, each core Ok has its own

ready job queue RJQk and wrapper-job queue WJQk.

12

Algorithm 3 : High-level steps for SA-DVFS

1: //Core Ok on a VFI Gg to execute job Ji,j at time t;
2: if (Ji,j’s current section is non-critical) then

3: if (non-critical section is ready to run) then

4: Slack reclamation policy; //Section 5.3

5: else if (non-critical section stops due to completion, a

resource request, being preempted or interrupted) then

6: Slack release and preservation policies; //Section 5.4

7: end if

8: else if (Ji,j’s current section is critical) then

9: if (critical section is suspended) then

10: Slack stealing policy; //Section 5.5

11: else if (suspension is over) then

12: Slack preservation for suspension; //Section 5.5

13: else if (Ji,j is ready to execute its critical section) then

14: Constrained slack allocation policy; //Section 5.6

15: else if (critical section completes) then

16: Slack release policy;

17: end if

18: end if

5.2 Overview of Synchronization-Aware DVFS

Based on the wrapper-job mechanism to manage slack, the

high-level steps for SA-DVFS are summarized in Algorithm 3.

Our integrated slack management framework deals with the

non-critical and critical sections, respectively. The policies

applied to non-critical sections include:

• There is a slack reclamation policy for the non-critical

sections of jobs that can reclaim dynamic slack inde-

pendently on each core, which obtains the desired scaled

frequency for the job based on available slack (line 4);

However, the job’s actual execution speed is determined

by the common frequency of the VFI that its core are on;

• When the execution of a job’s non-critical section stops

due to completion, a resource request, being preempted

or interrupted, the slack release and preservation poli-

cies will calculate the actual amount of slack utilized,

push forward borrowed slack, release unused slack and

preserve slack needed in the future (line 6).

For critical sections, the corresponding approaches are:

• When a job is suspended while waiting for its resource

that is held by another job on a different core, there

is a slack stealing policy to pre-execute the non-critical

sections of other jobs on the same core (line 10);

• Once the suspension is over, the slack preservation policy

is applied to release slack generated due to less task syn-

chronization overhead and to push forward the borrowed

slack if there is any (line 12);

• Moreover, when the job is ready to execute its current

critical section, we have a constrained slack allocation

policy; It limits the amount of slack reclaimed by a job’s

critical section to guarantee there is no deadline miss for

those jobs who may be affected by this slack reclamation

(line 14);

• Finally, when a job’s critical section completes, the slack

release policy is needed (line 16).

Next, we discuss each of these slack management policies

in detail. To simplify the discussion, we assume that all VFIs

initially have the same static uniform scaled frequency Ss.

Later, we will prove that the SA-DVFS framework can work

with different initial frequencies for VFIs (i.e., SA-WFD-Diff)

as well.

From [55], we have the following supposition to help

understand the schedulability investigation of our SA-DVFS

slack management policies.

Hypothesis 1. Before applying our slack management poli-

cies, at each invocation time, the feasibility of jobs subject to

the wrapper-job scheme is guaranteed.

5.3 Slack Reclamation for Non-Critical Sections

For the non-critical section of a real-time job, its execution

on one core has no synchronization effect on other jobs.

Therefore, slack reclamation for non-critical sections can be

performed independently on each core provided that it does

not affect the schedulability of jobs on the same core.

Suppose that core Ok on VFI Gg is about to process the

non-critical section of job Ji,j at time t. Next, we define

a few auxiliary notations for easy presentation of the slack

management policies:

• cremns (Ji,j , t): the remaining WCET of Ji,j’s non-critical

section at time t; Initially, there is cremns (Ji,j , t
r
i,j) =

cns(Ti) at Ji,j’s release time tri,j ;

• FSns
i,j (t): the feasible speed for Ji,j’s non-critical section

at time t; FSns
i,j (t) guarantees that Ji,j’s non-critical

section can complete in time; Initially, FSns
i,j (t

r
i,j) = Ss;

• trs(Ji,j , t): the total amount of reclaimable slack for job

Ji,j at time t; Note that a job can only reclaim the slack

that has its deadline no later than that of the job [6], [55];

• CF exp
k : the expected running frequency of core Ok; it

equals to the feasible speed of Ok’s current job Ji,j ;

• Fg: the actual frequency for active cores on a VFI Gg;

• W (t′, t, Fg): the amount of work being performed in the

interval [t′, t] at speed Fg, that is, (t − t′) · Fg; If the

Ji,j’s non-critical section runs at speed Fg in the interval

[t′, t], there is

cremns (Ji,j , t) = cremns (Ji,j , t
′)−

W (t′, t, Fg)

fmax

= cremns (Ji,j , t
′)−

(t− t′) · Fg

fmax

(34)

With these notations, the slack reclamation policy for non-

critical section of job Ji,j at time t is straightforward and its

steps can be easily summarized as follows.

• Step 1: find out the amount of reclaimable slack for Ji,j
as:

trs(Ji,j , t) = CheckSlack(di,j ,WJQk)

where di,j is Ji,j’s deadline;

• Step 2: determine the feasible speed for Ji,j’s non-critical

section FSns
i,j (t), which can be given as:

FSns
i,j (t) =

cremns (Ji,j , t) · fmax

trs(Ji,j , t) +
cremns (Ji,j ,t)·fmax

FSns
i,j

(tlast)

(35)

13

where tlast is the end time for Ji,j’s non-critical section’s

last execution and FSns
i,j (t

last) is its old feasible speed.

Again, due to the limitation of discrete frequencies, we

have FSns
i,j (t) = fl+1 if fl < FSns

i,j (t) ≤ fl+1. Thus, the

amount of slack reclaimed by Ji,j’s non-critical section

is:

Skrec =

(

cremns (Ji,j , t)

FSns
i,j (t)

−
cremns (Ji,j , t)

FSns
i,j (t

last)

)

· fmax (36)

which is removed from WJQk with operation

ReclaimSlack(Skrec,WJQk);
• Step 3: set core Ok’s expected frequency as CF exp

k =
FSns

i,j (t). Finally, to guarantee the feasibility of jobs on

all cores in the VFI Gg, the actual processing frequency

is determined as:

Fg = max{CF exp
x |∀Ox ∈ Gg}

Note that, if the value of Fg does not change during this

process, Ji,j’s non-critical section will be processed at speed

Fg. However, when the newly determined Fg is different from

its old value, a DVFS synchronization is first performed where

the execution of jobs on all active cores in Gg is interrupted

to update the execution timing information of jobs (such as

remaining WCET; see Section 5.4). Then, the new frequency

Fg will be set through a DVFS operation.

Incorporating the wrapper-job scheme and Hypothesis 1, it

is easy to have:

Lemma 3. The slack reclamation policy for non-critical

sections meets time constraints of all jobs.

5.4 Slack Release and Preservation Policies

From the slack reclamation policy, we can see that the actual

processing speed of a job can be higher than its feasible speed

due to the common frequency limitation for cores on a VFI.

That is, a job may not be able to use up its reclaimed slack.

Therefore, when the execution of a job’s non-critical section

stops 3, it can release some of its reclaimed slack early, which

can be exploited by the next running jobs. However, instead

of releasing all its un-used slack, the job needs to preserve

some of the reclaimed slack to guarantee that its remaining

non-critical sections can complete in time with its previous

feasible speed. Here, the motivation is to efficiently and fairly

utilize the available slack such that the jobs can run at similar

frequencies for more energy savings.

Moreover, due to the limit of discrete frequencies, a job may

not have reclaimed all its reclaimable slack. Hence, the job

may borrow some of the remaining reclaimable slack, which

needs to be pushed forward due to the wrapped-execution (see

Section 5.1). Furthermore, when the non-critical sections of a

job did not use up its WCET and complete early, new slack

will be generated.

Suppose that the non-critical section of job Ji,j was invoked

at time t′ on core Ok (∈ Gg) and stops its execution at time

3. From previous discussions, the execution of a job’s non-critical section
may stop due to a) being preempted by a newly arrived high priority job with
earlier deadline; b) being interrupted due to a DVFS operation; c) the start of
the job’s next critical section; or d) (early) completion.

t. The steps for the slack release and preservation policies can

be summarized as follows:

• Step 1: Update the remaining work of Ji,j’s non-critical

sections from Equation 34;

• Step 2: If the actual processing speed is higher than the

feasible speed of Ji,j’s non-critical sections (i.e., Fg >
FSns

i,j (t
′)), the amount of early released slack is:

Skrel =

(

Fg

FSns
i,j (t

′)
− 1

)

· (t− t′) (37)

otherwise, Skrel = 0;

• Step 3: Suppose that, after slack reclamation, the amount

of remaining reclaimable slack on Ok for Ji,j is Skrem =
CheckSlack(di,j , WJQk). During the interval [t′, t], the

amount of borrowed slack by Ji,j is:

Skbor = min{Skrem, (t− t′)} (38)

which should be first removed from WJQ with operation

ReclaimSlack(Skbor, WJQk);

• Step 4: If Ji,j’s non-critical sections did not finish,

no new slack is generated. We have Skgen = 0 and

FSns
i,j (t) = FSns

i,j (t
′); otherwise,

Skgen =
cremns (Ji,j , t) · fmax

FSns
i,j (t

′)
(39)

• Step 5: Finally, the borrowed slack is pushed forward,

and the early released slack and the newly generated slack

are added to WJQk with a combined operation:

GenerateSlack(Skrel + Skbor + Skgen, di,j ,WJQk)

Lemma 4. The approach to calculate the amount of early

released slack (Equation 37) ensures no deadline miss.

Proof: At time t′, job Ji,j’s feasible speed is set as

FSns
i,j (t

′). Then, it is expected that the work of Ji,j being

performed during [t′, t] will be FSns
i,j (t

′) ·(t−t′). As its actual

work during the interval [t′, t] is Fg · (t− t′), the extra work

that has been done is (Fg − FSns
i,j (t

′)) · (t− t′).

Note that, our slack management framework ensures the

deadlines of jobs subject to their newest feasible speeds. Job

Ji,j’s feasible speed remains invariable at time t from Step

4 even when it finishes at time t. Therefore, adhering to

the current feasible speed of Ji,j’s non-critical section (i.e.,

FSns
i,j (t

′)), the amount of its early released slack Skrel can

be determined as:

(Fg − FSns
i,j (t

′)) · (t− t′)

FSns
i,j (t

′)
=

(

Fg

FSns
i,j (t

′)
− 1

)

· (t− t′)

From the wrapper-job scheme, Hypothesis 1 and Lemma 4,

we can have:

Lemma 5. Our slack release and preservation policies guar-

antee that all jobs can finish in time.

14

5.5 Slack Stealing Policy for Pre-Execution

Recall that the schedulability condition represented in Equa-

tion 10 incorporates the global waiting time for every critical

section of a job. However, the suspension-based resource

access protocol (Rule 3; see Section 3.3) adopted in this work

allows a core to execute the non-critical sections of other ready

jobs when one of its ready jobs is suspended and waiting for

a resource that is currently held by jobs on other cores. Such

pre-execution by stealing the waiting time ensures that those

pre-executed jobs will complete early subject to their current

feasible speeds and more dynamic slack can be generated for

better energy savings.

Suppose that core Ok starts suspending the execution of a

job Ji,j’s critical section zi,x because its resource s(zi,x) is not

available at time tstart. According to Rule 3 of the resource

access protocol, Ok will repeatedly pre-execute the non-

critical section of its earliest deadline job non-preemptively

until s(zi,x) becomes accessible for Ji,j at time tend.

To avoid being an obstacle for a lower frequency of the

VFI and enable such pre-execution be processed at the lowest

possible speed, the expected running frequency of core Ok

is temporarily set as CF exp
k = f1 at time tstart. After that,

a DVFS operation arises whenever possible. Please be noted

that the current feasible speed of the pre-executed job’s non-

critical section remains invariable to guarantee no deadline

miss. When there is no job that has its non-critical section

ready for execution, Ok becomes idle and real waiting occurs.

For each job Ja,b that is pre-executed by core Ok during the

time interval [t′, t] at speed Fg, the remaining WCET of Ja,b’s

non-critical section is updated from Equation 34. The amount

of newly generated slack Skgen due to such pre-execution can

be found as:

Skgen =
(t− t′) · Fg

FSns
a,b(t

′)
(40)

Specifically, if Ja,b’s non-critical section completes at time

t, additional amount of new slack due to early completion will

be generated and we have

Skgen = Skgen +
cremns (Ja,b, t) · fmax

FSns
a,b(t

′)

In the end, the new slack will be added to WJQk through

operation GenerateSlack(Skgen, da,b,WJQk).

Slack preservation for suspension: Once the resource s(zi,x)
becomes accessible for job Ji,j at time tend, the amount of

actual waiting time for resource s(zi,x) is

BW act(zi,x) = tend − tstart

Thus, the amount of slack borrowed by job Ji,j during its

waiting time is

Skbor = min{BW act(zi,x), trs(Ji,j , tend)} (41)

Moreover, due to possible shorter waiting time for resource

s(zi,x), the amount of new slack generated is

Skgen =
BW (zi,x) · fmax

Ss
−BW act(zi,x) (42)

Then, the slack in WJQk will be updated with two opera-

tions:

ReclaimSlack(Skbor,WJQk)

GenerateSlack(Skbor + Skgen, di,j ,WJQk)

to push forward the borrowed slack and add the newly

generated slack.

By incorporating the wrapper-job scheme and Hypothesis 1,

there is:

Lemma 6. The slack stealing policy for pre-execution ensures

the deadlines of all jobs.

5.6 Constrained Slack Allocation: Critical Sections

Once the critical section zi,x of job Ji,j obtains the permission

to access its resource Rr = s(zi,x) at time t on core Ok(∈
Gg), we may be able to reclaim some slack and process zi,x
at a speed lower than its initial uniform speed Ss. However,

as discussed earlier, the execution of a job’s critical section

affects not only the local blocking time of high priority jobs

on the same core but also the global waiting time of other

jobs’ critical sections on different cores.

Therefore, in addition to Ji,j’s reclaimable slack trs(Ji,j , t)
at time t, the following two constraints have to be satisfied to

ensure that all jobs can finish in time:

• C1: For any job Ja,b on Ok that can be blocked by Ji,j ,

its actual blocking time needs to be bounded by Ba·fmax

Ss
;

• C2: For any job Je,l that has a critical section ze,y to

access the resource Rr on other cores, its actual waiting

time for the execution of Ji,j’s critical section zi,x needs

to be bounded by
BW (ze,y)·fmax

Ss
.

Each of the above constraints essentially imposes a limit

on the amount of slack that can be reclaimed by Ji,j’s critical

section zi,x. In what follows, we discuss how to obtain such

slack limits sc1limit and sc2limit, which correspond to the first

and second constraints, respectively.

Slack limit due to local blocking time: From Property 1 in

Section 3.3, we know that Ji,j’s critical section zi,x can only

block jobs of tasks in the set Ψi
k = {Tm|Tm ∈ Ψk∧pm < pi}.

If task Ti has the smallest period (i.e., relative deadline) in core

Ok’s task set Ψk, we have Ψi
k = ∅ and there is no slack limit

because of local blocking time. That is, sc1limit = +∞.

Otherwise, for every task Tm ∈ Ψi
k, we need to have:

BW act(zi,x) +
ccs(zi,x) · fmax

Ss
+ sc1limit ≤

Bm · fmax

Ss
(43)

where BW act(zi,x) represents the actual time waiting for

Ji,j’s critical section zi,x. Here, the left side of the inequality

stands for the longest blocking time that can be experienced

by Tm’s jobs due to the invocation of zi,x. Therefore, sc1limit

can be obtained as:

sc1limit =min{
fmax · (Bm − ccs(zi,x))

Ss
−BW act(zi,x)|

∀Tm ∈ Ψi
k}

(44)

Slack limit due to global waiting time: For jobs on other

cores that have critical sections to access resource Rr, not all

15

their global waiting times will be affected when the execution

of Ji,j’s critical section zi,x is scaled down. Note that, for the

jobs that are currently in Rr’s FIFO waiting queue at time

t, each of them belongs to a different core by Property 3.

Suppose that these jobs form a job set Φr and their cores

form a set X.

It can be seen from Property 3 that, for the cores in X, no

other job’s waiting time will be affected by zi,x except the

ones in Φr. If Φr = ∅, there is no limit due to global waiting

time and sc2limit = +∞.

Otherwise, for any job Jq,a ∈ Φr, suppose that it enters

Rr’s FIFO queue at time tq and its current critical section that

needs to access Rr is zq,c. Without taking slack reclamation

into consideration, the expected waiting time for zq,c can be

found as:

BW exp(zq,c) =
ccs(zi,x) +

∑tb<tq
∀Jb,l∈Φr

ccs(zb,e)

Ss
· fmax

+ t− tq

(45)

where zb,e is the current critical section of job Jb,l that is in

front of Jq,a in Rr’s FIFO queue.

Recall that
BW (zq,c)·fmax

Ss
represents zq,c’s worst case wait-

ing time. Therefore, we have

s
c2
limit = min

{

BW (zq,c)·fmax

Ss
−BW

exp(zq,c)|∀Jq,a ∈ Φr

}

(46)

While for other cores having at least one task that needs to

access Rr but not in Y = (X ∪ {Ok}), we define another set

as:

Z = {Om|∃Tq ∈ Ψm ∧Rr ∈ SRq ∧ Om /∈ Y} (47)

If Z = ∅, there is no other constraint for sc2limit. Otherwise,

we further define the set O that consists of any core Om ∈ Z

where all its tasks that need to access Rr complete before/at

time t and release their next jobs on/after Ji,j’s deadline

di,j . We can see that, on each core in set O, no job will

access resource Rr during the execution of zi,x, and thus the

slowdown of zi,x cannot affect the schedulability of any job

on any core in set O from Hypothesis 1.

In case O = Z (i.e., no task on cores in Z will be affected

by zi,x), there is no other constraint for sc2limit as well. For

the case of Z ̸= O, it is possible for a job on a core in set

(Z−O) being affected by zi,x. Here, if such a job waits for

Ji,j’s critical section zi,x, it will need to wait for all jobs in

Φr. Thus, based on the waiting time defined in Equation 8,

the other upper-bound of sc2limit is

fmax

Ss
· (
∑

Om∈O

tpmax
m (Rr) +

∑

Oy∈Y

(tpmax
y (Rr)− ccs(zq,c))) (48)

where zq,c is the current critical section of the job on core Oy

to access resource Rr.

The first part in Equation 48 represents the slack generated

due to the fact that on any core in set O, no job will access

resource Rr during the execution of critical section zi,x; while

the second part corresponds to the slack generated due to

shorter time for accessing resource Rr on each core in set

Y than the worst case estimation.

Finally, the amount of slack that can be safely reclaimed by

Ji,j’s critical section zi,x can be obtained as

ssafe = min{trs(Ji,j , t), s
c1
limit, s

c2
limit} (49)

Then, similar to Section 5.3, the feasible speed for zi,x,

the expected frequency for core Ok and the real processing

frequency of the VFI Gg can be set accordingly. Once the

execution of zi,x completes, the slack release and preservation

policies discussed in Section 5.4 can be applied as well except

that no slack is needed to be preserved for zi,x.

5.7 An Example Execution of SA-DVFS

In what follows, we illustrate how SA-DVFS works by consid-

ering one actual execution of the tasks in Figure 2 discussed in

Section 4.3. We assume that each job takes half of its WCET

except that the non-critical section of job J5,1 takes 1 unit

at the maximum speed. Note that, the cores O1, O2 and O3

constitute one VFI G1 and Ss = 0.8.

As described in Section 5.1, the wrapper-jobs corresponding

with dummy tasks on cores O1, O2 and O3 are respectively

(1.125, 10), ∅ and (2.5, 10) at time 0 .

At time 0, FSns
3,1(0) is 1

1/0.8+2.5 by Equation 35 and is set as

0.3 subject to discrete frequencies. Then, Skrec =
1
0.3 −

1
0.8 =

2.0833 by Equation 36. Similarly, we can obtain FSns
1,1(0) =

0.8, FSns
5,1(0) = 0.6, and the corresponding Skrec of jobs

J1,1 and J5,1 are respectively 0 and 0.875. Thus, the shared

frequency F1 is 0.8 at time 0 and the wrapper-jobs are adjusted

as shown in Figure 3.

At time 0.3125, J3,1 issues a request for resource R2.

cremns (J3,1, 0.3125) is 0.75 (1−0.8·0.3125) and its Skrel due to

early released slack is calculated as 0.5208 ((0.80.3 −1) ·0.3125)

from Equation 37. Moreover, the amount of slack borrowed

during [0, 0.3125] on O3 is 0.3125 (min{0.3125, 0.3125−0})

from Equation 38 and returned without changing the cor-

responding wrapper-job. Thus, the size of wrapper-job on

core O3 is 0.9375 (0.4167 + 0.5208). Similarly, Skrel of

jobs J1,1 and J5,1 are 0 ((0.80.8 − 1) · 0.3125) and 0.1042

((0.80.6 − 1) · 0.3125). Thus, the size of wrapper-job on O1 is

0.3542 units (0.1042 + 0.25).

When J3,1 enters the queue of R2 at time 0.3125, it immedi-

ately holds R2. Since
BW (z3,1)

Ss
is 1.25 as shown in Table 2, the

available slack time on O3 is 2.1875 units (1.25+0.9375) now

from Equation 42. We can have sc1limit = +∞ (Ψ3
3 = ∅) and

sc2limit =
2−1
0.8 = 1.25 from Equation 48 (Φr = ∅, Z = {O2}

and O = ∅). Thus, ssafe is 1.25 by Equation 49 and the

feasible speed for J3,1 to execute z3,1is 0.4 (1
1

0.8
+1.25

) from

Equation 35. In the end, the available slack time on O3 is

0.9375 units (2.1875− 1.25) at time 0.3125.

At time 0.375, J1,1 issues a request to access resource R2

that is currently held by J3,1. We can have that Skrel of jobs

J3,1, J1,1 and J5,1 are respectively 0.0625 ((0.80.4 −1) ·(0.375−
0.3125)), 0 and 0.0208 ((0.80.6 − 1) · (0.375 − 0.3125)) from

Equation 37. Thus, the amount of available slack on O3 is 1

unit and that on O1 is 0.375 units now.

When J6,1 is pre-executed by our slack stealing policy

at time 0.375, the frequency of the VFI is set as 0.6

16

J5,1

J3,1

J1,1

slack stealing

J3,1

J6,1

J5,1

PC3

PC2

PC1

0.3125

0.375

0.7916

1.125

0.50 1.0 Time

invocation time

J3,1

J1,1

J5,1

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10

J4,1

2.479

1.4375 2.417

J6,1

J4,1

J2,1 J2,1 J2,1

J6,1

J4,1

3.042

6.854

3.354

3.729 4.354

8.104
9.354

WJQ3

WJQ2

WJQ1

Time 0 0.3125 0.375 0.7916 1.125 1.4375

⋅⋅⋅

2.417 2.479

3.042 3.3543.104

WJQ3

WJQ2

WJQ1

Time 3.729 4.354 6.854 8.104 9.354

1.75

3.104

1.75

(0.4167,10)

(0.2500,10)

J2,1

J3,1
J4,1J4,1

J1,1

J5,1

J5,1

J2,1

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅
(0.9375,10)

(0.3542,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅
(1.0000,10)

(0.3750,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(0.3125,10)

(1.0000,10)

(0.3750,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(2.0625,10)

(1.3750,10)

(0.3750,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(2.0625,10)

(0.6458,10)

(0.6875,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(0.0625,10)

(1.1666,10)

(0.2500,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(5.3958,10)

(1.1666,10)

(0.2500,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(3.2083,10)

(2.5208,30)

(0.6667,10)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(3.3958,10)

(2.5208,30)

(1.9792,30)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(6.6458,10)

(2.5208,30)

(1.9792,30)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(6.2708,10)

(1.2708,30)

(1.9792,30)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(5.6458,10)

(8.1458,30)

(1.1458,30)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(3.1458,10)

(5.6458,30)

(2.3958,30)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(1.8958,10)

(4.3958,30)

(0.7292,30)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(0.6458,10)

(3.1458,30)

(8.2292,30)

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

(5.3958,10)

(2.5208,30)

(0.1042,10)

⋅⋅⋅

⋅⋅⋅

Fig. 3: The execution of the first job for each task.

(max{0.6, 0.1, 0.4}) as the expected running frequency of O2

is set as 0.1 (i.e., f1) by our approach.

At time 0.7916, when J6,1 intends to access R1, it is

suspended subject to Rule 3 (see Section 3.3). By our slack

stealing policy for pre-execution, the size of slack stolen by

J6,1 is 0.6 · 0.7916−0.375
0.8 = 0.3125 from Equation 40. Then, a

wrapper job with size of 0.3125 units and deadline of 10 units

(i.e., the deadline of J6,1) is created and added to WJQ2.

At time 1.125, job J3,1 completes executing z3,1 and re-

leases resource R2 on core O3 . The amount of early released

slack is 0.375 units ((0.60.4 − 1) · (1.125− 0.375)) from Equa-

tion 37, while the amount of slack due to early completion

of critical section z3,1 is 1.25 units (0.50.4) from Equation 39.

In addition, 0.75 units of slack (min{1.125 − 0.375, 1}) is

borrowed and returned. Now, the amount of available slack on

O3 at time 1.125 is 2.625 units (1 + 0.375 + 1.25). Then, the

feasible speed of non-critical section of J3,1 is re-set as 0.146

(0.75
0.75
0.3

+2.625
) and thus 0.2 due to discrete frequency levels. In

the end, the amount of slack reclaimed by J3,1 is 1.25 units

(0.75 · (1
0.2 − 1

0.3)) from Equation 36 and thus the amount of

available slack on O3 is 1.375 units (2.625− 1.25).

Job J1,1 on core O2 holds resource R2 at time 1.125. We

can see that 1.75 units (2.5 − (1.125 − 0.375)) of slack is

released from Equation 42. The slack with 0.3125 units stolen

by J6.1 is borrowed during [0.7916, 1.125] and is returned at

time 1.125 (see Equation 41). Thus, the amount of available

slack on O2 is 2.0625 (0.3125 + 1.75) units now. When J1,1
attempts to access R2, we have sc1limit = +∞ (Ψ1

2 = ∅) and

sc2limit =
1−1
0.8 = 0 from Equation 48 (Φr = ∅, Z = {O3} and

O = ∅). Thus, ssafe is 0 from Equation 49 and the feasible

speed for J1,1 to execute z1,1is 0.8 (1
1

0.8
+0

) from Equation 35.

Similarly, the amount of available slack on core O1 is 0.375

units at time 1.125.

Following above steps, the execution of the first job for each

task and the variations of wrapper-jobs on each core at each

invocation time are shown in Figure 3.

5.8 Analysis of SA-DVFS

In what follows, we analyze SA-DVFS with respects to its

time complexity and schedulability.

Complexity of SA-DVFS: At each invocation time, at most

nt jobs arrive concurrently due to the periodic task arrival

patterns. Recall that the slack time of each wrapper-job must

be depleted at or before this wrapper-job’s deadline by the

wrapper-job scheme. Thus, for each core, at most nt wrapper-

jobs stay in the WJQ at any given time, such that building the

wrapper-job queue in order of incrementing deadlines requires

O(nt · log(nt)) time.

Each invocation implies a possible DVFS synchroniza-

tion. For each DVFS synchronization, updating the remaining

WCETs of all current running jobs takes O(nc) time. Deter-

mining the amount of reclaimable slack by a job’s non-critical

section can be done in O(nt) time. It takes our slack release

and preservation policies O(1) time to calculate the amount of

slack released, borrowed and returned by a job’s non-critical

section. Also, it takes our dynamic scheme O(1) time to obtain

the feasible speed of a job’s non-critical section. After that,

the adjustment of corresponding wrapper-jobs can be done in

O(nt) time.

For each slack stealing for pre-execution, it requires O(1)
time calculating the amount of stolen slack and O(nt) time

handling such slack in the WJQ. When a job intends to access

a resource, the calculation of sc1limit requires O(nt) time and

that of sc2limit for jobs in set Φr requires O(nc) time. Finding

out the core sets O and Z can be done in O(nt) time. Thus,

our constrained slack allocation policy requires O(nt) time for

slowing down a critical section assuming that nc ≤ nt. With

17

the VFI limitation being considered, the shared frequency of

a VFI can be determined in O(nc) time.

Therefore, the time complexity of our SA-DVFS can be

found as O(nt · log(nt)) at each invocation time, which is

the same as that of the original wrapper-job scheme.

Schedulability of SA-DVFS with Uniform Frequency: We

first prove that our SA-DVFS with uniform initial scaled fre-

quency satisfies the schedulability of all jobs. Note that, based

on the extended wrapper-job slack management mechanism,

the slack management policies of SA-DVFS discussed in the

above sections do not introduce any additional workload on

each core.

Theorem 1. For a set of periodic tasks that access shared

resources, when the tasks are executed on a VFI-based multi-

core system under the partitioned-EDF scheduling with the

suspension-based resource access protocol, SA-DVFS with

uniform initial scaled frequency ensures that there is no

deadline miss at runtime.

Proof: Following the assumptions and notations in

Lemma 1, we assume that Jm,n executes its critical section

zm,y during [t′, t] on Oa. Suppose that the amount of slack

generated by shorter time for Jm,n to acquire resource s(zm,y)
is △m1. After Jm,n completes accessing s(zm,y), the amount

of its reclaimed slack and released slack are denoted by ▽m

and △m2, respectively. Here released slack refers to those

due to early completion, early released slack, the stolen slack

for pre-execution and less than worst case synchronization

overhead, but it excludes the returned slack due to borrowed

slack. Thus, the maximum execution time of Jm,n in [t′, t] is:

BW (zm,y) + ccs(zm,y)

Ss
· fmax− △m1 +▽m− △m2

By constraints C1 and C2 (see Section 5.6), we can obtain:

BW (zm,y) + ccs(zm,y)

Ss
· fmax− △m1 +▽m ≤

Bi · fmax

Ss
(50)

We define two variables, ▽x and △x, to denote the amount

of reclaimed slack and released slack by task Tx’s jobs pertain-

ing to set A during [t′, t], respectively. From Hypothesis 1, we

can have ▽x ≥ 0 and △x≥ 0 for each task Tx. Moreover, for

each job, its feasible speed is initialized to Ss when it arrives

by our SA-DVFS. Since Ji,j misses its deadline at time t,
the total processor demand in [t′, t] exceeds X . Following the

proof of Lemma 1, there is

BW (zm,y) + ccs(zm,y)

Ss
· fmax− △m1 +▽m− △m2 +

pk≤pi
∑

∀Tk∈Ψa

(

▽k− △k +
fmax

Ss
· (ck +BWk) · (⌊

X − pk
pk

⌋+ 1)

)

> X

Incorporating Equation 50 into above inequality, we have

pk≤pi
∑

∀Tk∈Ψa

(▽k− △k) > X+ △m2 −
fmax

Ss
·

(

Bi +

pk≤pi
∑

∀Tk∈Ψa

(ck +BWk) · (⌊
X − pk

pk
⌋+ 1)

)
(51)

Suppose that at time t′, the amount of slack associated with

those wrapper-jobs, whose deadlines are no later than t, is

△
′ (△′≥ 0). We indicate the amount of reclaimable slack for

all jobs in set A by △
′′. At time t′, it is easy to get △′′=△

′.

From the wrapper-job scheme, the wrapper-job correspond-

ing with the slack generated by Jm,n has a deadline later

than t. This means that each job in set A cannot reclaim the

slack that is released or returned by Jm,n. Note that, Jm,n

can reclaim and borrow the slack from the wrapper-jobs with

deadlines sooner than or equal to time t. Therefore, when Jm,n

completes accessing resource s(zm,y), we can get △
′′≤△

′

subject to the wrapper-job scheme.

For any job in set A, it arrives at or after time t′ and it is

required to finish before or at time t. Therefore, all wrapper-

jobs corresponding with the slack, which is reclaimed, released

as well as returned by this job, have deadlines sooner than

or equal to t from the wrapper-job scheme. Since core Oa

is never idle (i.e., there exists ready jobs) during [t′, t], no

slack is wasted subject to the wrapper-job scheme. Then,

by incorporating the wrapper-job scheme and Lemmas 3-6,

during the execution of jobs in set A, the total reclaimable

slack either has been reclaimed by them before time t or is

being borrowed by Ji,j at time t . The amount of such slack

is △
′′ +

∑pk≤pi

∀Tk∈Ψa
△k after Jm,n releases resource s(zm,y).

Hence, we can have:

△
′′ +

pk≤pi
∑

∀Tk∈Ψa

△k≥

pk≤pi
∑

∀Tk∈Ψa

▽k

⇒

pk≤pi
∑

∀Tk∈Ψa

(▽k− △k) ≤△
′′≤△

′

As △m2≥ 0 is true by Hypothesis 1 and constraints C1 and

C2, combining above inequality with Equation 51, there is

△
′ +

fmax

Ss
·

(

Bi +

pk≤pi
∑

∀Tk∈Ψa

(ck +BWk) · (⌊
X − pk

pk
⌋+ 1)

)

> X

which contradicts with the feasibility of wrapper-job scheme

subject to the definition of △′ and the proof of Theorem 1.

SA-DVFS with Different Initial VFI Frequencies: Note that,

as the foundation of our dynamic energy management frame-

work, the wrapper-job scheme enables to perform the slack

management on a per-job and per-core basis. Therefore, with

the different initial frequencies for VFIs being considered, our

proposed policies (slack reclamation for non-critical sections,

slack release and preservation, and slack stealing for pre-

execution) can be applied with only some minor modifications.

That is, for a job Ji,j on core Ok ∈ Gg , its initial feasible

speed (including non-critical and critical sections) is set as

SGg
(see Section 4.4) when it arrives. As these policies

18

together with dummy task, whose size is determined by the

initial speed of the core that it is on, do not introduce any

synchronization overhead to jobs, they can be safely performed

without violating time constraints.

On the other hand, the constrained slack allocation policy

for critical sections (see Section 5.6) is strongly dependent on

the upper-bound of a job’s synchronization overhead that is

determined at off-line phase. Therefore, this policy can also

be applicable with the following modifications.

Recall that, with different initial frequencies for VFIs, the

worst-case synchronization overhead of a job Ji,j (e.g., BWi

and Bi) has been scaled down (see Equations 21 to 25; Sec-

tion 4.1). First, the two constraints C1 and C2 (see Section 5.6)

are re-expressed as:

• C1: For any job Ja,b on Ok that can be blocked by Ji,j ,

its actual blocking time needs to be bounded by Ba;

• C2: For any job Je,l that has a critical section ze,y to

access the resource Rr on other cores, its actual waiting

time for the execution of Ji,j’s critical section zi,x needs

to be bounded by BW (ze,y).

Recall that the VFI to which core Ok belongs is denoted by

G(Ok) in Section 4.1. To satisfy the constraints C1 and C2,

Equations 43 to 46 and 48 are respectively adjusted as:

BW act(zi,x) +
ccs(zi,x) · fmax

SGg

+ sc1limit ≤ Bm (52)

sc1limit =min{Bm −
fmax · ccs(zi,x)

SGg

−BW act(zi,x)|

∀Tm ∈ Ψi
k}

(53)

BW exp(zq,c) =





ccs(zi,x)

SGg

+

tb<tq
∑

Jb,l∈Φr

ccs(zb,e)

SG(O(Tb))



 · fmax

+ t− tq

(54)

sc2limit = min {BW (zq,c)−BW exp(zq,c)|∀Jq,a ∈ Φr} (55)

∑

Om∈O

tpmax
m (Rr) +

∑

Oy∈Y

(

tpmax
y (Rr)−

ccs(zq,c) · fmax

SG(Oy)

)

(56)

Following the similar reasonings as Theorem 1, we can

obtain the following theorem.

Theorem 2. When VFIs have different initial frequencies,

SA-DVFS scheme ensures that all jobs can finish in time at

runtime.

6 SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of our new

synchronization-aware energy management schemes through

extensive simulations. For such purpose, we designed a dis-

crete time simulator in C++, where both static SA-WFD and

dynamic SA-DVFS schemes were implemented.

6.1 Experimental Settings

For multicore processors, we consider the one with 65nm tech-

nology that has been adopted in other recent work [46]. Here,

we assume that there are six supply voltage and frequency

levels for the processor: (0.6V, 0.78GHz), (0.7V, 1.27GHz),

(0.8V, 1.81GHz), (0.9V, 2.42GHz), (1.0V, 3.08GHz) and (1.1V,

3.8GHz). Regarding to the parameters in the power model,

we use the same values as those in [46]: Lg = 4 × 106,

Vbs = −0.7, K3 = 5.38× 10−7, K4 = 1.83 and K5 = 4.19.

There are many factors that can affect the performance

of the schemes under consideration. In this work, we vary

the following parameters regarding to the system as shown

in Table 4: the number of cores nc, the number of shared

resources (nr), the number of cores per VFI (denoted as

NCPI) and the number of discrete voltage/frequency levels

(DV FL). For tasks, they are specified by the average system

raw utilization (RU) that indicates the available static slack,

the actual-to-worst case execution time ratio (AWR) that

denotes the variability of tasks’ actual workload (and thus the

available dynamic slack), the number of critical sections in

a task (Ncs) and the critical section ratio (CSR). Please be

noted that, RU excludes the additional utilization due to task

synchronization. Here, the degree of resource contention for

the tasks in the systems is determined by Ncs, CSR as well

as nr.

TABLE 4: System parameters for the simulations

Parameters Values/ranges

Number of cores (nc) 4, 16, 32
Number of cores/VFI (NCPI) 1, 2, 4, 8, 16, 32
Number of V/F levels (DV FL) 3, 4, 5, 6

Number of resources (nr) [1,10]

System raw utilization (RU) [0.1, 0.5]
Number of tasks (nt) [40, 120]

Period of tasks [50, 200], [200, 500], [500, 2000]
AWR 0.1− 1.0
CSR 0.003− 0.03

Number of critical sections Ncs [1, 8]

In the simulations, the synthetic task sets are generated from

the above parameters as follows. For given nc, nt and RU , the

utilization of a task Ti is set as aui =
RU ·nc

nt . Then, the task’s

period is randomly selected from one of the three types of

periods in Table 4. Next, the value of ci is obtained uniformly

in the range of [0.2·pi ·aui, 1.8·pi ·aui]. The number of critical

sections (Ncs(Ti)) is randomly obtained within the range of

[1, 8], followed by resource selection for each critical section.

The execution time of a critical section is generated randomly

within [0.2·ci·CSR
Ncs(Ti)

, 1.8·ci·CSR
Ncs(Ti)

]. In the end, the execution time

of non-critical section is obtained and the relative location of

critical sections is randomly chosen. At run time, the actual

execution time of non-critical and critical sections of tasks can

be randomly determined in a similar way according to AWR.

Without specified otherwise, the default values for the pa-

rameters are: nc = 16, NCPI = 2, DV FL = 6, RU = 0.25,

AWR = 0.3 and CSR = 0.009. For the results reported

below, each data point corresponds to the average results of

1000 task sets.

19

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.6

0.8

1.0

RU

S
ch

ed
u

la
b

il
it

y
 R

a
ti

o

WFD

SA-WFD

INLP

(a) Ratio of schedulable task sets

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.4

0.6

0.8

1.0

RU

N
o

rm
a

li
ze

d
 E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

WFD-Uni

SA-WFD-Uni

SA-WFD-Diff

INLP

(b) Normalized energy consumption

Fig. 4: Performance of static schemes with varying RU for small

problems.

3� 6� 9� 12� 15� 18� 21� 24� 27� 30�
0.7

0.8

0.9

1.0

CSR

S
ch

ed
u

la
b

il
it

y
 R

a
ti

o

WFD

SA-WFD

INLP

(a) Ratio of schedulable task sets

3� 6� 9� 12� 15� 18� 21� 24� 27� 30�
0.2

0.4

0.6

0.8

1.0

CSR

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

WFD-Uni

SA-WFD-Uni

SA-WFD-Diff

INLP

(b) Normalized energy consumption

Fig. 5: Performance of static schemes with varying CSR for

small problems.

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

RU

S
ch

ed
u

la
b

il
it

y
 R

a
ti

o

WFD

SA-WFD

(a) Ratio of schedulable task sets

0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

RU

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

WFD-Uni

SA-WFD-Uni

SA-WFD-Diff

(b) Normalized energy consumption

Fig. 6: Performance of static schemes with varying RU for large

problems.

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1.0

NCPI

S
ch

ed
u

la
b

il
it

y
 R

a
ti

o

WFD

SA-WFD

(a) Ratio of schedulable task sets

1 2 4 8 16
0.2

0.4

0.6

0.8

1.0

NCPI

N
o

rm
a

li
ze

d
 E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

WFD-Uni

SA-WFD-Uni

SA-WFD-Diff

(b) Normalized energy consumption

Fig. 7: Performance of static schemes with varying NCPI for

large problems.

6.2 Performance of SA-WFD and Static schemes

Now we evaluate the performance of three static schemes

(original WFD, SA-WFD and INLP) in terms of energy

consumption and schedulability ratio. Here, schedulability

ratio is defined as the rate of the number of schedulable task

sets over the total number of task sets considered. Follow-

ing the formalization of task mapping problem as described

in Section 4.1, an INLP (Integer Non-Linear Programming)

approach is implemented by Lingo tool [53] to find the

optimal task-to-core mapping for small scale problems (with

nc = 4, NCPI = 2 and nt = [8, 15]). Moreover, for

comparison, we also implemented the conventional WFD task

mapping scheme based only on task utilization.

Small scale problems: The results are shown in Figures 4

and 5, where each data point represents the average result of

100 task sets.

The results show that, although WFD can obtain well-

balanced workload among the cores when task synchronization

is ignored, the schedulability of tasks sharing resources also

depends on tasks’ blocking and waiting time and quickly

deteriorates with increasing utilization RU . By assigning tasks

that access similar resources to the same core, SA-WFD effec-

tively incorporates the synchronization overhead during task

mapping process, and thus leads to much better schedulability

of tasks compared to that of WFD. Not surprisingly, INLP

obtains the best schedulability result for all cases.

Moreover, for the schedulable task sets, Figure 4(b) further

shows the normalized energy consumption, where the one

of WFD with uniform frequency is used as the baseline

(denoted as WFD-Uni). The static scheme with uniform scaled

frequency for all VFIs based on SA-WFD mapping is denoted

as SA-WFD-Uni, while the one with different frequencies is

denoted as SA-WFD-Diff. We can see that, by assigning a

different frequency for each VFI based on the workload of

its cores, SA-WFD-Diff can obtain up to 40% energy savings

when compared to that of WFD-Uni. Moreover, with each

VFI having its individual lower frequency, SA-WFD-Diff can

save up to 20% more energy compared to SA-WFD-Uni.

Compared to the optimal solution of INLP, which also assigns

individual frequency for each VFI, the energy savings obtained

by SA-WFD-Diff is about 20% less. The difference generally

becomes less when RU increases since there is less chance

for energy management.

Figure 5 shows the impacts of CSR on the performance

of the static schemes. Note that, both INLP and SA-WFD

incorporate the task synchronization overhead into the task-

to-core mapping. Therefore, when CSR becomes larger (i.e.,

stronger task synchronization requirements), they generally

have better schedulability ratio (see Figure 5(a)) and better

energy savings (see Figure 5(b)) compared to conventional

WFD. As explained above, SA-WFD-Diff consumes less en-

ergy than SA-WFD-Uni due to lower static frequency setting.

Large scale problems: Here, we set experimental parameters

to default and evaluate the impacts of RU and NCPI on the

performance of SA-WFD and original WFD.

As shown in Figure 6, the schedulability of tasks under both

WFD and SA-WFD becomes very low when RU is close to

0.5 due to increased synchronization overhead with more tasks

and cores. Note that, the raw utilization RU does not include

synchronization overhead. Moreover, compared to SA-WFD-

20

0.1 0.2 0.3 0.4 0.5
0.85

0.9

0.95

1.0

RU

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 SA-DVFS under SA-WFD-Uni

SA-DVFS under SA-WFD-Diff

(a) Normalized energy consumption

0.1 0.2 0.3 0.4 0.5
0.6

0.8

1.0

1.2

1.4

RU

N
o

r
m

a
li

z
e
d

 D
V

F
S

 T
r
a

n
s
it

io
n

s

SA-DVFS under SA-WFD-Uni

SA-DVFS under SA-WFD-Diff

(b) Normalized DVFS transitions

Fig. 8: Performance of SA-DVFS under different static schemes

with varying RU .

1 2 4 8 16
0.9

0.95

1.0

NCPI

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

SA-DVFS under SA-WFD-Uni

SA-DVFS under SA-WFD-Diff

(a) Ratio of schedulable task sets

1 2 4 8 16
1

1.05

1.1

1.15

NCPI

N
o

r
m

a
li

z
e
d

 D
V

F
S

 T
r
a

n
s
it

io
n

s

SA-DVFS under SA-WFD-Uni

SA-DVFS under SA-WFD-Diff

(b) Normalized DVFS transitions

Fig. 9: Performance of SA-DVFS under different static schemes

with varying NCPI .

Uni, the additional energy savings obtained by SA-WFD-Diff

is similar to that of small scale problems.

Since both the conventional WFD and SA-WFD do not

consider the VFI limitation during the task-to-core mapping,

the parameter NCPI plays no role in the schedulability rate

of these two static schemes as depicted in Figure 7(a). Also,

it does not affect the energy performance of original WFD

and SA-WFD-Uni due to uniform scaled frequency setting as

shown in Figure 7(b). When all cores constitute a single VFI

(i.e., NCPI = 16), SA-WFD-Diff is exactly SA-WFD-Uni

from Algorithm 2 and thus the same energy is consumed.

While when each VFI owns only one processing core (i.e.,

NCPI = 1), SA-WFD-Diff obtains the best energy savings

due to assigning independent frequency to each core.

6.3 Performance of online SA-DVFS

Next, we evaluate the performance of online SA-DVFS based

on SA-WFD scheme. For comparison, we extended the follow-

ing energy management schemes that have been designed for

tasks with shared resource in uniprocessor systems to the mul-

ticore setting: EDF-based USFI [35], EDF-based DSDR [54]

and RM-based FL-PCP [17]. Based on the feasible SA-WFD

task-to-core mapping, each of the above schemes assumes the

worst case synchronization cost of tasks and manages them

on each core accordingly. The detailed modifications include:

• The common modification is incorporating the worst-case

global waiting times, which are based on our adopted

locking protocol, into the execution times of tasks to

account for global resource contention. After the feasible

speeds of tasks have been determined by these schemes

on a per-core basis, for any resource, the highest speed

among all tasks that intend to access this resource is

calculated first; next, such speed is set as the speed for

accessing this resource by any task. By this, for any task,

both the global waiting time for any resource and local

blocking time can be upper-bounded.

• Further, as for the DSDR, each processing core is asso-

ciated with a high speed and a low one. The high speed

is chosen on each core when blocking arises; otherwise,

the low one is applied. Considering the global resource

access, for each core, its high speed is normalized to the

maximum of all cores’ high speeds to meet deadlines.

By means of above modifications, these four schemes can

be evaluated on the same baseline, i.e., the same task-to-core

assignment and feasibility guarantee.

6.3.1 Impacts of different static frequency setting

Here, we evaluate the impacts of different static frequency

setting (e.g., SA-WFD-Uni and SA-WFD-Diff) on the on-

line energy savings. SA-WFD-Diff can be easily incorporated

into our dynamic energy management framework (online SA-

DVFS) as stated in Section 5.8.

Figure 8 shows the affects of RU on the performance of

two static frequency setting schemes. Compared to Figure 6,

although SA-WFD-Diff shows better energy saving than SA-

WFD-Uni at off-line stage, the gap between them is signifi-

cantly shrunk and almost disappears when RU becomes larger.

Recall that, using spare utilizations of cores under the

wrapper-job scheme, the dummy task can generate static slack

periodically (which is transformed to dynamic slack). Note

that, SA-WFD-Diff can effectively reduce the processing fre-

quencies of cores at off-line stage, resulting in higher utiliza-

tion and thus less static slack than SA-WFD-Uni. This implies

that SA-DVFS under SA-WFD-Uni scheme may reclaim more

dynamic slack than that under SA-WFD-Diff as our SA-

DVFS can effectively exploit dynamic slack to improve energy

savings. Moreover, when the system utilization is very small,

SA-DVFS can select the lowest frequency for the two schemes.

This also helps SA-DVFS under SA-WFD-Uni reduce energy

consumption even with high static frequency.

More importantly, the low processing frequency setting of

SA-WFD-Diff can extend the execution time of a critical

section (and thus local blocking time and global waiting time

of a job). Our constrained slack allocation for critical sections

are strongly dependent on the static frequency of a job, in order

to allocate more slack to access resources under schedulability

(see Section 5.6). Hence, SA-WFD-Diff may reclaim less slack

than SA-WFD-Uni when accessing resources due to lower

static frequency setting.

When the system utilization is high and the dynamic slack

is medium (i.e., AWR = 0.3), a job may execute a critical

section at a high speed under SA-WFD-Diff scheme. This

can result in high shared processing frequency of a VFI due

to DVFS synchronization and consequently relatively high

energy consumption (and more DVFS transitions).

21

Figure 9 exhibits the affects of NCPI on the performance

of SA-DVFS under the two static schemes. When a VFI

contains only one core, SA-DVFS under SA-WFD-Diff can

obtain the best energy savings due to low static frequencies,

no DVFS synchronization and our effective slack management

policies as shown in Figure 9(a). As explained above, SA-

WFD-Diff may lead to a high processing frequency when

accessing a resource. Therefore, as depicted in Figure 9(b),

it leads to more voltage/frequency switching than SA-WFD-

Uni due to non-uniform frequencies on each core.

6.3.2 Impacts of RU

First, we evaluate the impacts of system utilization. Here, we

consider the cases with RU ≤ 0.5 to obtain schedulable task

sets. Figure 10(a) shows the normalized energy consumption

of the schemes with that of SA-DVFS being used as the

baseline. Here, we can see that SA-DVFS always consumes

less energy compared to the existing schemes as it can exploit

more slack due to its synchronization-awareness. When system

utilization is low (e.g., RU = 0.1), the energy savings obtained

by SA-DVFS is relatively small. The reason comes from

the fact that, due to excessive amount of available slack, all

schemes can execute tasks at the lowest speed for most of

the time. As system utilization increases, SA-DVFS consumes

relatively less energy compared to that of existing schemes as

it can effectively exploit both static and dynamic slack through

its slack management policies.

In addition, Figure 10(b) shows the normalized number of

DVFS transitions incurred by all the schemes. Again, that of

SA-DVFS is used as the baseline. When system utilization

is low, SA-DVFS is able to operate all cores at a relatively

uniform frequency with proper slack management and results

in less number of DVFS transitions. When RU becomes larger,

FL-PCP results in less number of DVFS transitions compared

to other schemes due to its fixed-priority setting and well-

designed approaches to reduce DVFS overhead. Overall, we

can see that the number of DVFS transitions incurred by SA-

DVFS is comparable to those of existing schemes.

6.3.3 Impacts of AWR

To evaluate the impact of dynamic slack due to early com-

pletion of tasks, Figure 11(a) shows the normalized energy

consumption with varying AWR and fixed system utilization

RU = 0.25. In general, for smaller values of AWR, most

slack can be effectively exploited by SA-DVFS, which leads to

relatively better energy savings. However, when AWR ≤ 0.3,

the energy efficient frequency and common frequency con-

straint for cores on a VFI limit further slack reclamation by

SA-DVFS and there is no change in energy savings.

Observe from Figure 11(b) that, compared to other schemes,

the number of DVFS transitions by our SA-DVFS usually

increases with augmenting AWR. For other schems, a small

AWR will lead to too early completion of jobs and in turn

frequent switching of processing cores (or VFIs) from sleep

to active mode, and vice versa, which intuitively increases the

number of DVFS transitions. In contrast, our scheme tries to

extend the execution of jobs by fully exploiting available slack,

thereby reducing the chance of voltage/frequency switching.

Even when AWR = 1, our scheme still can reclaim static

slack due to dummy tasks to conserve energy and thus results

in higher DVFS overhead than other schemes. Moreover, the

FL-PCP has the best performance in terms of DVFS overhead

in this evaluation when the degree of both task and DVFS

synchronization is medium or light.

6.3.4 Impacts of CSR

Figure 12(a) further shows the normalized energy consumption

of the schemes with varying CSR, which is a key parameter to

measure the synchronization requirements of tasks. Here, we

can see that, when the value of CSR is in the middle range

(i.e., [0.009, 0.021]), SA-DVFS performs better and consumes

relatively less energy. The reason is that SA-DVFS steals

extra slack and allocates appropriate slack to access resources

by jobs. With such slack management policy, SA-DVFS can

effectively reduce energy consumption under global resource

contention and get better energy savings. However, when CSR
becomes too large, task synchronization imposes more strict

requirements for all schemes and the energy savings obtained

by SA-DVFS becomes relatively less. Similarly, when CSR
is too small, there is less task synchronization and the advan-

tage of SA-DVFS becomes diminishing and other schemes

consume relatively less energy.

As depicted in Figure 12(b), compared to other schemes,

less number of DVFS transitions can be obtained by our SA-

DVFS with an increasing CSR. Recall that the other schemes

either change the speed to access resources (e.g., USFI and FL-

PCP) or switch to a pre-determined high speed when blocking

occurs (e.g., DSDR) in order to ensure deadlines. With the

augment of CSR, the influence of task synchronization on

the energy consumption reduction becomes stronger. Thus, the

frequent speed adjustment of critical sections by these schemes

results in more voltage/frequency switchings.

6.3.5 Impacts of Shared Resource Number (nr)

Note that, when the number of critical sections of tasks

is fixed, having fewer number of shared resources leads to

higher probability of more than one tasks accessing the same

resource (i.e., stronger task synchronization requirements). To

evaluate the impact of shared resource number (nr) on the

energy performance of the schemes, Figure 13(a) shows the

normalized energy consumption of the schemes with varying

nr. Note that, when there is only one shared resource, all

tasks with critical sections will access it, which brings in

the strongest synchronization requirements. For this case, SA-

DVFS obtains the best energy savings compared to other EDF-

based schemes as it takes such synchronization requirements

into consideration explicitly. However, for FL-PCP, its energy

efficiency seems to be insensitive to the variance of nr. The

reason is that FL-PCP strives to avoid speed adjustments when

blocking or preemption occurs, which reduces the impacts of

nr on its energy consumption with respect to other schemes.

Similarly, in contrast to our scheme, the number of volt-

age/frequency switchings yielded by USFI and DSDR gener-

ally increases with stronger task synchronization as shown in

Figure 13(b). Furthermore, the FL-PCP shows its advantages

in reducing the DVFS overhead as explained earlier.

22

0.1 0.2 0.3 0.4 0.5
1.0

1.1

1.2

1.3

1.4

RU

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

SA-DVFS

USFI

DSDR

FL-PCP

(a) Normalized energy consumption

0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

RU

N
o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DVFS

USFI

DSDR

FL-PCP

(b) Normalized DVFS transitions

Fig. 10: Performance of the schemes with varying RU .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.0

1.1

1.2

1.3

1.4

AWR

N
o

rm
a

li
ze

d
 E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

SA-DVFS

USFI

DSDR

FL-PCP

(a) Normalized energy consumption

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.8

1.0

1.2

1.4

AWR

N
o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DVFS

USFI

DSDR

FL-PCP

(b) Normalized DVFS transitions

Fig. 11: Performance of the schemes with varying AWR.

3� 6� 9� 12�15�18�21�24�27�30�
1.0

1.1

1.2

1.3

1.4

1.5

CSR

N
o

rm
a

li
ze

d
 E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

SA-DVFS

USFI

DSDR

FL-PCP

(a) Normalized energy consumption

3� 6� 9� 12�15�18�21�24�27�30�
0.5

1.0

1.5

2.0

CSR

N
o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DAVS

USFI

DSDR

FL-PCP

(b) Normalized DVFS transitions

Fig. 12: Performance of the schemes with varying CSR.

1 2 3 4 5 6 7 8 9 10
1.0

1.1

1.2

1.3

1.4

1.5

nr

N
o

rm
a

li
ze

d
 E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

SA-DVFS

USFI

DSDR

FL-PCP

(a) Normalized energy consumption

1 2 3 4 5 6 7 8 9 10
0.6

0.8

1.0

1.2

1.4

nr

N
o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DVFS

USFI

DSDR

FL-PCP

(b) Normalized DVFS transitions

Fig. 13: Performance of the schemes with varying nr.

1 2 4 8 16 32
1.0

1.1

1.2

1.3

1.4

1.5

NCPI

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

SA-DVFS

USFI

DSDR

FL-PCP

(a) Normalized energy consumption

1 2 4 6 16 32
0.5

1.0

1.5

2.0

NCPI

N
o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DVFS

USFI

DSDR

FL-PCP

(b) Normalized DVFS transitions

Fig. 14: Performance of the schemes with varying NCPI .

3 4 5 6
1.0

1.1

1.2

1.3

1.4

DVFL

N
o

rm
a

li
ze

d
 E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

SA-DVFS

USFI

DSDR

FL-PCP

(a) Normalized energy consumption

3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

DVFL
N

o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DVFS

USFI

DSDR

FL-PCP

(b) Normalized DVFS transitions

Fig. 15: Performance of the schemes with varying DV FL.

6.3.6 Impacts of NCPI

For systems with a 32-core processor (i.e., nc = 32) and

fixed RU = 0.25, Figure 14(a) further illustrates how the

number of cores per a VFI affects the energy performance

of the schemes. Recall that the cores on one VFI need to

share a common voltage/frequency and NCPI essentially

reflects the degree of voltage/frequency synchronization in a

multicore processor. When each VFI contains only a single

core, SA-DVFS leads to the largest energy savings. The reason

is that SA-DVFS can flexibly determine the tasks’ speeds

according to the runtime workload. When all cores are on

the same VFI (i.e., global voltage/frequency synchronization),

the energy savings obtained by SA-DVFS decreases, but it

still outperforms other schemes due to its slack management

policies that intend to operate the cores at similar frequencies

for energy conservation.

As for the number of DVFS transitions, the similar trend

under varying NCPI is exhibited in Figure 14(b). The reasons

have been explained earlier and thus we omit the analysis here.

6.3.7 Impacts of DVFL

Now, we test the impact of different voltage/frequency lev-

els on the scheduling performance. Recall that the DV FL
accounts for the granularity of DVFS operations. A larger

DV FL indicates a finer-grained speed adjustment for jobs,

which intuitively gives rise to better energy savings. In this

evaluation, the tested three, four, five discrete voltage levels

are set as: {0.6V, 0.9V, 1.1V}, {0.6V, 0.8V, 1.0V, 1.1V} and

{0.6V, 0.7V, 0.9V, 1.0V, 1.1V}, respectively.

As can be seen from Figure 15(a), finer-grained volt-

age/frequency levels bring in better energy savings by our

scheme. Moreover, this also helps SA-DVFS reduce the num-

ber of voltage/frequency switching. It is primarily because

that more voltage/frequency options are offered to mitigate

the negative affect of DVFS synchronization on both energy

savings and DVFD overhead in this case.

Another observation is that undue fine-grained volt-

age/frequency levels will lead to more DVFS transitions due to

more flexible and in turn more frequent DVFS operations by

SA-DVFS. Thus, compared to the discrete voltage/frequency

23

levels, it can be deduced that our SA-DVFS can better energy

savings under continuous ones but at the expense of more

voltage/frequency switchings.

6.3.8 Impacts of Slack Management Policies

Finally, we evaluate the effects of different slack management

policies adopted in SA-DVFS. Compared to SA-DVFS where

all policies are deployed, we consider one scheme that adopts

only the slack reclamation and preservation policies for non-

critical section of tasks, denoted as Basic Scheme (BS). Here,

these two schemes are evaluated by varying RU , CSR and

NCPL. The results are shown in Figures 16 to 18.

From the figures, we can see that SA-DVFS performs

generally better than the basic scheme. By deploying the ad-

ditional slack management policies (stealing and reclamation)

for critical-sections of tasks, about 13% more energy can be

saved by our SA-DVFS scheme.

As can be found from Figure 16, our propose slack manage-

ment framework usually gains better energy savings than the

BS when the average system utilization is medium. Further,

SA-DVFS can achieve better improvement in reducing the

number of DVFS transitions as the average utilization is

light. The trend under different RU is very similar to that as

exhibited in Figure 10 so that we ignore the detailed analysis

here.

Figure 17 illustrates the performance comparison between

these two schemes as CSR varies. Similar to the trend as

shown in Figure 12, our scheme with fully deployed policies

has better improvement in both energy conservation and DVFS

overhead reduction when the task synchronization is medium.

Figure 18 further depicts the impacts ofNCPI on the

performance of these two schemes, where RU = 0.25
and nc = 32. Recall that our synchronization-aware slack

management policies are originated from the wrapper-job

scheme, which targets uniprocessor systems and performs the

DVFS on a per-job basis. Then, both two schemes enable to

flexibly reclaim slack to better energy savings when the DVFS

synchronization is weak. When the DVFS synchronization

requirements become stronger, SA-DVFS with full policies

shows better energy performance when comparing to BS. It

mainly owes to the effectiveness of our slack stealing policy

for pre-execution and constrained slack allocation policy for

slowing down critical sections, but it costs these fully de-

ployed policies more frequent speed adjustment as shown in

Figure 18(b).

In summary, our SA-DVFS usually outperforms other

schemes for uni-processor systems in terms of energy savings

at the cost of comparable DVFS overhead. Further, it can

be observed that, our scheme with fully deployed policies

always achieves better performance than the BS that ignores

the synchronization awareness, with regard to both energy

consumption and DVFS overhead.

7 CONCLUSIONS

Focusing on VFI-based multicore systems with DVFS ca-

pability, we study both static and dynamic synchronization-

aware energy management schemes for a set of periodic

realtime tasks that access shared resources. First, we discuss a

suspension-enabled extended MSRP resource access protocol

and propose a synchronization-aware task mapping heuristic

that allocates tasks accessing the same resources to the same

core to effectively reduce synchronization overhead. Based

on the result task-to-core mapping, static schemes with both

uniform and different scale frequencies for VFIs are stud-

ied under the partitioned-EDF scheduling. To further exploit

dynamic slack for more energy savings, we also propose a

set of synchronization-aware slack management policies that

can appropriately reclaim, preserve, release and steal slack at

runtime to slow down the execution of both non-critical and

critical sections of tasks. The scheme considers both common

frequency limitation of VFIs and synchronization/timing con-

straints of tasks. The simulation results show that, the map-

ping scheme can significantly improve schedulability of tasks.

Compared to the existing schemes, our new synchronization-

aware schemes can obtain much better energy savings (up to

40% more) with comparable DVFS overhead.

Our future work will focus on more effective and efficient

task-to-core mapping strategies by thoroughly analyzing task

synchronization between tasks to improve the feasibility of

task set. How to improve energy savings by further slow-

ing down critical sections without violating the feasibility

motivates our research in the future. Furthermore, we would

ameliorate and extend our energy management framework to

target other task patterns (e.g., sporadic task arrival) and/or

other resource access models (e.g., nested critical sections).

ACKNOWLEDGMENTS

This work is supported in part by the National Science

Foundation of China under grant number 61173045 and by the

US National Science Foundation under grants number CCF-

1065448, CNS-1016974 and NSF CAREER Award CNS-

0953005. Any opinions, findings, and conclusions as well as

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] IBM Power 7 Overview. http://www.redbooks.ibm.com/redpap-
ers/pdfs/redp4638.pdf.

[2] Intel i7 Processor Specifications. http://www.intel.com/products/proces
sor/corei7/specifications.htm.

[3] T.A. AlEnawy and H. Aydin. Energy-aware task allocation for rate
monotonic scheduling. In Proc. of the IEEE Real Time on Embedded

Technology and Applications Symposium, pages 213–223, 2005.

[4] J. Brodt (NEC Electronics America). Revving up with automotive mul-
ticore; available at http://www.edn.com/article/ca6528579.html, 2008.

[5] H. Aydin, V. Devadas, and D. Zhu. System-level energy management for
periodic real-time tasks. In Proc. of the 27th IEEE Real-Time Systems

Symposium (RTSS), pages 313–322, 2006.

[6] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Power-aware
scheduling for periodic real-time tasks. IEEE Trans. on Computers,
53(5):584–600, 2004.

[7] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor
real-time systems. Proc. Int’l Parallel and Distributed Processing Symp.,
2003.

[8] T P. Baker. Stack-based scheduling of real-time processes. Journal of

Real-Time Systems, 3(1):67–99, Jan. 1991.

24

0.1 0.2 0.3 0.4 0.5
1.0

1.05

1.1

1.15

RU

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

SA-DVFS

BS

(a) Normalized energy consumption

0.1 0.2 0.3 0.4 0.5
1.0

2.0

3.0

4.0

5.0

RU

N
o

r
m

a
li

z
e
d

 D
V

F
S

 T
r
a

n
s
it

io
n

s

SA-DVFS

BS

(b) Normalized DVFS transitions

Fig. 16: Effects of different policies with varying RU .

3� 6� 9� 12�15�18�21�24�27�30�
1.0

1.05

1.1

1.15

CSR

N
o
rm

a
li

ze
d

 E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

SA-DVFS

BS

(a) Normalized energy consumption

3� 6� 9� 12�15�18�21�24�27�30�
1.0

2.0

3.0

4.0

CSR

N
o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DVFS

BS

(b) Normalized DVFS transitions

Fig. 17: Effects of different policies with varying CSR.

1 2 4 8 16 32
1.0

1.1

1.2

NCPI

N
o

rm
a

li
ze

d
 E

n
er

g
y

 C
o

n
su

m
p

ti
o

n

SA-DVFS

BS

(a) Normalized energy consumption

1 2 4 8 16 32
1.0

2.0

3.0

4.0

NCPI

N
o
r
m

a
li

z
e
d

 D
V

F
S

 T
r
a
n

s
it

io
n

s

SA-DVFS

BS

(b) Normalized DVFS transitions

Fig. 18: EEffects of different policies with varying NCPL.

[9] D. Bautista, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato. A
simple power-aware scheduling for multicore systems when running
real-time applications. In IEEE Int’l Parallel and Distributed Processing

Symposium (IPDPS), pages 1–7, 2008.
[10] A. Block, H. Leontyev, B B. Brandenburg, and J H. Anderson. A flexible

real-Time locking protocol for multiprocessors. Proc. 13th IEEE Conf.

Embedded and Real-Time Computing Systems and Applications, pages
47–57, 2007.

[11] S. Borkar. Thousand core chips: a technology perspective. In Proc. of

the 44th Design Automation Conference (DAC), pages 746–749, 2007.
[12] B B. Brandenburg and J H. Anderson. Optimality results for multipro-

cessor real-time locking. Proc. 31st IEEE Real-Time Systems Symp.,
pages 49–60, 2010.

[13] T D. Burd and R W. Brodersen. Energy efficient CMOS microprocessor
design. Proc. Hawaii Int’l Conf. System Sciences, pages 288–297, 1995.

[14] J.-J. Chen and T.-W. Kuo. Multiprocessor energy-efficient scheduling for
real-time tasks with different power characteristics. In Proc. of the 2005

Int’l Conference on Parallel Processing (ICPP), pages 13–20, 2005.
[15] J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic

real-time tasks in leakage-aware dynamic voltage scaling systems. In
Proc. of the 2007 IEEE/ACM Int’l Conference on Computer-Aided

Design (ICCAD), pages 289–294, 2007.
[16] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient

scheduling of real-time tasks in multiprocessor systems. In Proc. of

the 12th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 408–417, 2006.
[17] Y-S. Chen, C-Y. Yang, and T-W. Kuo. Energy-efficient task Synchroniza-

tion for real-time systems. IEEE Trans. Industrial Informatics, 6(3):287–
301, 2010.

[18] S. Cho and R. G. Melhem. On the interplay of parallelization, program
performance, and energy consumption. IEEE Transactions on Parallel

and Distributed Systems, 21(3):342–353, 2010.
[19] E T-H. Chu, T-Y. Huang, and Y-C. Tsai. An optimalsolution for

the heterogeneous multiprocessor single-level voltage-setup problem.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
28(11):1705–1718, 2009.

[20] J.M. Cohn, D.W. Stout, P.S. Zuchowski, S.W. Gould, T.R. Bednar, and
D.E. Lackey. Managing power and performance for system-on-chip
designs using voltage islands. In Proc. of the International Conference

on Computer-Aided Design (ICCAD), pages 195–202, 2002.
[21] V. Devadas and H. Aydin. Coordinated power management of periodic

real-time tasks on chip multiprocessors. In Proc. of the First IEEE Int’l

Green Computing Conference (IGCC), Aug. 2010.

[22] J. Donald and M. Martonosi. Techniques for multicore thermal man-
agement: classification and new exploration. In Proc. of the 33rd Int’l

Symposium on Computer Architecture (ISCA), pages 78–88, 2006.

[23] J. Dorsey, S. Searles, M. Ciraula, S. Johnson, N. Bujanos, D. Wu,
M. Braganza, S. Meyers, E. Fang, and R. Kumar. An integrated quad-
core opteron processor. In IEEE International Solid-State Circuits

Conference, pages 102–103, Feb. 2007.

[24] A. Easwaran and B. Andersson. Resource sharing in global fixed-
priority preemptive multiprocessor scheduling. Proc. 30th IEEE Real-

Time Systems Symp., pages 377–386, 2009.

[25] R. Ernst and W. Ye. Embedded program timing analysis based on path
clustering and architecture classification. Proc. Int’l Conf. Computer-

Aided Design, pages 598–604, 1997.

[26] P. Gai, M. D. Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the Janus
multiple-processor on a chip platform. pages 189–198, 2003.

[27] L K. Goh, B. Veeravalli, and S. Viswanathan. Design of fast and effi-
cient energy-aware gradient-based scheduling algorithms heterogeneous
embedded multiprocessor systems. IEEE Trans. Parallel and Distributed

Systems, 20(1):1–12, Jan. 2009.

[28] S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors. In Proc. of the int’l symposium on Low

power electronics and design (ISLPED), pages 38–43, 2007.

[29] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. IEEE

Computer, 41(7):33–38, 2008.

[30] http://public.itrs.net. International technology roadmap for semiconduc-
tors. 2008. S. R. Corporation.

[31] http://www.intel.com/products/processor/core2quad/, 2008.

[32] J. Hu, Y. Shin, N. Dhanwaday, and R. Marculescu. Architecting voltage
islands in core-based system-on-a-chip designs. In Proc. of the Int’l

symposium on Low power electronics and design, pages 180–185, 2004.

[33] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi.
An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget. In Proc. of the 39th

IEEE/ACM Int’l Symposium on Microarchitecture, pp. 347–358, 2006.

[34] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically
variable voltage processors. In Proc. of the Int’l Symposium on Low

Power Electronics and Design (ISLPED), pages 197–202, 1998.

[35] R. Jejurikar and R. Gupta. Energy-aware task scheduling with task syn-
chronization for embedded real-time systems. IEEE Trans. Computer-

Aided Design of Integrated Circuits and Systems, 25(6):1024–1037,
2006.

25

[36] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proc. of the 41st Design

automation conference (DAC), pages 275–280, 2004.
[37] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task

scheduling, allocation and synchronization on multiprocessors. Proc.

30th IEEE Real-Time Systems Symp., pages 469–478, 2009.
[38] W. Y. Lee. Energy-efficient scheduling of periodic real-time tasks

on lightly loaded multi-core processors. IEEE Trans. Parallel and

Distributed Systems, pages 344–357, 2011.
[39] L. Leung and C. Tsui. Energy-aware synthesis of networks-on-chip

implemented with voltage islands. In Proc. of the 44th ACM/IEEE

Design Automation Conference (DAC), pages 128–131, 2007.
[40] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.

The case for a single-chip multiprocessor. In Proc. of the Int’l

Symp. Architectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 2–11, Oct. 1996.
[41] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-

power embedded operating systems. In Proc. of 18th ACM Symposium

on Operating Systems Principles (SOSP’01), Oct. 2001.
[42] X. Qi and D. Zhu. Energy-efficient block-partitioned multicore pro-

cessors for parallel applications. Journal of Computer Science and

Technology, 26(3):418–433, 2011.
[43] G. Quan and X.S. Hu. Energy efficient DVS schedule for fixed-priority

real-time systems. ACM Trans. Embedded Comput. Syst., 6(4), 2007.
[44] R. Rajkumar, L. Sha, and J.P. Lehoczky. Real-time synchronization

protocols for multiprocessors. Proc. 9th IEEE Real-Time Systems Symp.,
pages 259–269, 1988.

[45] C. Scordino and G. Lipari. A resource reservation algorithm for power-
aware scheduling of periodic and aperiodic real-time tasks. IEEE Trans.

on Computers, 55(12):1509–1522, 2006.
[46] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient scheduling of

real-time tasks on multicore processors. IEEE Trans. Parallel Distrib.

Syst., 19(11):1540–1552, 2008.
[47] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols:

an approach to real-time synchronization. IEEE Trans. on Computers,
39(9):1175–1185, Aug. 1990.

[48] P. Leteinturier (Infineon Technologies). Multi-core processors: Driv-
ing the evolution of automotive electronics architectures; available at
http://www.embedded.com/design/multicore/, 2007.

[49] Y. Wang, X. Wang, M. Chen, and X. Zhu. Partic: Power-aware response
time control for virtualized web servers. IEEE Trans. Parallel Distrib.

Syst., 22(2):323–336, 2011.
[50] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for

reduced CPU energy. Proc. First USENIX Symp. Operating system

Design and Implementation, pages 13–23, Nov. 1994.
[51] X. Wu, Y. Lin, J-J. Han, and J-L. Gaudiot. Energy-efficient scheduling

of real-time periodic tasks in multicore systems. Proc. 7th IFIP Int’l

Network and Parallel Computing (NPC), pages 344–357, 2010.
[52] R. Xu, R. Melhem, and D. Mossé. Energy-aware scheduling for

streaming applications on chip multiprocessors. Proc. 28th IEEE Real-

Time Systems Symp., pages 25–38, 2007.
[53] http://www.lindo.com/.
[54] F. Zhang and S.T. Chanson. Blocking-aware processor voltage schedul-

ing for real-time tasks. ACM Trans. Embedded Computing Systems,
3(2):307–335, May 2004.

[55] D. Zhu and H. Aydin. Reliability-aware energy management for periodic
real-time tasks. IEEE Trans. on Computers, 58(10):1382–1397, 2009.

[56] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multi-processor
real-time systems. IEEE Trans. on Parallel and Distributed Systems,
14(7):686–700, 2003.

[57] J. Zhuo and C. Chakrabarti. Energy-efficient dynamic task scheduling
algorithms for DVS Systems. ACM Trans. Embedded Computing

Systems, 7(2):1–25, 2008.

