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Abstract

In this paper, synchronization control of stochastic neural networks with time-varying delays has been considered.

A novel control method is given using the Lyapunov functional method and linear matrix inequality (LMI) approach.

Several sufficient conditions have been derived to ensure the global asymptotical stability in mean square for the error

system, and thus the drive system synchronize with the response system. Also, the estimation gains can be obtained. With

these new and effective methods, synchronization can be achieved. Simulation results are given to verify the theoretical

analysis in this paper.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, stability of stochastic delayed system [1–8] has been a focal subject for research due to the
uncertainties that exist in the real system. Stochastic modelling has come to play an important role in many
branches of science and industry. A real system is usually affected by external perturbations which in many
cases are of great uncertainties and hence may be treated as random, as fluctuations from the release of
neurotransmitters, and other probabilistic causes. Therefore, it is significant and of prime importance to
consider stochastic effects to the stability property of the delayed networks.

An area of particular interest has been the automatic control of synchronization of stochastic systems. To
the best of our knowledge, however, there are few works about the synchronization of stochastic delayed
system. Actually, chaos synchronization control and dynamics of neural networks or complex networks
[12–19,24–28] has attracted interesting attention. A chaotic system has complex dynamical behaviors that
possess some special features, such as being extremely sensitive to tiny variations of initial conditions, having
bounded trajectories in phase space with a positive Lyapunov exponent, and so on. Chaos control and
synchronization have seen flurry research activities over a decade. On the other hand, the possibility of
e front matter r 2006 Elsevier B.V. All rights reserved.
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encoding a message within a chaotic dynamics through tiny perturbations of a control parameter has been
recently shown. This suggests to use chaos synchronization to produce secure message communication
between a sender and a receiver.

Chaos dynamics has shown interesting features that make it attractive especially for secure communication.
However, a certain number of drawbacks have been revealed in the practical implementation of most chaos-
based secure communications algorithms due to the uncertainties of the system. Since few works about the
synchronization of stochastic delayed system have been investigated due to the uncertainties in the real system,
thus, in this paper, we consider synchronization control of stochastic delayed neural networks with time-
varying delays.

The rest of the proposed paper is organized as follows: in Section 2, we give formulation and preliminaries
for our main results. In Section 3, some sufficient conditions are presented for the synchronization of the
delayed drive and response system. Also, some corollaries and remarks are given to show the advantages of
this paper. In Section 4, examples are given to show the effectiveness and feasibility of this paper. In Section 5,
we give our conclusions.

2. Model formulation and preliminaries

In this section, we will give preliminary knowledge for our main results. Since most of the synchronization
methods belong to master–slave (drive–response) type. By one system driving another we mean that the two
systems are coupled so that the behavior of the second is influenced by the behavior of the first one, but the
behavior of the first is independent of the second. The first system will be called the master system or drive
system, and the second system will be the slave system or response system.

In this paper, the object is to design a controller to let the slave system synchronize with the master system.
Now let us consider the following recurrent network:

dxðtÞ ¼ ½�CxðtÞ þ Af ðxðtÞÞ þ Bf ðxðt� tðtÞÞÞ�dt (1)

or

dxiðtÞ ¼ �cixiðtÞ þ
Xn

j¼1

aijf jðxjðtÞÞ þ
Xn

j¼1

bijf jðxjðt� tðtÞÞÞ

" #
dt; i ¼ 1; 2; . . . ; n, (2)

where n denotes the number of neurons in the network, xðtÞ ¼ ðx1ðtÞ;x2ðtÞ; . . . ; xnðtÞÞ
T
2 Rn is the state vector

associated with the neurons, f ðxðtÞÞ ¼ ðf 1ðx1ðtÞÞ; f 2ðx2ðtÞÞ; . . . ; f nðxnðtÞÞÞ
T
2 Rn corresponds to the activation

functions of neurons, tðtÞ is the time-varying delay, we suppose tðtÞ is bounded and the initial conditions of (1)
are given by xiðtÞ ¼ fiðtÞ 2 Cð½�r; 0�;RÞ with r ¼ maxt2R ftðtÞg, where Cð½�r; 0�;RÞ denotes the set of all
continuous functions from ½�r; 0� to R. C ¼ diagðc1; c2; . . . ; cnÞ is a diagonal matrix, A ¼ ðaijÞn�n and B ¼

ðbijÞn�n are the connection weight matrix and the delayed connection weight matrix, respectively.
In this paper, we consider model (1) as the master system. The response system is

dyðtÞ ¼ ½�CyðtÞ þ Af ðyðtÞÞ þ Bf ðyðt� tðtÞÞÞ þ uðtÞ�dtþ sðt; eðtÞ; eðt� tðtÞÞÞ doðtÞ, (3)

namely,

dyiðtÞ ¼ �ciyiðtÞ þ
Xn

j¼1

aijf jðyjðtÞÞ þ
Xn

j¼1

bijf jðyjðt� tðtÞÞÞ þ uiðtÞ

" #
dt

þ
Xn

j¼1

sijðt; eðtÞ; eðt� tðtÞÞÞdojðtÞ; i ¼ 1; 2; . . . ; n, ð4Þ

where C;A;B are matrices which are the same as (1), uðtÞ is the controller. It has the same structure as the drive
system. eðtÞ ¼ yðtÞ � xðtÞ is the error state, oðtÞ ¼ ðo1ðtÞ;o2;ðtÞ; . . . ;onðtÞÞ is a n dimension Brownian motion
defined on a complete probability space ðO;F;PÞ with a natural filtration fFtgtX0 generated by
foðsÞ : 0psptg, where we associate O with the canonical space generated by oðtÞ, and denote F the
associated s-algebra generated by foðtÞg with the probability measure P. Here, the white noise doiðtÞ is
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independent of dojðtÞ for mutually different i and j, and s : Rþ � Rn � Rn�!Rn�n is called the noise intensity
function matrix. This type of stochastic perturbation can be regarded as a result from the occurrence of
random uncertainties of the neural network. Also the initial conditions of (3) are given by yiðtÞ ¼ ciðtÞ 2

Cð½�r; 0�;RÞ with r ¼ maxt2R ftðtÞg, where Cð½�r; 0�;RÞ denotes the set of all continuous functions from ½�r; 0�
to R. In practical situation, the output signals of the drive system (1) can be received by the response
system (3).

To establish our main results, it is necessary to make the following assumptions:
A1: Each function f i : R! R is nondecreasing and globally Lipschitz with a constant ki40, i.e.

jf iðuÞ � f iðvÞjpkiju� vj 8u; v 2 R; i ¼ 1; 2; . . . ; n. (5)

A2: s : Rþ � Rn � Rn�!Rn�n which is locally Lipschitz continuous and satisfies the linear growth condition
[9]. Moreover, s satisfies

trace½sTðt; eðtÞ; eðt� tðtÞÞsðt; eðtÞ; eðt� tðtÞÞ�pkM1eðtÞk
2 þ kM2eðt� tÞk2, (6)

where M1 and M2 are matrices with appropriate dimensions.
A3: tðtÞ is a bounded differential function of time t, and the following conditions are satisfied:

r ¼ max
t2R
ftðtÞg; 0p_tðtÞpho1, (7)

where r and h are positive constants.
Let error state be eðtÞ ¼ yðtÞ � xðtÞ, subtracting (1) from (3), yields the synchronization error dynamical

system as follows:

deðtÞ ¼ ½�CeðtÞ þ AgðtÞ þ Bgðt� tðtÞÞ þ uðtÞ�dtþ sðt; eðtÞ; eðt� tðtÞÞÞdoðtÞ, (8)

where gðtÞ ¼ f ðyðtÞÞ � f ðxðtÞÞ ¼ f ðxðtÞ þ eðtÞÞ � f ðxðtÞÞ.
In many real applications, we are interested in designing a memoryless state-feedback controller

uðtÞ ¼ GeðtÞ, (9)

where G 2 Rn�n is a constant gain matrix.
For a special case where the information on the size of time-varying delay tðtÞ is available, we also consider

a delayed feedback controller of the following form:

uðtÞ ¼ GeðtÞ þ G1eðt� tðtÞÞ. (10)

Although a memoryless controller (9) has an advantage of easy implementation, its performance cannot be
better than a delayed feedback controller which utilize the available information of the size of time-varying
delay. A more general form of a delayed feedback controller is

uðtÞ ¼ GeðtÞ þ

Z t

t�t
G2eðsÞds. (11)

However, the task of storing all the previous state eð�Þ is difficult. In this respect, the controller (10) could be
considered as a compromise between the performance improvement and the implementation simplicity.

Let uðtÞ ¼ GeðtÞ þ G1eðt� tðtÞÞ, and substituting this into (8), we obtain

deðtÞ ¼ ½ð�C þ GÞeðtÞ þ AgðtÞ þ G1eðt� tðtÞÞ þ Bgðt� tðtÞÞ�dtþ sðt; eðtÞ; eðt� tðtÞÞÞdoðtÞ. (12)

Also, the following definition is needed.
Initial function in (12) is jðtÞ ¼ cðtÞ � fðtÞ, where jðtÞ 2 L2

F0
ð½�r; 0�;RnÞ, here L2

F0
ð½�r; 0�;RnÞ denotes the

family of Rn-valued stochastic processes xðsÞ;�rpsp0 such that xðsÞ is F0-measurable andR 0
�r

EkxðsÞk2 dso1. It is well known that system (12) has a unique solution [9].

Definition 1. System (12) is said to be globally asymptotically stable in mean square if for any given condition
such that

lim
t�!1

EkeðtÞk2�!0, (13)

where Ef�g is the mathematical expectation.
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3. Criteria of syncrhonization

In this section, new criteria are presented for the global asymptotical stability of the equilibrium point of the
neural network defined by (12), and thus the drive system (1) synchronize with the response system (3). Its
proof is based on a new Lyapunov functional method and linear matrix inequality (LMI) approach [23].

Theorem 1. Under the assumptions A12A3, the equilibrium point of model (12) is globally asymptotically stable

in mean square if there are positive definite diagonal matrix D ¼ diagðd1; d2; . . . ; dnÞ40 and positive definite

matrices H ¼ ðhijÞn�n, P ¼ ðpijÞn�n, R ¼ ðrijÞn�n, such that

N ¼

Pð�C þ GÞ þ ð�C þ GÞTPþ Rþ rMTM PG1 PAþ KD PB

GT
1 P rMT

1 M1 � ð1� hÞR 0 0

ATPþDK 0 H � 2D 0

BTP 0 0 �ð1� hÞH

0
BBBB@

1
CCCCAo0,

(14)

PprI . (15)

Proof. Consider the Lyapunov functional

V ðtÞ ¼
Xi¼3
i¼1

ViðtÞ, (16)

where

V1ðtÞ ¼ eTðtÞPeðtÞ, (17)

V2ðtÞ ¼

Z t

t�tðtÞ
eTðsÞReðsÞds, (18)

V3ðtÞ ¼

Z t

t�tðtÞ
gTðsÞHgðsÞds, (19)

where H ¼ ðhijÞn�n, R ¼ ðrijÞn�n and P ¼ ðpijÞn�n are positive definite matrices.
The weak infinitesimal operator L of the stochastic process fxt ¼ xðtþ sÞ; tX0;�rpsp0g is given by [1,10]

LV1ðtÞ ¼ 2eTðtÞP½ð�C þ GÞeðtÞ þ AgðtÞ þ G1eðt� tðtÞÞ þ Bgðt� tðtÞÞ�

þ trace½sTðt; eðtÞ; eðt� tðtÞÞPsðt; eðtÞ; eðt� tðtÞÞ�. ð20Þ

By (6) and (15), we have

trace½sTðt; eðtÞ; eðt� tðtÞÞPsðt; eðtÞ; eðt� tðtÞÞ�

prtrace½sTðt; eðtÞ; eðt� tðtÞÞsðt; eðtÞ; eðt� tðtÞÞ�

¼ r½eTðtÞMTMeðtÞ þ eTðt� tðtÞÞMT
1 M1eðt� tðtÞÞ�, ð21Þ

LV2ðtÞ ¼ eTðtÞReðtÞ � ð1� _tðtÞÞeTðt� tðtÞÞReðt� tðtÞÞ, (22)

LV3ðtÞ ¼ gTðtÞHgðtÞ � ð1� _tðtÞÞgTðt� tðtÞÞHgðt� tðtÞÞ. (23)

From Assumption A1, it is obvious that

gTðtÞDKeðtÞ ¼
Xn

i¼1

giðtÞdikieiðtÞX
Xn

i¼1

dig
2
i ðtÞ ¼ gTðtÞDgðtÞ, (24)

where D ¼ diagðd1; d2; . . . ; dnÞ and K ¼ diagðk1; k2; . . . ; knÞ are positive definite diagonal matrices.
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Therefore, combining (20)–(24) we have

LV ðtÞ ¼ eTðtÞ½2Pð�C þ GÞ þ Rþ rMTM�eðtÞ þ 2eTðtÞPG1eðt� tðtÞÞ þ 2eTðtÞPAgðtÞ

þ 2eTðtÞPBgðt� tðtÞÞ þ eTðt� tðtÞÞ½rMT
1 M1 � ð1� _tðtÞÞR�eðt� tðtÞÞ þ gTðtÞHgðtÞ

� ð1� _tðtÞÞgTðt� tðtÞÞHgðt� tðtÞÞ

¼ eTðtÞ½2Pð�C þ GÞ þ Rþ rMTM�eðtÞ þ 2eTðtÞPG1eðt� tðtÞÞ þ 2eTðtÞPAgðtÞ

þ 2eTðtÞPBgðt� tðtÞÞ þ eTðt� tðtÞÞ½rMT
1 M1 � ð1� hÞR�eðt� tðtÞÞ þ gTðtÞHgðtÞ

� ð1� hÞgTðt� tðtÞÞHgðt� tðtÞÞ þ 2½gTðtÞDKeðtÞ � gTðtÞDgðtÞ�

¼ eTðtÞ½Pð�C þ GÞ þ ð�C þ GÞTPþ Rþ rMTM�eðtÞ þ 2eTðtÞPG1eðt� tðtÞÞ

þ 2eTðtÞ½PAþ KD�gðtÞ þ 2eTðtÞPBgðt� tðtÞÞ þ eTðt� tðtÞÞ½rMT
1 M1 � ð1� hÞR�eðt� tðtÞÞ

þ gTðtÞðH � 2DÞgðtÞ � ð1� hÞgTðt� tðtÞÞHgðt� tðtÞÞ

¼ ðeTðtÞ eTðt� tðtÞÞ gTðtÞ gTðt� tðtÞÞÞN

eðtÞ

eðt� tðtÞÞ

gðtÞ

gðt� tðtÞÞ

0
BBBBB@

1
CCCCCA. ð25Þ

From (25) and Itô formula, it is obvious to see that

EV ðtÞ � EV ðt0Þ ¼ E

Z t

t0

LV ðsÞds. (26)

From the definition of V ðtÞ in (16), there exist positive constant l1 such that

l1EkeðtÞk2pEV ðtÞpEV ðt0Þ þ E

Z t

t0

LV ðsÞdspEV ðt0Þ þ lmaxE

Z t

t0

keðsÞk2 ds, (27)

where lmax is the maximal eigenvalue of N and it is negative.
Therefore, from (27) and the discussion in Ref. [11], we know that the equilibrium of (12) is globally

asymptotically stable in mean square. This completes the proof. &

Corollary 1. Under the assumptions A12A3, the equilibrium point of model (12) is globally asymptotically stable

in mean square if there are positive definite diagonal matrix D ¼ diagðd1; d2; . . . ; dnÞ40, positive definite

matrices H ¼ ðhijÞn�n, R ¼ ðrijÞn�n, such that

N ¼

rð�C þ GÞ þ rð�C þ GÞT þ Rþ rMTM rG1 rAþ KD rB

rGT
1 rMT

1 M1 � ð1� hÞR 0 0

rAT þDK 0 H � 2D 0

rBT 0 0 �ð1� hÞH

0
BBBB@

1
CCCCAo0.

(28)

Proof. Let P ¼ rI , where I is the identity matrix. We can obtain Corollary 1 directly form Theorem 1. &

In order to show the design of estimate gain matrix G and G1, a simple transformation is made to derive the
following theorem:

Theorem 2. Under the assumptions A12A3, the equilibrium point of model (12) is globally asymptotically stable

in mean square if there are positive definite diagonal matrix D ¼ diagðd1; d2; . . . ; dnÞ40 and positive definite
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matrices H ¼ ðhijÞn�n, P ¼ ðpijÞn�n, R ¼ ðrijÞn�n, such that

N ¼

�PC þ G0 � CTPþ G0
T
þ Rþ rMTM G01 PAþ KD PB

G01
T rMT

1 M1 � ð1� hÞR 0 0

ATPþDK 0 H � 2D 0

BTP 0 0 �ð1� hÞH

0
BBBB@

1
CCCCAo0.

(29)

PprI , (30)

Moreover, the estimation gain G ¼ P�1G0 and G1 ¼ P�1G01.

Proof. Let G ¼ P�1G0 and G1 ¼ P�1G01 in Theorem 1, it is obvious to see. &

Corollary 2. Under the assumptions A12A3, the equilibrium point of model (12) is globally asymptotically stable

in mean square if there are positive definite diagonal matrix D ¼ diagðd1; d2; . . . ; dnÞ40 and positive definite

matrices H ¼ ðhijÞn�n, R ¼ ðrijÞn�n, such that

N ¼

�rC þ G0 � rCT þ G0
T
þ Rþ rMTM G01 rAþ KD rB

G01
T rMT

1 M1 � ð1� hÞR 0 0

rAT þDK 0 H � 2D 0

rBT 0 0 �ð1� hÞH

0
BBBB@

1
CCCCAo0.

(31)

Moreover, the estimation gain G ¼ r�1G0 and G1 ¼ r�1G01.

Proof. Let P ¼ rI in Theorem 2, where I is the identity matrix and it is obvious to see. &

Remark 1. Stability of stochastic delayed system [1–8] have been a focal subject for research due to random
uncertainties exist in the real system. However, there are few works about the synchronization of stochastic
delayed system. In this paper, we consider the synchronization of stochastic delayed neural networks with
time-varying delays.

Remark 2. Chaos synchronization has been a hot topic in nonlinear science and has attracted more attention in
many fields such as physics, secure communication, automatical control, artificial neural networks, etc. Many recent
works [12–19,24–27] have been added to it. However, few studies about chaos synchronization of stochastic delayed
system are considered. If there is no stochastic phenomenon, the existing results are special cases in our paper.

Remark 3. In Theorem 2, we give an approach to choose the estimation gain matrices G and G1 and it is
helpful for the design of the controller to let the drive system synchronize with the response system.

4. Numerical example

In this section, we will give an example to justify Theorem 2 obtained above.

Example 1. Consider the drive system (1) of a typical delayed Hopfield neural network as follows:

dxðtÞ ¼ ½�CxðtÞ þ AgðxðtÞÞ þ Bgðxðt� tðtÞÞÞ�dt,

where

C ¼
1 0

0 1

� �
; A ¼

2:0 �0:1

�5:0 2:8

� �
; B ¼

�1:6 �0:1

�0:3 �2:5

� �
; tðtÞ ¼ 1; gðxÞ ¼

tanh x1

tanh x2

 !
.

The corresponding response system can be

dyðtÞ ¼ ½�CyðtÞ þ AgðyðtÞÞ þ Bgðyðt� tðtÞÞÞ�dtþ sðt; eðtÞ; eðt� tðtÞÞÞdoðtÞ,
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where

sðt; eðtÞ; eðt� tðtÞÞÞ ¼
keðtÞk 0

0 keðt� tðtÞÞk

 !
.

It is easy to see K ¼M ¼M1 ¼ I , where I is the identity matrix. From Theorem 2 and using LMI toolbox
in Matlab, we can obtain the following feasible solutions:

P ¼
0:4594 0:1681

0:1681 0:1916

� �
; D ¼

2:0155 0

0 2:2435

� �
; R ¼

3:8186 0:0541

0:0541 3:8764

� �
; H ¼

1:7108 0:1360

0:1360 1:6403

� �
,

G0 ¼
�4:8626 �0:1211

�0:1211 �5:3828

� �
; G01 ¼

�1:0599 �0:0189

�0:0189 �1:0900

� �
; G ¼ P�1G0 ¼

�15:2473 14:7498

12:7445 �41:0364

� �
,

G1 ¼ P�1G01 ¼
�3:445 3:0045

2:8352 �8:3251

� �
; r ¼ 1:8775.
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Fig. 1. Phase trajectories and state trajectories of drive (left) and response (right) system.



ARTICLE IN PRESS

0 20 40 60 80 100
 -0.2

 -0.15

 -0.1

 -0.05

0

0.05

0.1

0.15

0.2

t

e1

0 20 40 60 80 100
 -0.2

 -0.15

 -0.1

 -0.05

0

0.05

0.1

0.15

0.2

t

e2

Fig. 2. State trajectories of error system.
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Some works [20–22] about numerical simulations of stochastic delayed differential equations have been
investigated. In this paper, we adopt the so-called Euler–Maruyama numerical scheme [20] to simulate the
drive system (1), the response system (3) and the error system (12). It is noted that the numerical solution given
by Euler–Maruyama numerical scheme will converge to true solution of the equilibrium point of the system in
an expectation sense as the sampling time step size tends to zero. The phase trajectories of the drive, response
are shown in Fig. 1. The trajectories of error system (12) are shown in Fig. 2. From Figs. 1 and 2, we see that
the drive system synchronize with the response system.

Remark 4. If we choose a memoryless state-feedback controller (9) to stabilize system in Example 1, i.e.
G1 ¼ 0. From Theorem 2 (G01 ¼ 0) and using LMI toolbox in Matlab, we can obtain the feasible gain matrix

G ¼
�15:4632

12:5043

14:2180

�37:7964

� �
.

In fact, the memoryless state-feedback controller (9) can also used to stabilize system (8). However, there has
been extensive interest in studying the effect of time delay on the feedback systems. It is well known that time
delay is ubiquitous in most physical, chemical, biological, neural, and other natural system due to finite
propagation speeds of signals, finite processing times in synapses, and finite reaction times. Therefore, we
consider delay-dependent feedback controller (10). If we choose G1 ¼ 0, it is the memoryless state-feedback
controller (9). So (9) is a special case of (10). Actually, both the memoryless state-feedback controller (9) and
the delay-dependent feedback controller (10) can be used to stabilize system (8). However, delay is ubiquitous
in the real system and (10) is a more general controller. Thus in this paper, we consider the delay-dependent
feedback controller (10).

5. Conclusions

In this paper, we considered synchronization control of stochastic neural networks with time-varying
delays. We use Lyapunov functional method and linear matrix inequality (LMI) technique to solve this
problem. Several sufficient conditions have been derived to ensure the global asymptotical stability for the
error system, and thus the drive system synchronizes with the response system. Also, the estimation gains can
be obtained. The obtained results are novel since there are few works about the synchronization of delayed
system. It is easy to apply these sufficient conditions to the real networks. Finally, we give a numerical
simulation to verify the theoretical results.
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[21] U. Küchler, E. Platen, Strong discrete time approximation of stochastic differential equations with time delay, Math. Comput.

Simulation 54 (2000) 189–205.
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