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Synchronization Control for Nonlinear Stochastic
Dynamical Networks: Pinning Impulsive Strategy

Jianquan Lu, Jürgen Kurths, Jinde Cao, Senior Member, IEEE, Nariman Mahdavi, and Chi Huang

Abstract— In this paper, a new control strategy is proposed
for the synchronization of stochastic dynamical networks with
nonlinear coupling. Pinning state feedback controllers have been
proved to be effective for synchronization control of state-
coupled dynamical networks. We will show that pinning impulsive
controllers are also effective for synchronization control of the
above mentioned dynamical networks. Some generic mean square
stability criteria are derived in terms of algebraic conditions,
which guarantee that the whole state-coupled dynamical network
can be forced to some desired trajectory by placing impulsive
controllers on a small fraction of nodes. An effective method is
given to select the nodes which should be controlled at each
impulsive constants. The proportion of the controlled nodes
guaranteeing the stability is explicitly obtained, and the synchro-
nization region is also derived and clearly plotted. Numerical
simulations are exploited to demonstrate the effectiveness of the
pinning impulsive strategy proposed in this paper.

Index Terms— Nonlinear coupling, pinning impulsive control,
state-coupled dynamical network, synchronization.

I. INTRODUCTION

COMPLEX dynamical networks are composed of a large
number of interconnected dynamical nodes, in which

each node is a unit with specific contents [1]–[3]. Typical
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examples of complex networks include the Internet, the World
Wide Web, neural networks, food webs, cellular and metabolic
networks, etc., [4], [5]. Since the seminal papers on “small-
world” and “scale-free” properties [4], [6], complex networks
have become a focus of research and have received increasing
attention from various fields of science and engineering. Com-
plex networks often exhibit complex and interesting dynamical
behavior including synchronization [3], [7], consensus [8],
flocking etc. As one of the most interesting and important
collective behavior in dynamical networks, synchronization
has attracted special attention of researchers in different fields
[9]–[13].

Synchronization in dynamical networks is realized via a
sufficient information exchange among the nodes’ interconnec-
tions [8], [14], [15], which makes the final synchronous state
difficult to predict. However, for many biological, physical and
social dynamical networks, there exists a common requirement
to regulate the behavior of large ensembles of interacting units.
Some regulatory mechanisms have been uncovered in the con-
text of biological, physiological, and cellular processes [16],
which are fundamental to guarantee the correct functioning
of the whole network. Examples include the control of the
respiratory rhythm played by synaptically coupled pacemaker
neurons in the medulla in physiology [17], and opinion leader
in social networks. Hence, in many cases, controllers are nec-
essary to be designed to force the unpredicted final synchro-
nous state into a certain required objective trajectory [18]–[22].

It has been revealed that, in the process of controlling vari-
ous networks, feedback control serves as a simple and effective
strategy for stabilization and synchronization. Different kinds
of effective methods, including adaptive controllers [23], [24],
impulsive controllers [25]–[27] and pinning state feedback
controllers [19], [20], have been designed for the stabiliza-
tion and synchronization of complex dynamical networks. In
[23], [24], the feedback strength is asymptotically enhanced
according to a certain update law for the stabilization and
synchronization of dynamical networks. In [26], distributed
impulsive controllers are properly designed for the synchro-
nization control of dynamical networks. Pinning state feedback
controllers were first proposed to control multi-mode laser
systems in [28], and have recently been used for the synchro-
nization of complex networks by controlling a small fraction
of nodes [19], [20], [22]. These methods have been shown to
be effective for the synchronization control of networks.

For many realistic networks, the state of nodes is often
subject to instantaneous perturbations and experience abrupt
change at certain instants which may be caused by switching
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phenomena, frequency change or sudden noise, i.e., it exhibits
impulsive effects. On the other hand, each individual node
in dynamical networks is often subject to various types of
noise and uncertainty, which can have a great influence on the
behavior of dynamical networks. Impulsive control strategy
has also been shown to be an effective control strategy in many
fields due to its potential advantages over general continuous
control schemes [26], [29]. However, in previous studies, when
impulsive controllers are designed for the synchronization
control of dynamical networks with state-coupling, all of the
nodes should be controlled, which means that the controlling
cost is very high. Pinning state feedback control, which means
that only a small fraction of nodes is directly controlled,
has been proved to be effective for the synchronization of
dynamical networks with state-coupling. Then one may ask:
1) can the stochastic dynamical network be synchronized by
impulsively controlling a small fraction of nodes; 2) that is,
can we also design a certain pinning impulsive control strategy
for the synchronization of stochastic dynamical networks; and
3) this paper is devoted to solving this problem. Some genetic
criteria are given to judge whether dynamical networks can
be globally exponentially forced to a desired equilibrium by
impulsively controlling a small fraction of nodes. Numerical
examples are finally given to demonstrate the effectiveness of
the proposed impulsive strategy.

Notations: The standard notations will be used in this paper.
In is the identity matrix of order n. λmax(·) is used to denote
the maximum eigenvalue of a real symmetric matrix. R

n

denotes the n-dimensional Euclidean space. R
n×n are n×n real

matrices. ‖x‖ denotes the Euclidean norm of vector x ∈ R
n .

Let R
+ = [0,+∞), N = {1, 2, 3, . . .}. The superscript “T ”

represents the transpose. For any random variable ζ , let E(ζ )
be the expectation value of ζ . #G denotes the number of
elements of a finite set G.

II. PRELIMINARIES

In this paper, we consider the following stochastic dynam-
ical network with nonlinear coupling:

dxi (t) = [
Cxi (t)+ B f̃ (xi(t))

]
dt + g̃(t, xi (t))dw(t)

+ c
N∑

j=1

ai j�h̃(x j (t))dt, i = 1, 2, . . . , N (1)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ R
n is the state

vector of the i -th node at time t , C ∈ R
n×n , B ∈ R

n×n ,
w(t) ∈ R

m is an m-dimensional Brownian motion, f̃ (xi (t)) =
[ f̃1(xi1(t)), f̃2(xi2(t)), . . . , f̃n(xin(t))]T satisfying f̃ (0) = 0,
g̃ :R+ × R

n → R
n×m is the noise intensity function matrix

satisfying g̃(t, 0) = 0n×m . The nonlinear function h̃(x j (t)) =
(h̃(x j1(t)), h̃(x j2(t)), . . . , h̃(x jn(t)))T satisfies the following
conditions: [(h̃(u)− h̃(v))/(u −v)] ≥ ϑ > 0 for any u, v ∈ R.
The configuration coupling matrix A = (ai j )N×N is defined
as follows: if there is a connection between node i and node
j ( j �= i ), then ai j = a j i > 0, otherwise, ai j = a j i = 0, and
the diagonal elements are defined as aii = − ∑N

j=1, j �=i ai j .
� = diag{γ1, γ2, . . . , γn} > 0 is the inner coupling positive
definite matrix between two connected nodes i and j , and c
is the coupling strength of the network.

We have the following assumptions and lemma for the
derivation of the main results.

Assumption 1: The nonlinear function f̃ (·) is assumed to
satisfy a Lipschitz condition, that is, there exists a constant
κ > 0 such that ‖ f̃ (u) − f̃ (v)‖ ≤ κ‖u − v‖ holds for any
u, v ∈ R

n .
Assumption 2: Assume that the noise intensity function

matrix g : R
+×R

n → R
n×m is uniformly Lipschitz continuous

in terms of the norm induced by the trace inner product on
the matrices

trace

[
(
g(t, u)− g(t, v)

)T · (g(t, u)− g(t, v)
)
]

≤ ‖M(u − v)‖2 ∀u, v ∈ R
n (2)

where M is a known constant matrix with compatible dimen-
sions.

Lemma 1 ([30]): Consider the following stochastic system
with impulses:
{

dx(t) = φ(t, x(t))dt + η(t, x(t))dw(t), t ≥ t0, t �= tk,
x(t+k )− x(t−k ) = Ik(x(t

−
k )) k ∈ N.

(3)

Assume that there exist a Lyapunov function V (t, x(t)), and
functions ϕ, ψk with ϕ(t, 0) = ψk(0) = 0 for any t ≥ 0,
k ∈ N, such that:

1) there exist positive constants c1 and c2 such that for all
t ≥ t0, c1‖x(t)‖ ≤ V (t, x(t)) ≤ c2‖x(t)‖;

2) there exists continuous function ϕ : R
+ × R

+ → R,
and ϕ(t, s) is concave on s for each t ∈ R

+, such
that LV (t, x) ≤ ϕ(t, V (t, x)), where the operator L
is defined as LV (t, x) = Vt (t, x) + Vx(t, x)φ(t, x) +
(1/2)trace[ηT (t, x)Vx xη(t, x)];

3) there exist continuous and concave functions ψk :R+ →
R

+, k ∈ N, such that V (t+k , x(t+k )) ≤ ψk(V (t
−
k , x(t−k )))

then the exponential stability of the trivial solution of the
following comparison systems:

⎧
⎨

⎩

ẇ(t) = ϕ(t, w(t)), t ≥ t0, t �= tk,
w(t+k ) = ψk(w(t

−
k )), k ∈ N,

w(t0) = E(V (t0, x0))
(4)

implies the exponential stability of the trivial solution of the
stochastic impulsive system (3).

Let s(t) be a solution of an isolated node described by

ds(t) = [
Cs(t) + B f̃ (s(t))

]
dt + g̃(t, s(t))dw(t) (5)

with initial condition s0 ∈ R
n . In this paper, we want to control

the nonlinear dynamical network (1) into the desired trajectory
s(t).

Let ei (t) = xi (t)− s(t) be the error state of the node i . In
order to force the whole network (1) into the desired trajectory
s(t), the following impulsive controllers are designed for l
nodes:

Ii (t) =
⎧
⎨

⎩

+∞∑
k=1

μei (t)δ(t − tk), i ∈ D(tk), #D(tk) = l,

0, i /∈ D(tk)
(6)

where the constant μ ∈ (−2, 0), δ(·) is the Dirac delta
function, the time series {t1, t2, t3, . . .} is a sequence of strictly
increasing impulsive instants satisfying limk→∞ tk = +∞,



LU et al.: SYNCHRONIZATION CONTROL FOR NONLINEAR STOCHASTIC DYNAMICAL NETWORKS 287

and the index set of D(tk) is defined as follows: at time instant
tk , for the vectors e1(tk), e2(tk), . . . , eN (tk), one can reorder
the states of the nodes such that ‖ep1(tk)‖ ≥ ‖ep2(tk)‖ ≥· · · ≥
‖epl(tk)‖ ≥ ‖ep,l+1(tk)‖ ≥ · · · ≥ ‖epN (tk)‖. Then the
index set of l controlled nodes D(tk) is defined as D(tk) =
{p1, p2, . . . , pl}, and #D(tk) = l.

Since c
∑N

j=1 ai j�h(s(t)) = 0, after adding the pinning
impulsive controllers (6) to the dynamical network (1), one
can obtain the following impulsively controlled dynamical
network:

⎧
⎪⎪⎨

⎪⎪⎩

dei (t) = [Cei (t)+ B f (ei (t))]dt + g(t, ei (t))dw(t)

+c
N∑

j=1
ai j�h(e j (t))dt, t �= tk, k ∈ N,

ei (t
+
k ) = ei (t

−
k )+ μei (t

−
k ), i ∈ D(tk), #D(tk) = l

(7)

where f (ei (t)) = f̃ (xi (t))− f̃ (s(t)), g(t, ei (t)) = g̃(t, xi (t))
−g̃(t, s(t)), h(ei (t)) = h̃(xi (t)) − h̃(s(t)). Since [(h̃(u) −
h̃(v))/(u − v)] ≥ ϑ > 0, we have [(h(u)− h(v))/(u − v)] ≥
ϑ > 0 for any u, v ∈ R.

Throughout this paper, we always assume that ei (t) is left-
hand continuous at t = tk , i.e., e(tk) = e(t−k ). Therefore, the
solutions of (7) are piecewise left-hand continuous functions
with discontinuities at t = tk for k ∈ N.

Definition 1: The trivial solution of the dynamical system
(7) is said to be exponentially mean square stable if for
any initial condition ei (t0) (i = 1, 2, . . . , N), there exist
positive constants W0 and ω such that E{∑N

i=1 ‖xi (t)‖2} ≤
W0e−ω(t−t0).

By referring to the concept of average dwell time [31], [32],
a new concept named average impulsive interval has been
proposed by the authors to describe wider class of impulsive
signal, and has been utilized for the derivation of a unified
synchronization criterion of dynamical networks in [7]. Since
μ ∈ (−2, 0), which means that the impulsive effects are
stabilizing, the frequency of impulses should not be too low.
In order to guarantee that the frequency of impulses is not too
low, the following definition is presented.

Definition 2 ([7] average impulsive interval): The average
impulsive interval of the impulsive sequence ζ = {t1, t2, . . .} is
less than Ta , if there exist a positive integer N0 and a positive
number Ta , such that

Nζ (T, t) ≥ T − t

Ta
− N0 ∀T ≥ t ≥ 0 (8)

where Nζ (T, t) denotes the number of impulsive times of the
impulsive sequence ζ in the time interval (t, T ).

Remark 1: According to Definition 2, there is no strict
requirement for the impulsive sequence on the upper bound
of the impulsive intervals, which is normally necessary in the
references concerning impulsive control. For very large ς > 0
and any Ta > 0, many impulsive sequences {t1, t2, . . .} can
be constructed such that the upper bound of the impulsive
intervals is not less than to ς and simultaneously the average
impulsive intervals are less than Ta . Let k = 
ς/Ta� and ε > 0
very small. One simple example is ζ ∗ = {t0 + Ta + ε, t0 +
Ta + 2ε, . . . , t0 + Ta + kε, t0 + Ta + kε + ς, t0 + Ta + (k +
1)ε + ς, . . . , t0 + Ta + 2kε + ς, t0 + Ta + 2kε + 2ς, . . .}. For
the impulsive sequence ζ ∗, the upper bound of the impulsive

interval is ς , which can be very large. Since the upper bound
is used to represent the frequency of the impulsive sequence in
[26], and [33]–[35], or identical impulsive interval is used in
[36], the results obtained in these references are not available
for the impulsive sequence ζ ∗ with very large upper bound of
impulsive intervals, for which our results may be applicable.

Remark 2: By using the special example ζ ∗ presented in
Remark 1, the idea behind this concept can be explained as
follows: low-density impulses (such as “t0 +Ta +kε, t0 +Ta +
kε+ς”) are allowed to happen in a certain interval, and high-
density impulses (such as “t0 + Ta + (k + 1)ε + ς, . . . , t0 +
Ta + 2kε + ς”) should follow for compensation.

III. MAIN RESULTS

In this section, we will derive the main results about our
pinning impulsive strategy for synchronization control of the
stochastic dynamical network (1) with nonlinear coupling.
Based on the above-mentioned assumptions and definitions,
we can obtain the following theorem to show that the state-
coupled dynamical network can be successfully stabilized
to an objective state by only impulsive controlling a small
fraction of nodes.

Theorem 1: Consider the controlled dynamical network (7)
with an irreducible coupling matrix A. Let #D(tk) = l, ρ =
1+(l/N) ·μ(μ+2) ∈ (0, 1) and δ = λmax(C +CT + MT M)+
2
√
λmax(BT B)κ . Suppose that Assumptions 1 and 2 hold, and

the average impulsive interval of the impulsive sequence ζ =
{t1, t2, . . .} is less than Ta . Then, the controlled dynamical
network (7) is globally exponentially stable in mean square, if

lnρ

Ta
+ δ < 0. (9)

It means that the nonlinear stochastic dynamical network (1)
can be exponentially controlled to the objective trajectory
s(t) by using pinning impulsive controllers (6).

Proof: Consider the following Lyapunov functions:

V (t) =
N∑

i=1

eT
i (t)ei (t). (10)

For t ∈ (tk−1, tk], k ∈ N, we have

LV (t)

= 2
N∑

i=1

eT
i (t)

[
Cei (t)+ B f (ei (t))+ c

N∑

j=1

ai j�h(e j (t))
]

+
N∑

i=1

trace
[
gT (t, ei (t))g(t, ei (t))

]

= 2
N∑

i=1

[
eT

i (t)Cei (t)+ eT
i (t)B f (ei (t))

]

+2c
N∑

i=1

N∑

j=1

ai j eT
i (t)�h(e j (t))

+
N∑

i=1

trace
[
gT (t, ei (t))g(t, ei (t))

]
. (11)
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By Assumptions 1 and 2, the following inequalities can be
obtained:

2eT
i (t)B f (ei (t))

≤ 2‖ei (t)‖ · ‖B f (ei (t))‖
≤ 2‖ei (t)‖ ·

√
λmax(BT B) · ‖ f (ei (t))‖

≤ 2
√
λmax(BT B)κ‖ei (t)‖2

= 2
√
λmax(BT B)κeT

i (t)ei (t) (12)

and

trace
[
gT (t, ei (t))g(t, ei (t))

] ≤ ‖Mei (t)‖2

= eT
i (t)M

T Mei (t). (13)

Since [(h(u)− h(v))/(u − v)] ≥ ϑ > 0, it follows from the
diffusive property of symmetric matrix A that

2c
N∑

i=1

N∑

j=1

ai j e
T
i (t)�h(e j (t))

= 2c
N∑

i=1

N∑

j=1

ai j

[
n∑

θ=1

eiθ (t)γθh(e jθ (t))

]

= 2c
n∑

θ=1

γθ

⎡

⎣
N∑

i=1

N∑

j=1

eiθ (t)ai j h(e jθ (t))

⎤

⎦

= −c
n∑

θ=1

γθ

N∑

i=1

N∑

j=1
j �=i

ai j (eiθ (t)− e jθ (t))

×(h(eiθ (t))− h(e jθ (t)))

≤ −c
n∑

θ=1

N∑

i=1

N∑

j=1
j �=i

ϑγθai j (eiθ (t)− e jθ (t))
2

≤ 0. (14)

Considering (12)–(14), it follows from (11) that

LV (t)

≤
N∑

i=1

eT
i (t)

[
C + CT + MT M

]
ei (t)

+
N∑

i=1

2
√
λmax(BT B)κeT

i (t)ei (t)

≤
(
λmax(C + CT + MT M)+ 2

√
λmax(BT B)κ

)

×
N∑

i=1

eT
i (t)ei (t)

= δ · V (t), for t ∈ (tk−1, tk], k ∈ N. (15)

For any k ∈ N, let α(tk) = min{‖ei (tk)‖ : i ∈ D(tk)} and
β(tk) = max{‖ei (tk)‖ : i �∈ D(tk)}. According to the selection
of nodes in set D(tk), we have α(tk) ≥ β(tk). Since ρ =
1 + (l/N) · μ(μ + 2) ∈ (0, 1), we get (1 − ρ)(N − l) =

[ρ − (1 + μ)2]l. Hence, one has

(1 − ρ)
∑

i �∈D(tk)

eT
i (t

−
k )ei (t

−
k )

≤ (1 − ρ)(N − l)(β(tk))
2

≤ (1 − ρ)(N − l)(α(tk))
2

≤ l
[
ρ − (1 + μ)2

]
(α(tk))

2

≤ [
ρ − (1 + μ)2

] ∑

i∈D(tk)

eT
i (t

−
k )ei (t

−
k ) (16)

which follows that

(1 + μ)2
∑

i∈D(tk )

eT
i (t

−
k )ei (t

−
k )+

∑

i �∈D(tk )

eT
i (t

−
k )ei (t

−
k )

≤ ρ

N∑

i=1

eT
i (t

−
k )ei (t

−
k ). (17)

Then, for any k ∈ N, we yield

V (t+k )

=
N∑

i=1

eT
i (t

+
k )ei (t

+
k )

=
∑

i∈D(tk )

eT
i (t

+
k )ei (t

+
k )+

∑

i �∈D(tk )

eT
i (t

+
k )ei (t

+
k )

=
∑

i∈D(tk )

(1 + μ)2eT
i (t

−
k )ei (t

−
k )+

∑

i �∈D(tk)

eT
i (t

−
k )ei (t

−
k )

≤ ρ

N∑

i=1

eT
i (t

−
k )ei (t

−
k )

= ρV (t−k ). (18)

By (15) and (18), we can obtain the following comparison
system (19) for the controlled dynamical network (7):

⎧
⎨

⎩

ẇ(t) = δw(t), t ≥ t0, t �= tk,
w(t+k ) = ρw(t−k ), ρ ∈ (0, 1), k ∈ N,
w(t0) = E(V (t0)).

(19)

According to (19), for any t ∈ R
+, one has

w(t) = E(V (t0)) · eδ(t−t0)ρNζ (t,t0) (20)

where Nζ (t, t0) means the number of impulses of the impul-
sive sequence ζ in the time interval (t0, t).

According to the facts that ρ ∈ (0, 1) and that the average
impulsive interval of the impulsive sequence ζ = {t1, t2, . . .}
is less than Ta , it follows from Definition 2 that

w(t) = E(V (t0)) · eδ(t−t0)ρNζ (t,t0)

≤ E(V (t0)) · eδ(t−t0)ρ
t−t0
Ta

−N0

= E(V (t0))ρ
−N0 · eδ(t−t0) · e

lnρ
Ta
(t−t0)

= E(V (t0))ρ
−N0 · e(

lnρ
Ta

+δ)(t−t0). (21)

Since (lnρ/Ta) + δ < 0, the trivial solution of the compar-
ison system (19) is exponentially stable. By Lemma 1, we
can conclude that the controlled dynamical network (7) is
exponential stable, which further implies that the dynamical
network (1) can be exponentially stabilized to the objective
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trajectory s(t) by only impulsively controlling a small fraction
of nodes. Theorem 1 is proved.

Remark 3: By using the Lyapunov method combined with
the comparison principle, the exponential stability criterion
of the pinning impulsively controlled dynamical network has
been obtained. It means that the state-coupled dynamical
network can be efficiently forced to the objective trajectory
by using pinning impulsive controllers. Our result displays
another kind of effective and relatively cheap control strategy
for the synchronization of complex dynamical networks.

Remark 4: The criterion presented in Theorem 1 is closely
related to the system parameters, average impulsive interval,
impulsive strength, and the proportion of the controlled nodes.
The criterion can be easily judged without large computa-
tion. In the following, a theorem will be given to explicitly
show how many nodes should be controlled for a successful
synchronization control of the nonlinear stochastic dynamical
network (1).

Theorem 2: Consider the controlled dynamical network (7)
with an irreducible coupling matrix A. Let δ = λmax(C+CT +
MT M) + 2

√
λmax(BT B)κ . Suppose that Assumptions 1 and

2 hold, and the average impulsive interval of the impulsive
sequence ζ = {t1, t2, . . .} is less than Ta . Then, the controlled
dynamical network (7) is globally exponentially stable in mean
square, if

l

N
>

1

μ(μ+ 2)

(
e−δTa − 1

)
(22)

where l  N is the number of nodes to be controlled.
Proof: Since ρ = 1 + (l/N) · μ(μ + 2) ∈ (0, 1), this

theorem can be proved by using Theorem 1. The detailed proof
is omitted here.

Remark 5: Since l  N is the number of nodes to be
controlled, (l/N)  1 is the proportion of the controlled
nodes. The numerical example illustrates that the stochastic
dynamical network can be successfully synchronized to a
certain objective trajectory by impulsively controlling 10%
of the nodes. It means that our pinning impulsive strategy
is effective for the synchronization of networks with a small
fraction of nodes controlled.

Remark 6: Similar with Theorem 2, we can conclude that:
the stochastic dynamical network (1) can be forced to the
objective trajectory s(t) by pinning impulsive controllers (6)
if one of the following inequalities is satisfied:

1) Ta < − 1
δ ln(μ(μ+ 2) · l

N + 1);

2) −
√

e−δTa −1
l/N + 1 − 1 < μ <

√
e−δTa −1

l/N + 1 − 1.

Remark 7: The synchronization problem for discrete-time
stochastic dynamical networks has drawn much research atten-
tion [36], [37]. Our pinning impulsive strategy obtained in this
paper is also applicable to the case of discrete-time dynamical
networks.

IV. NUMERICAL EXAMPLE

In this section, numerical example will be given to demon-
strate the effectiveness of our main results. A chaotic system
with Brownian noise is selected as the isolated node of the
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Fig. 1. Phase trajectories of single dynamical system (a) without noise and
(b) with noise.
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Fig. 2. Estimation of boundaries of synchronization region with respect to
μ, Ta , and (l/N).

dynamical network, and the i -th node is described as follows:

dxi(t) = [
Cxi (t)+ B f̃ (xi(t))

]
dt + g̃(t, xi (t))dwi (t) (23)

where xi (t) = (xi1(t), xi2(t), xi3(t))T ∈ R
3, dwi (t) is an

3-D Brownian motion, and the parameters are given as C =
−1.2 · I3, B =

⎛

⎝
1.16 −1.5 −1.5
−1.5 1.16 −2.0
−1.2 2.0 1.16

⎞

⎠, nonlinear function

f̃ (xi (t)) = (tanh(xi1), tanh(xi2), tanh(xi3))
T , and the noise

intensity function matrix g̃(t, xi(t)) = 0.5 · ‖xi (t)‖ · I3. Then
we have κ = 1 and M = 0.5 · I3 for Assumptions 1 and 2.
System (23) without Brownian motion noise has a chaotic
attractor [38] with initial value [0.3,−0.1,−0.4] as shown
in Fig. 1.

In this example, a Newman-Watts small-world network with
100 nodes will be considered [39]. The small-world network
is generated by taking initial neighboring nodes k = 4 and
the edge adding probability p = 0.1. The coupling matrix A
is defined as follows: if there is a connection between nodes
i and j , then ai j = a j i = 1, otherwise ai j = a j i = 0. The
nonlinear coupling function h̃ is taken as h̃(z) = z + tanh(z)
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Fig. 4. Estimation of the synchronization region about μ and Ta with different
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with ϑ = 1, coupling strength c = 1 and the inner coupling
matrix � = I3. By some simple calculations, we can obtain
that δ = 5.0542. Theorem 2 and Remark 6 have been given to
show the explicit relationship between three quantities (l/N),
μ and Ta . Fig. 2 shows the synchronization region of the
controlled dynamical network for μ, Ta , and (l/N). Fig. 3
displays the estimation of boundaries of the synchronization
regions for different μ with respect to Ta and (l/N).

Remark 8: According to the property of the impulsive
control, one knows that if μ = −1, the error state of
the controlled system becomes zero immediately after the
impulsive controller. Hence the impulsive interval can be +∞
when μ = −1 [40], [41]. However, since only a small fraction
of nodes is controlled at each impulsive instant tk , the error
states of the controlled nodes would become nonzero due to
the interconnections with some other uncontrolled nodes even
for μ = −1. Therefore, when μ = −1, the average impulsive
interval has an upper bound as shown in Fig. 4. In some real
applications, one may choose μ = −1 to have the maximum
impulsive interval.

Now, we take special values of μ, Ta , and (l/N) for
numerical illustration. Let μ = −0.9 and Ta = 0.02, one can
get that [1/μ(μ + 2)](e−δTa − 1) = 0.0971. By Theorem 2,
it can be concluded that the nonlinear stochastic dynamical
network can be synchronized to the objective trajectory if
(l/N) = 10% of the nodes is controlled. In other words,
ten nodes should be impulsively controlled in the generated
small-world network containing 100 nodes. The trivial point
s(t) = 0 is taken as the objective trajectory in this example.
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Fig. 5. Pinning impulsive synchronization of small-world coupled dynamical
networks by controlling 10% nodes.

Fig. 5 presents the numerical process for the synchronization
control, in which the impulsive sequence is generated with
N0 = 10 and ε = 0.01. All initial values of the dynamical
network are uniformly randomly selected from [−10, 10].

V. CONCLUSION

In this paper, the synchronization control problem of sto-
chastic dynamical networks with nonlinear coupling has been
studied by pinning a small fraction of nodes with impulsive
controllers. The uncontrolled nodes can be virtually forced to
the desired synchronization trajectory by the pinned nodes via
the inter-connections. Some stability criteria have been estab-
lished to guarantee the success of synchronization via pinning
controllers, and moreover the stable region can be explicitly
revealed and plotted. Numerical examples are also given to
demonstrate the effectiveness of our proposed control strategy.
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