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We study synchronization for two unidirectionally coupled networks. This is a substantial generalization of
several recent papers investigating synchronization inside a network. We derive analytically a criterion for the
synchronization of two networks which have the same �inside� topological connectivity. Then numerical
examples are given which fit the theoretical analysis. In addition, numerical calculations for two networks with
different topological connections are presented and interesting synchronization and desynchronization alter-
nately appear with increasing value of the coupling strength.
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I. INTRODUCTION

Presently our knowledge of complex networks is experi-
encing rapid growth �1–9�. Generally speaking, a complex
network is a large set of interconnected nodes, in which a
node is a fundamental unit with specific contents �10�.

Among all kinds of complex networks, random graph,
small-world effect, and scale-free characteristics are mostly
noticeable. In early 1960, the theory of random graphs was
first constructed by the two Hungarian mathematicians Erdös
and Rényi �11�. This model has dominated the mathematical
research of complex networks for nearly half a century,
mainly due to the absence of supercomputational power and
detailed topological information about various large-scale
real-world networks. In 1998, the small-world effect was in-
troduced by Watts and Strogatz �1� to investigate the transi-
tion from regular networks to random ones. Such networks
behave a high degree of clustering as in the regular networks
and a small average distance among nodes. Shortly thereaf-
ter, Barabási and Albert �2� brought forward scale-free char-
acteristics where the degree of nodes follows a power-law
distribution and most nodes have few connections, but only a
few nodes have many connections, the hubs.

Networkers mostly focus on modeling, dynamical analy-
sis, and control. Recently, synchronization of complex net-
works, strictly speaking, “inner synchronization,” has at-
tracted much attention. The early work in this regard was
given by Wang and Chen �10�, where they considered an
ideal model

ẋi�t� = f„xi�t�… + c�
j=1

N

aij�xj�t�, i = 1,2, . . . ,N , �1�

where xi= �xi1 ,xi2 , . . . ,xin�T�Rn are the state variables of
node i and N is the number of the network nodes. f :Rn

→Rn is a continuously differentiable function which deter-
mines the dynamical behavior of the nodes. c�0 is a cou-
pling strength, and ��Rn�n is a constant 0-1 matrix linking
coupled variables. For simplicity, one often assumes that �
=diag�r1 ,r2 , . . . ,rn��0 is a diagonal matrix. A= �aij�
�RN�N represents the coupling configuration between
nodes of the whole network �it is often assumed that there is
at most one connection between node i and a different node

j and that there are no isolated clusters; that is, A is an
irreducible matrix�, whose entries aij are defined as follows:
if there is a connection between node i and node j�j� i�, then
aij =1; otherwise, aij =0�j� i�; the diagonal elements of A are
defined as aii=−� j=1,j�i

N aij =−� j=1,j�i
N aji, and clearly, if the

degree of node i is ki, then aii=−ki , i=1,2 , . . . ,N.
In that paper, they studied the fact that all nodes in the

network achieved a synchronous state, which was deter-
mined by ẋ�t�= f(x�t�). Since they considered synchroniza-
tion in a network, we may regard it as “inner synchroniza-
tion” of a network. Improved and expanded work in this
respect—i.e., introducing weighted connections, time depen-
dence in the coupling matrices, nonlinear coupling function,
time delays, etc.—can be found in the literature �12–18� and
many references cited therein. Rather than the above case,
the synchronous state in a network may be different from the
steady state determined by a single node, ẋ�t�= f(x�t�); i.e.,
see �19,20�, in which bifurcation of a network was also stud-
ied.

A natural question is, does synchronization between two
coupled networks also happen? We may call it can “outer
synchronization” of networks if such a synchronization ex-
ists. In effect, outer synchronization exists in our lives. Here
we only cite three examples to illustrate that outer synchro-
nization is common in our real world. If such a synchroniza-
tion is a benefit, we should enhance it, while if it harmful, we
should avoid it. From the angle of sociology, the present
world can be divided into two networks: developed networks
constructed by developed countries and developing networks
constructed by developing countries. With the gradual in-
crease of international exchange, the two networks will be
synchronized; i.e., the future world will reach “great har-
mony.” In the animal world, synchronization phenomena
universally exist if no external intervention appears. In prey
and predator communities, for example, the number of prey
and that of predators are usually invariant under no outside
invasion. An another example is taken from the computer
world. All educators’ computers form education networks
while all researchers’ networks compose research networks.
These two networks are coupled via the Internet. If all edu-
cators and researchers explore the same Internet source, then
congestion appears, which is harmful and so should be
avoided. So it is very necessary to study the outer synchro-
nization between coupled networks.
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In the present paper we study this interesting topic. For
more details, a synchronization analysis of two coupled net-
works with the same connection topologies is given in Sec.
II. In Sec. III, two numerical examples are in line with the
theoretical analysis derived in Sec. II. In addition, synchro-
nization or desynchronization between two coupled networks
with different topologies are also numerically investigated. A
conclusion and discussion are included in Sec. IV.

II. MODEL PRESENTATION AND SYNCHRONIZATION
ANALYSIS

In �21�, the authors used the open-plus-closed-loop
method �22� to realize synchronization between the follow-
ing master and slave systems. The master system is

dx

dt
= f�x�, x � Rn. �2�

By their choice, the slave system reads

dy

dt
= f�y� + �H −

�f�x�
�x

��y − x� , �3�

where the matrix H is an arbitrary constant Hurwitz one �a
matrix with negative real part eigenvalues� whose elements
can be chosen as simple as possible. When ��f�x� /�x�ik is a
constant, we can then choose Hik= ��f�x� /�x�ik such that �H
−�f�x� /�x�ik is zero. When we cannot find such a Hurwitz
matrix, we introduce one or two or more parameters guaran-
teeing that H is a Hurwitz matrix. From this viewpoint we
can conclude that the coupling form may be simpler if f�x�
has fewer nonlinear terms.

Now we apply the above simple coupling form to inves-
tigate the synchronization between two coupled networks.
Here we take the driving network in the form

ẋi�t� = f„xi�t�… + c�
j=1

N

aij�xj�t�, i = 1,2, . . . ,N , �4�

and the response network as

ẏi�t� = f„yi�t�… + �H −
�f�xi�

�xi
��yi�t� − xi�t��

+ c�
j=1

N

bij�yj�t�, i = 1,2, . . . ,N , �5�

where xi, yi, N, f , �, and c have the same meanings as those
in �1�, and A= �aij�N�N and B= �bij�N�N are symmetric or
asymmetric matrices, each line sum of A and B being equal
to zero.

Hereafter, network �4� and network �5� are said to achieve
synchronization if

lim
t→+�

�yi�t� − xi�t�� = 0, i = 1,2, . . . ,N . �6�

In the following, we study the synchronization between
system �4� and system �5�, where both have the same topol-
ogy structures—i.e., A=B.

Letting ei=yi−xi and linearizing the error system around
xi, we get

ėi = Hei + c�
j=1

N

aij�ej, i = 1,2, . . . ,N . �7�

Equation �7� can be written as

ė = He + c�eAT, �8�

where T stands for matrix transpose and e= �e1 ,e2 , . . . ,eN�
denotes an n�N matrix. Decompose the coupling matrix
according to AT=SJS−1, where J is a Jordan canonical form
with complex eigenvalues ��C and S contains the corre-
sponding eigenvectors s. Multiplying Eq. �8� from the right
with S and denoting �=eS, we obtain

�̇ = H� + c��J , �9�

where J is a block diagonal matrix,

	J1

�

Jh

 ,

and Jk is a block corresponding to the mk multiple eigenvalue
�k of A:

	
�k 1 0 ¯ 0

0 �k 1 ¯ 0

] ] � � ]

0 0 ¯ �k 1

0 0 ¯ 0 �k


 .

Let �= ��1 ,�2 , . . . ,�h� and �k= ��k,1 ,�k,2 , . . . ,�k,mk
�. Due to

the fact that the sum of every line of the matrix A is zero, we
can assume �1=0 and J1 is a 1�1 matrix. If �1=0, we get
�̇1=H�1. Since H is a Hurwitz matrix, the zero solution �1
=0 is asymptotically stable. Next, we discuss the cases k
=2,3 , . . . ,h. We can rewrite Eq. �9� in a component form

�̇k,1 = �H + c�k���k,1, �10a�

�̇k,p+1 = �H + c�k���k,p+1 + c��k,p,

1 � p � mk − 1. �10b�

First, we consider the stability of Eq. �10a�. Let �k,1=uk,1
+ jvk,1 and �k=	k+ j
k, where uk,1, vk,1, 
k�R, 	k�0, k
=2, . . ., h, and j is the imaginary unit. Equation �10a� can be
rewritten as

u̇k,1 = �H + c	k��uk,1 − c
k�vk,1,

v̇k,1 = �H + c	k��vk,1 + c
k�uk,1. �11�

We define the Lyapunov function as

V�t� = uk,1
T uk,1 + vk,1

T vk,1. �12�

Then we get
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V̇�t� = uk,1
T �PT + P�uk,1 + vk,1

T �PT + P�vk,1 + c
kuk,1
T ��T

− ��vk,1 + c
kvk,1
T ��T − ��uk,1 = �uk,1

vk,1
�T

M�uk,1

vk,1
� ,

�13�

where

M = �PT + P

PT + P
� �14�

and P=H+c	k�. If M �0—i.e., if this matrix is negative
definite—then the zero solution of Eq. �10a� is asymptoti-
cally stable.

Second, we study the stability of Eq. �10b�. Without loss
of generality, we take p=1 using the same method. Let
�k,2=uk,2+ jvk,2, we get

u̇k,2 = �H + c	k��uk,2 − c
k�vk,2 + c�uk,1,

v̇k,2 = �H + c	k��vk,2 + c
k�uk,2 + c�vk,1. �15�

Let the Lyapunov function be

V�t� = uk,1
T uk,1 + vk,1

T vk,1 + uk,2
T uk,2 + vk,2

T vk,2. �16�

Then we get

V̇�t� = 	
uk,1

vk,1

uk,2

vk,2



T

Q	
uk,1

vk,1

uk,2

vk,2


 , �17�

where

Q = 	
PT + P c�

PT + P c�

c� PT + P

c� PT + P

 . �18�

If Q�0, the zero solution to Eq. �10b� is asymptotically
stable. From this, it follows that the synchronization between
the drive network �4� and the response one �5� is achieved.
Now we can conclude that networks (4) and (5) can be syn-
chronized if two conditions hold: i.e., A=B and H is a Hur-
witz matrix such that M and Q are both negative definite.

In the next section, several illustrative examples are pre-
sented, which are in line with the derived theoretical analy-
sis. A natural question happens: even if H is a Hurwitz-type
matrix and M and Q are negative definite, can synchroniza-
tion between �4� and �5� be achieved provided that A�B?
Such a theoretical study is far more difficult. However, by
numerical simulations, we find that synchronization between
�4� and �5� can be approached under suitable conditions.

III. NUMERICAL EXAMPLES

In the considered networks below, the dynamics at every
node follows the well-known Lorenz system

ẋi1 = ��xi2 − xi1� ,

ẋi2 = xi1 − xi1xi3 − xi2,

ẋi3 = xi1xi2 − bxi3, �19�

where �, , and b are parameters. We always use in the
following �=10, =28, and b=8/3; i.e., the system has a
chaotic attractor.

We take H as the following form:

H = 	− � � 0

u − 1 0

0 0 − b

 , �20�

where u is a parameter. If u�1, it is easy to check that H is
a Hurwitz matrix. Here we always set �=diag�1,1 ,1�.

In what follows, we discuss two cases A=B and A�B,
totally including six subcases. The case A=B includes two
subcases: i.e., A is symmetric and A is nonsymmetric. And
the case A�B has four subcases: �i� A and B are symmetric,
but are not equal, �ii� A is symmetric, but B is not, �iii� B is
symmetric, but A is not, and �iv� A and B are both asymmet-
ric, but are not equal.

A. Identical topological structures „A=B…

In this subsection we first consider the case where both
networks �4� and �5� have the same topological structures:
i.e., A=B. This case consists of two subcases: that is, A is
symmetric and A is nonsymmetric. The former means that
the network connection is undirected, while the latter means
that the network connection is directed. For brevity, we ana-
lyze networks with 10 nodes; at this time, a combination of
systems �4� and �5� is 60 dimensional. For the first subcase,
we suppose that A=B=A1, where

A1 = 	
− 4 1 1 0 0 0 1 0 0 1

1 − 5 1 1 0 0 0 0 1 1

1 1 − 5 1 1 1 0 0 0 0

0 1 1 − 4 1 1 0 0 0 0

0 0 1 1 − 5 1 1 1 0 0

0 0 1 1 1 − 5 1 1 0 0

1 0 0 0 1 1 − 6 1 1 1

0 0 0 0 1 1 1 − 5 1 1

0 1 0 0 0 0 1 1 − 4 1

1 1 0 0 0 0 1 1 1 − 5


 .

�21�

Since the coupling matrix is symmetric, we know that its
first eigenvalue is zero and the rest are negative. From our
analysis, the real parts of the eigenvalues of H+c�k� are
negative for arbitrary u�1 in H. It immediately follows that
the synchronization between network �4� and network �5�
can be achieved. In the following, the initial values are cho-
sen randomly in �0,1�. Let �e�t��=maxmax1�i�10�xi1�t�
−yi1�t�� ,max1�i�10�xi2�t�−yi2�t�� ,max1�i�10�xi3�t�−yi3�t���,
for t� �0, +��. Figure 1 plots the synchronization errors for
different values of u in H.
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For the second subcase—i.e., where A, B are
asymmetric—we set A=B=A2, where

A2 = 	
− 2 0 0 1 0 0 0 1 0 0

1 − 4 0 0 0 1 0 0 1 1

1 0 − 5 0 0 1 1 1 0 1

0 0 0 − 3 0 1 1 0 1 0

0 0 0 0 − 3 0 1 0 1 1

1 1 0 1 0 − 5 0 1 1 0

1 0 1 1 1 0 − 5 0 0 1

0 0 1 0 1 1 0 − 4 1 0

1 1 1 0 1 0 0 1 − 6 1

0 0 0 1 0 1 0 0 1 − 3


 .

�22�

Through the LMI toolbox in Matlab, we can easily find a
pair of �u ,c� such that M, Q�0—say, u=−0.5 and c=0.5.
The synchronization errors are presented in Fig. 2 with dif-
ferent values of u in H.

From our computations, we find that the values of u in H
play an important role in synchronous processes and that the
coupling strength c seems not to have a relation to synchro-
nization. In Figs. 1 and 2, c can be chosen at large. This can
easily be seen from the structures of �4� and �5�, compared to
�2� and �3�. If we let L�X�=c�A � ��X and L�Y�=c�B � ��Y,
where the signal � denotes the Kronecker product and A
=B, then �4� and �5� can be rewritten as a compact form

dX

dt
= F�X� + L�X� ,

dY

dt
= F�Y� + L�Y� + �� −

�F�X�
�X

��Y − X� , �23�

in which �=diag�H ,H , . . . ,H�. System �23� is a analogy of
drive-response system �4� and �5�. From Refs. �21,22�, the

synchronization between systems �4� and �5� depends upon
the Hurwitz matrix H. Similarly, the synchronization in �23�
also depends on the Hurwitz matrix �. Such a diagonal block
matrix � has the same diagonal element H. This H makes it
such that M and Q are negative definite. P and Q have a
relation with c, H, �, and the real parts of the eigenvalues of
coupling matrix A.

B. Different topological structures „AÅB…

We have analytically given a synchronous criterion be-
tween two networks with the same topological connections
A=B in Sec. II. Numerical computations are displayed in
Sec. III A. However, a criterion of possible synchronization
for two networks with different topological connections A
�B is not easy to derive. In the following subsection, we
numerically study the possible synchronization between two
networks with different topological structures. This case has
four subcases.

�i� A and B are symmetric but are not equal. Say, set A
=A1, B=A3, where A3 is defined as follows:

A3 = 	
− 3 0 0 1 1 0 0 1 0 0

0 − 4 0 0 0 1 1 0 1 1

0 0 − 4 0 0 1 1 1 0 1

1 0 0 − 4 0 1 1 0 1 0

1 0 0 0 − 5 0 1 1 1 1

0 1 1 1 0 − 5 0 1 1 0

0 1 1 1 1 0 − 5 0 0 1

1 0 1 0 1 1 0 − 5 1 0

0 1 0 1 1 1 0 1 − 5 0

0 1 1 0 1 0 1 0 0 − 4


 .

�24�

�ii� A is symmetric, but B is not. We take A=A1, B=A2 as
an example.
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FIG. 1. Synchronization errors between network �4� and net-
work �5� for three values of u in H with c=0.5, A=B=A1. The solid
line corresponds to u=0.8, the dashed line corresponds to u=1.0,
and the dash-dotted line corresponds to u=1.2.
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FIG. 2. Synchronization errors between network �4� and net-
work �5� for three values of u in H with c=0.5, A=B=A2. The solid
line corresponds to u=0.8, the dashed line corresponds to u=1.0,
and the dash-dotted line corresponds to u=1.2.
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�iii� B is symmetric, but A is not. For instance, let B=A1
and A=A2.

�iv� A and B are both asymmetric, but are not equal. For
example, we choose A=A2 and B=A4, where A4 is given as
follows:

A4 = 	
− 3 0 0 1 1 0 0 1 0 0

1 − 5 0 0 0 1 1 0 1 1

0 0 − 2 1 1 0 0 0 0 0

0 0 1 − 4 0 1 1 0 1 0

0 0 1 0 − 4 0 1 1 0 1

1 1 0 1 1 − 6 0 1 1 0

1 0 0 0 1 0 − 3 0 0 1

0 0 0 0 1 1 0 − 3 1 0

1 1 0 0 1 0 0 1 − 4 0

0 0 0 1 0 0 0 1 1 − 3


 .

�25�

We do numerical simulations for the above-mentioned
four subcases. In Fig. 3, we plot the synchronization region
with respect to the coupling strength c. These four subcases
all possess the same properties as depicted in Fig. 3. For
subcases �i� and �ii�, the values of c1, c2, and c3 approxi-
mately equal 0.0001, 0.4, and 4.5, respectively; yet for sub-
cases �iii� and �iv�, the values of c1, c2, and c3 are close to
0.0001, 0.3, and 5.5. When the value of the coupling strength
c is very small �10−4�, synchronization between �4� and �5�
with four choices of A and B is very easily to obtain, and this
fits our intuition; with the increasing value of c from c1 to c2,
the coupling strength c starts to result in desynchronization;
if the coupling strength c goes into a interval �c2 ,c3�, a new
synchronization happens between them; when it exceeds the
threshold value c3, synchronization fails. This numerical
phenomenon is very interesting. A theoretical analysis seems
to be more difficult than expected.

In �4� and �5�, if A�B, set LA�X�=c�A � ��X and LB�Y�
=c�B � ��Y; Eqs. �4� and �5� can simply read as

dX

dt
= F�X� + LA�X� ,

dY

dt
= F�Y� + LB�Y� + �� −

�F�X�
�X

��Y − X� , �26�

where �=diag�H ,H , . . . ,H�. The drive-response system �26�
is coupled by two different systems since LA�X��LB�X� due
to A�B. A theoretical analysis regarding the synchronization

between two different systems via coupled connections is far
too difficult to obtain. Comments in the respect can be found
in �23�. Present studies in this regard mainly rely on numeri-
cal simulations.

C. Asymmetric coupling „H\Hi…

Sections III A and III B are devoted to numerical simula-
tions of systems �4� and �5�, where the H in this master-slave
system is always same. If we let H→Hi in �5�, the new
response system is given as follows:

ẏi�t� = f„yi�t�… + �Hi −
�f�xi�

�xi
��yi�t� − xi�t��

+ c�
j=1

N

bij�yj�t�, i = 1,2, . . . ,N , �27�

where �bij�= �aij�.
In the following, we give some numerical results and a

theoretical explanation for systems �4� and �5�. At first we
give a simple theoretical analysis since this analysis is a di-
rect and easy generalization of Sec. II with the case
�aij�N�N= �bij�N�N. For systems �4� and �27�, the variation
equation �first order approximation� near xi reads

ėi = Hiei + c�
j=1

N

aij�ej, i = 1,2, . . . ,N , �28�

in which ei=yi−xi�Rn. If we let eT= �e1
T ,e2

T , . . . ,eN
T� ,e

�RnN, Eq. �28� has the following compact form:

ė = �H̄ + cA � ��e , �29�

where H̄=diag�H1 ,H2 , . . . ,HN� and Hi , i=1,2 , . . . ,N, are
n-dimensional matrices. If the real parts of all the eigenval-

ues of H̄+cA � � are negative, then the zero solution Eq.
�29� is asymptotically stable; i.e., synchronization between
networks �4� and �27� can be realized.

In the present slave network �27�, we need not restrict Hi
to be Hurwitz matrices. But synchronous conditions should

be imposed on H̄+cA � ��RnN�RnN; i.e., the real parts of

all the eigenvalues of H̄+cA � � are negative. This guaran-
tees that Eqs. �4� and �27� can be synchronized.

Next, we do some numerical simulations between the
drive network �4� and the response network �27�. Owing to
the varieties of Hi, we can simply take

Hi = 	− � � 0

ui − 1 0

0 0 − b

 , �30�

where ui, 1� i�10, are chosen at random in �−10,10�. We
investigate the synchronization between �4� and �27� with
Hi�Hj for i� j. But no synchronizations between the drive
and response networks �4� and �27� happen for A=B
=A1 ,A2 ,A3 ,A4 ,�=diag�1,1 ,1� ,c� �10−3 ,10�. For the same
coupled networks �4� and �27�, the case A�B is omitted
here. The synchronization between them might depend on

�
0
• c1

• c2
• c3

•�
�
�

��

�
�

�
�

��

�
�

�
��

�
�

�
�

synchronization region
desynchronization region

c

FIG. 3. Synchronization and desynchronization regions with re-
spect to the coupling strength c. �0,c1� and �c2 ,c3� are synchroni-
zation regions, �c1 ,c2� and �c3 , +�� are desynchronization regions.
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the chosen form of the matrix Hi, the topological connection,
and the coupling strength c.

IV. CONCLUSIONS

In this article, synchronization between two coupled com-
plex networks, which is independent of intranetwork syn-
chronization, is studied. Generally there are a lot of interac-
tive forms between networks; here, we choose a simple
master-slave action one to discuss. We theoretically and nu-
merically show that when driving-response networks have
identical connection topologies, then synchronization be-
tween them can be achieved. For this case, the structure of
driving-response networks �4� and �5� with �aij�N�N

= �bij�N�N is almost the same as that of the single master-
slave systems �2� and �3�, but the former is much higher
dimensional. Since the scales of networks and the connection
topology influence the synchronization, to study synchroni-
zation between coupled networks is more difficult, but inter-
esting and challenging.

On the other hand, a synchronization analysis between
two different systems with a coupled connection is not avail-

able, let alone coupled networks �4� and �5� with case A
�B, or equivalently, a compact form �23�. To establish a
synchronization criterion for such a drive-response system is
a long-term task. In this article, we do some numerical simu-
lations for case A�B and find an interesting result. This
result—that synchronization and desynchronization alter-
nately appear with increasing value of the coupling strength
c—is derived. In accordance with our intuition, the threshold
values of the coupling strength depend on the size of net-
works, the node state function, and the types of connection
topology. Future studies will be done in this respect. Another
interesting topic is to study synchronization between coupled
networks with dilution of the connections between A and B.
We hope that such reports will appear elsewhere.
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