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Abstract The fluctuation of intracellular and extra-

cellular ion concentration induces the variation of

membrane potential, and also complex distribution

of electromagnetic field is generated. Furthermore,

the membrane potential can be modulated by time-

varying electromagnetic field. Therefore, magnetic flux

is proposed to model the effect of electromagnetic

induction in case of complex electrical activities of

cell, and memristor is used to connect the coupling

between membrane potential and magnetic flux. Based

on the improved neuron model with electromagnetic

induction being considered, the bidirectional coupling-

induced synchronization behaviors between two cou-

pled neurons are investigated on Spice tool and also

printed circuit board. It is found that electromagnetic

induction is helpful for discharge of neurons under pos-

itive feedback coupling, while electromagnetic induc-

tion is necessary to enhance synchronization behaviors

of coupled neurons under negative feedback coupling.

The frequency analysis on isolate neuron confirms that
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the frequency spectrum is enlarged under electromag-

netic induction, and self-induction effect is detected.

These experimental results can be helpful for further

dynamical analysis on synchronization of neuronal net-

work subjected to electromagnetic radiation.

Keywords Memristor · Neuron · Synchronization ·

Electromagnetic induction

1 Introduction

Since the pioneering work carried out by Hodgkin–

Huxley, which nonlinear analysis was processed on

the sampled time series for membrane potential of

squid large axon neurons by using patch clamp tech-

nique, it is believed that the Hodgkin–Huxley neuron

model [1] can reproduce the main properties of elec-

trical activities with the effect of ion channels being

considered. It is confirmed that the fluctuation of mem-

brane potential depends on the changes of intracellu-

lar and extracellular ion concentration, and external

forcing currents. This ion hypothesis has been veri-

fied its reliability within biological experiments and

can give important guidance for computational neuro-

science that blocking and activation agent of ion chan-

nels can be used to change the modes of electrical activ-

ities in neurons [2,3]. Furthermore, neuronal networks

designed with different topological connections, for

example regular network with nearest-neighbor con-
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nection, small-world network composed of local regu-

lar connection and long-range connection with differ-

ent probability, have been proposed to the dynamical

response, phase transition of collective behaviors of

neuronal activities, and pattern formation and selec-

tion in brain. For example, Gong et al. [4] investigated

the effect of ion channel blocking on firing pattern in

stochastic Hodgkin–Huxley neuronal network. Liu et

al. [5] confirmed that the stability of spiral wave in

the neuronal network depends on the ion channel and

blocking in channels can break the regularity of spirals

in the media. Reference [6] suggested that ion channel

can be used to adjust and regulate the collective behav-

iors of neuronal network with small-world connection.

Furthermore, Ref. [7] synchronization transition was

discussed in the time-delayed stochastic neuronal net-

work. Sun et al. [8] reported that optimal blocking in

channels can be helpful for regularity in electrical activ-

ities of neuronal network. Shuai et al. [9] suggested that

the improved Langevin approximation method can be

effective to approach statistical properties in electrical

activities of stochastic Hodgkin–Huxley neuron model.

In fact, researchers prefer to detect the transition in

electrical activities and many simplified neuron models

have been presented for dynamical analysis [10–15].

The external forcing current is often used to change the

excitability of neuron and different modes of electri-

cal activities such as quiescent, spiking, bursting and

even chaotic states can be observed in the sampled time

series for membrane potentials by applying appropri-

ate forcing currents. For example, the three-variable

Hindmarsh–Rose neuron [11] is often appreciated due

to its simple form and used for bifurcation analysis, syn-

chronization setting, pattern selection in network and

dynamical control [16–18], and further description can

be found in the review survey [19,20] and references

therein.

The realistic neuron holds complex anatomical

structure; besides the ion channel, some interneurones

have been found to form autapse, a specific synapse

connected to its body via certain loop with time delay,

and this type of signal modulation and propagation can

be described by time-delayed feedback on the mem-

brane potential [21]. The autapse is classified into two

types such as electric autapse and chemical autapse

according to the action mechanism [22], and the elec-

trical activities of neuron can be controlled by autapse

[23–25]; for example, mode transition between quies-

cent, spiking and bursting can be selected by apply-

ing appropriate feedback gain and time delay in the

loop for autapse. The author [26] of this paper ever

designed a class of neuronal circuit driven by autapse; it

is found that autapse connection make neuron becomes

self-adaptive to external forcing and gave appropriate

response. Extensive results found that appropriate dis-

tribution of autapse in network can enhance synchro-

nization of network [27], developing ordered wave and

pulse [28], and thus, the collective behaviors of net-

work can be regulated by a pacemaker associated with

autapse, and defects [29] also can be induced to block

the wave propagation by negative feedback in autapse.

On the other hand, the electrical activities of neuron

and neuronal network can be changed due to polar-

ization and magnetization; for example, Refs. [30–32]

discussed the effect of polarization on neurons exposed

to magnetic field and the transition in rhythm of elec-

trical activities and synchronization approach as well.

Wu et al. [33] suggested that the effect of radiation can

be described by adding loop current on the neuron, and

the response of electrical activities is discussed.

In fact, most of the presented neuron models focus

on the contribution of transmembrane currents, while

the effect of electromagnetic induction induced by

complex fluctuation of ion concentrations is missed.

According to the law of electromagnetic induction,

time-varying electromagnetic field can induce fluctu-

ation of magnetic flux covered by a loop, and electro-

magnetic induction occurs. The exchange of intracellu-

lar and extracellular charged ions and the time-varying

distribution of charged ions can induce complex elec-

tromagnetic induction in cell. As a result, induced cur-

rent and field can be induced to change the mem-

brane potential of neuron and it can be different from

the transmembrane current generated by exchange of

charged ions across the membrane. As a result, Ma et

al. [34,35] suggested that magnetic flux can be used to

describe the fluctuation of electromagnetic field, and

memristor [36,37] is used to realize feedback cou-

pling between magnetic flux and membrane potential

of neuron. It is interesting to find emergence of mul-

tiple modes of electrical activities in the sampled time

series for membrane potentials by applying external

forcing at fixed parameters, and it is believed that the

memory mechanism can be associated with magnetic

storage. Memristor is a new type of electric device and

often used as nonlinear device in chaotic circuit, the

memductance is dependent on the input current, and its

memductance is fixed after removal of external forc-

123



Synchronization behavior of coupled neuron circuits 895

ing; as a result, memory effect is verified and the

memristor-coupled circuit is much dependent on the

initial selection [38–42]. By now, the dynamical analy-

sis and control has been investigated on these resonator

coupled with memristor extensively, and it is also inter-

esting to explore this problem on memristor-coupled

circuits. In this paper, operational amplifier and multi-

plier are used to set a reliable neuronal circuit based on

a neuron model [34,35] with electromagnetic induction

being considered, and the synchronization problem will

be carried out on this circuit.

2 Model description, circuit setting and

experimental results

As mentioned above, the fluctuation of intracellular and

extracellular ions of cell can induce electromagnetic

induction and the membrane potential can be modu-

lated; therefore, magnetic flux is proposed to describe

HR Neur

EMIi

Iext x

Fig. 1 Schematic diagram of the neuronal circuit. Iext is the

external forcing current, i is the induced current defined by

k1ρ(ϕ)x , and EMI is the abbreviation for electromagnetic induc-

tion

the effect of electromagnetic induction. According to

the electromagnetic law, magnetic flux can change the

membrane, vice versa. Memristor is proposed to real-

ize coupling and interaction between magnetic flux

and membrane potential to be consistent with physical

units. The memductance of memristor is described by

q(ϕ) = αϕ + βϕ3 or
dq(ϕ)

dϕ
= ρ(ϕ) = α + 3βϕ2

(1)

where ϕ is magnetic flux, ρ(ϕ) is the memductance

of memristor controlled by magnetic flux, and α and

β are parameters for memristor. The dynamical equa-

tions for Hindmarsh–Rose neuron [34,35] composed

of electromagnetic induction are described by
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dx
dt

= y − ax3 + bx2 − z + Iext − k1(α + 3βϕ2)x

dy
dt

= c − dx2 − y

dz
dt

= r [s(x + 1.6) − z]

dϕ
dt

= x − k2ϕ

(2)

where x, y, zandϕ denote the membrane potential,

recovery variable for slow current, adaption current

and magnetic flux across the membrane respectively.

Iext is the external forcing current. a, b, c, d, r and s

are parameters with similar description in the previous

Hindmarsh–Rose model. The parameter k1 defines the

modulation gain on membrane potential resulting from

induced current. The forth equation is Faraday’s law

of induction, while the parameter k2 is associated with

the media and suppresses the increase in magnetic flux

infinitely. The parameters are set as a = 1, b = 3,

c = 1, d = 5, r = 0.006, s = 4, α = 0.1, β = 0.01,

Fig. 2 Schematic diagram for the induced current k1ρ(ϕ)x . The

output for operational amplifier U1A is the nonlinear variable ϕ,

which can be realized by using the resistance R1, R2, R3, R5,

R8, R11, capacitor C1 and operational amplifier U1B. The output

for operational amplifier U2A is the nonlinear variable k1ρ(ϕ),

which can be realized by using the resistance R4 R6 R7 R9 R10

and multiplier Um1
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k1 = 1, k2 = 1, and the schematic diagram for the HR

circuit coupled with memristor is plotted in Fig. 1.

As a result, analog circuit can be designed for the

induced current k1ρ(ϕ)x ; thus, the effect of electro-

magnetic induction can be considered. It reads in Fig. 2

as follows

According to Fig. 2, the output from multiplier

Um2 produces the induced current for the neuron. The

analog circuit for the variable x, y, z can be set up

as well. It is known that two identical neurons can

reach phase synchronization, generalized synchroniza-

tion, lag synchronization and even complete synchro-

nization by selecting appropriate coupling intensity.

For non-identical neurons, phase synchronization or

rhythm synchronization can be realized under appropri-

ate coupling intensity between neurons. Furthermore, it

is interesting to investigate the synchronization behav-

N1

Ie
x
t

i2
N2

i1

Ie
x
t

Fig. 3 Schematic diagram for two coupled neurons under elec-

tromagnetic induction

ior between the improved neuronal circuits when the

effect of electromagnetic induction is considered, and

the schematic diagram for the coupled neuronal circuits

is plotted in Fig. 3.

It is shown in Fig. 3 that two same neuronal cir-

cuits are coupled bidirectionally and driven by the same

external forcing currents Iext, while the electromag-

netic induction currents i1 = k1

(

α + 3βϕ2
1

)

x1 and

i2 = k1

(

α + 3βϕ2
2

)

x2 are considered as well, and

the dynamical equations for the coupled neurons are

described by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ1 = y1 − ax3
1 + bx2

1 − z1 + Iext − k1(α + 3βϕ2
1 )x1

+ D(x2 − x1)

ẏ1 = c − dx2
1 − y1

ż1 = r [s(x1 + 1.6) − z1]

ϕ̇1 = x1 − k2ϕ1

ẋ2 = y2 − ax3
2 + bx2

2 − z2 + Iext − k1(α + 3βϕ2
2 )x2

+ D(x1 − x2)

ẏ2 = c − dx2
2 − y2

ż2 = r [s(x2 + 1.6) − z2]

ϕ̇2 = x2 − k2ϕ2

(3)

where the subscript 1, 2 marks the neuron N1 and N2,

D is the coupling intensity between neurons, a positive

selection for D generates negative feedback and stabi-

lization for each neuron, while negative selection for

D can induce positive feedback for neurons, and it is

interesting to detect the synchronization behaviors in

this case.

Fig. 4 Outputs for

membrane potentials under

external forcing with Spice.

For a Iext = 130µA, no

electromagnetic induction is

considered; b Iext = 130µA

the effect of electromagnetic

induction is considered;

c Iext = 250µA no

electromagnetic induction is

considered; d Iext = 250µA

the effect of electromagnetic

induction is considered
(a) (b)

(c) (d)
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Fig. 5 Sampled time series

for membrane potential and

power spectrum at external

forcing current

Iext = 350µA: for (a), (c),

no electromagnetic

induction is considered; for

(b), (d), electromagnetic

induction is considered

5

(a) (b)

(c) (d)

Fig. 6 Outputs for

membrane potentials under

external forcing with Spice.

For a Iext = 250µA no

electromagnetic induction is

considered; b Iext = 250µA

the effect of electromagnetic

induction is considered;

c Iext = 500µA no

electromagnetic induction is

considered; d Iext = 500µA

the effect of electromagnetic

induction is considered. The

results are produced from

two isolate PCBs

N1

N2

N1

N2

N1

N2

N1

N2

(a) (b)

(c) (d)

3 Experimental verification and discussion

At first, the Spice tool is used to check the outputs

response and power spectrum by applying different

external forcing currents. For example, the external

forcing current is set as Iext = 130µA, Iext = 250µA,

and the outputs for membrane potential are recorded in

Fig. 4.

The results in Fig. 4a confirmed that distinct spik-

ing can be induced by applying weak external forc-
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(c) (d)

Fig. 7 Response of electrical activities is verified on PCBs for

two neurons under bidirectional coupling. For a D = −0.25,

without electromagnetic induction; b D = −0.25, electromag-

netic induction is considered; c D = −1.17, without electro-

magnetic induction; d D = −1.17, electromagnetic induction is

considered. The external forcing current is set as Iext = 250µA

ing current without electromagnetic induction being

considered, and the effect of electromagnetic induc-

tion in Fig. 4b can calm down the neuron to become

quiescent state. Extensive investigation on Spice found

that the quiescent potential and the excited threshold

will be increased when the effect of electromagnetic

induction is considered, the potential mechanism that

more energy is required because some energy has to

be stored for further release. The results in Fig. 4c,

d show that the effect of electromagnetic induction

can be suppressed by increasing the external forcing

current to intermediate level, which can supply more

energy for the neuronal circuit. Then, the external forc-

ing current is increased, and the results are illustrated

in Fig. 5.

It is found in Fig. 5 that the electromagnetic induc-

tion shows great impact on the mode of electrical activ-

ities by applying stronger external forcing current and

bursting states can be enhanced; otherwise, its electri-

cal activities keep the previous spiking state. Figure 5c

confirms that the spectrum of discharge frequency can

mainly be detected close to γ waveband (30–60 Hz)

without electromagnetic induction being considered in

the presence of strong external forcing current. How-

ever, the spectrum of discharge frequency is decreased

to close the α waveband (8–10 Hz) and power distri-

bution in continuous waveband (40–120 Hz). That is

to say, the dynamical response becomes complex, and

the power spectrum in electrical activities of neuron is

extended with larger waveband that memory effect is
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N1
N2

N1
N2

(b)(a)

Fig. 8 Response of electrical activities is verified on PCBs for

two neurons under bidirectional coupling. For a D = .17, with-

out electromagnetic induction; b D = .17, electromagnetic

induction is considered, and the external forcing current is set

as Iext = 250µA

enhanced. Furthermore, this scheme is investigated on

printed circuit board (PCB) to analyze the outputs and

dynamical response in the membrane potentials of two

isolate neurons (without coupling), initial values are

triggered in random wave, and the results are shown in

Fig. 6.

The results presented the experimental outputs from

PCB for two isolate neurons according to Eq. (1), oper-

ational amplifier TL08X and multiplier AD633 are

used to set the neuronal circuit with and without elec-

tromagnetic induction being considered, and the exter-

nal forcing current is selected by Iext = 250µA and

Iext = 500µA, respectively. The sampled signals from

two different channels of oscilloscopes are recorded

and confirmed the consistence with the results from

Spice. That is to say, intermediate forcing current in

intensity seems to disable the electromagnetic induc-

tion that shows weak impact on electrical activities.

However, the electrical activities can be greatly mod-

ulated and changed by electromagnetic induction by

applying stronger external forcing current on the neu-

ronal circuit.

It is also interesting to discuss the synchroniza-

tion between two neuronal circuits under bidirectional

coupling. The PCB circuits are set according to Eq.

(2) to detect the synchronization degree under differ-

ent coupling intensities, and results are verified for

Iext = 250µA in Fig. 7, the coupling intensity D is

selected by negative value, and the response of electri-

cal activities is recorded.

It is known that positive feedback can excite and

enhance the oscillating behavior of neurons and oscil-

lators. For example, positive feedback can make qui-

escent neuron become spiking and even bursting. Fig-

ure 7a, b confirms that positive feedback coupling can-

not realize bursting synchronization when the cou-

pling intensity is small. Then, the coupling intensity

is increased, Fig. 7c confirms that the electrical activi-

ties are suppressed, and these phenomena can be much

different from the previous works that amplitude of

membrane potential is increased. Within Fig. 7d, it is

important to find that the two neuronal circuits can

reach phase synchronization with certain time delay

that could be associated with the initial selection in

diversity. Furthermore, negative feedback coupling is

also investigated on PCBs, and the results are shown in

Fig. 8.

It is found that the synchronization degree and

behavior show much difference even the same coupling

intensity is applied. Negative feedback coupling is

effective to stabilize the synchronization, and the effect

of electromagnetic induction seems to play important

role in enhancing the synchronization between neu-

ronal circuits due to the memory of magnetic field and

flux.
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4 Conclusions

The intracellular and extracellular ion concentrations

of cells are time-varying, it can induce the complex

electromagnetic field, and the membrane potential of

neurons can be greatly changed. As a result, it is impor-

tant to detect the effect of electromagnetic induction

on neuronal activities and even the synchronization

behaviors of coupled neurons. In most of the previ-

ous works, the model setting for neuronal activities

used to focus on the transmembrane current gener-

ated by exchanges of charged ions, while the effect

of electromagnetic induction is left out. As a result,

magnetic flux [19,34,35] is suggested to describe the

effect of electromagnetic induction, and further, elec-

tromagnetic radiation on mode transition of electrical

activities (even the relevant disease induced by electro-

magnetic radiation) can be measured and understood.

In dynamical view, mode selection and physical mech-

anism can be discussed on the model proposed in Refs.

[34] even the effect of ion channel can be further dis-

cussed. It is more important to discuss this problem on

realistic neuronal circuits, such as dynamical response

and synchronization approaching in neuronal circuits

when the effect of electromagnetic induction is con-

sidered completely. The results on Spice and PCBs in

this paper confirmed that the electrical activities and

synchronization between coupled neurons and circuits

can be modulated by electromagnetic flux and the field,

and the numerical results can be easily carried out by

using the proposed model. Therefore, the scheme and

discussion could be helpful for further investigation on

synchronization problems and emergence of neuronal

disease in physical mechanism, and researchers can fur-

ther investigate this problem on network of neuron and

large- scale integrated circuit.
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