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Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity
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Spontaneous synchronization is a significant collective behavior of weakly coupled systems. Due to their

inherent nonlinear nature, optomechanical systems can exhibit self-sustained oscillations which can be exploited

for synchronizing different mechanical resonators. In this paper, we explore the synchronization dynamics of

two membranes coupled to a common optical field within a cavity, and pumped with a strong blue-detuned laser

drive. We focus on the system quantum dynamics in the parameter regime corresponding to synchronization

of the classical motion of the two membranes. With an appropriate definition of the phase difference operator

for the resonators, we study synchronization in the quantum case through the covariance matrix formalism.

We find that for sufficiently large driving, quantum synchronization is robust with respect to quantum fluctuations

and to thermal noise up to not too large temperatures. Under synchronization, the two membranes are never

entangled, while quantum discord behaves similarly to quantum synchronization, that is, it is larger when the

variance of the phase difference is smaller.

DOI: 10.1103/PhysRevA.96.023805

I. INTRODUCTION

Since the first observation of the synchronization phe-

nomenon in two weakly coupled pendulum clocks by Huy-

gens, various aspects of this unique phenomenon have been

studied. The collective lightning of fireflies, the beating of heart

cells, chemical reactions, and audience clapping are examples

of this phenomenon occurring all around us [1]. Spontaneous

synchronization is of great interest because it corresponds

to the case in which systems synchronize their motion only

due to their mutual interaction without the existence of any

external driving field. Self-sustained oscillators emerging in

nonlinear systems provide a suitable platform for investigating

spontaneous synchronization. They possess limit cycles, which

are isolated closed attractive trajectories in phase space. For

a system of coupled oscillators in a limit cycle, the phase of

each oscillator typically undergoes free diffusion and is in a

state of maximum uncertainty, while the difference in phase

between the two coupled oscillators can be locked, i.e., it has a

very narrow probability distribution, and is much more robust

to noise. Synchronization can also occur in chaotic systems,

whenever two or more chaotic systems adjust a given property

of their motion to a common behavior, due to coupling or to an

external periodic or noisy force [2]. This ranges from complete

agreement of trajectories to the locking of phases.

The problem of synchronization of quantum systems has

been considered more recently, from different theoretical

perspectives: clock synchronization by means of quantum and

classical communication protocols [3–6], synchronization

in oscillator networks [7,8], synchronization of a quantum
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tunneling system to an external driving [9], quantum

behavior of classically synchronized systems [10–12],

quantum synchronization of van der Pol oscillators

[13–18], and between two atomic ensembles [19]. The study

of synchronization in quantum systems presents additional

difficulties because complete synchronization is impossible

due to the uncertainty principle, while phase synchronization is

nontrivial due to the controversial nature of the quantum phase

operator [20,21]. However, Ref. [22] has recently afforded

the problem and suggested to describe synchronization in

terms of appropriate quantum variances, and here we will

further elaborate along this line. Moreover, Refs. [22,23]

suggested optomechanical systems as promising platforms

for the investigation of synchronization at the quantum level.

In optomechanical systems (OMSs) electromagnetic ra-

diation is coupled to one or more mechanical oscillators

(MOs) [24]. Suspended mirrors [24], photonic crystal cavities

[24–26], levitated nanoparticles [27,28], whispering gallery

microdisks [24,29,30], ultracold atomic clouds [24,31,32],

and membrane-in-the-middle Fabry-Perot cavity systems [33]

represent well-known examples of OMS setups. Theoretical

and experimental aspects of this emerging field of study

have been investigated intensively in the last few years [24].

Despite their difference in the range of the parameters and their

configurations, OMSs share common features. They have an

inherent nonlinearity associated with the radiation pressure

interaction, and a high sensitivity of the system dynamics on

the detuning between the laser drive and the cavity. For some

application, for instance, position or force sensing [32,34,35],

the detuning is chosen to be zero, and for some others,

such as backaction cooling [36,37] or state transfer [38], a

red-detuned laser drive is used. For entanglement purposes

a blue-detuned laser is exploited [39–41]. When an OMS

is driven by a blue-detuned pump laser, radiation pressure

amplifies the mechanical motion via dynamical backaction,

and above a certain threshold laser power the mechani-

cal oscillator exhibits self-sustained oscillations [42]. This
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phenomenon is inherently due to the nonlinear nature of the

optomechanical interaction. Both theoretical and experimental

aspects of this phenomenon have been investigated in the

classical regime [42–51], while in the quantum realm, limit

cycles have been explored only theoretically up to now

[52–58]. When multiple coupled optomechanical systems and

arrays are considered, new collective phenomena arise due

to the mutual coupling via the radiation pressure, and, in

particular, synchronization of limit cycles [23,59–61]. Rele-

vant experimental demonstrations of synchronization between

two limit-cycle mechanical oscillators coupled to a common

optical mode have been recently achieved in Refs. [62–64],

while synchronization in an on-fiber optomechanical cavity

to an external periodic modulation has been demonstrated in

Ref. [65].

Based on these motivations, here we consider the dynamics

of two membranes within a Fabry-Perot cavity with a view

towards synchronization. We study the quantum dynamics of

the two membranes inside the cavity, in the parameter regime

where the classical dynamics manifests synchronization be-

tween them [66,67], focusing therefore on a sort of quantum

analog of the original Huygens experiment. We extend the

quantum measure of phase synchronization introduced in

Ref. [22] to cover the case of two weakly coupled optome-

chanical systems operating in the self-sustained regime having

a different amplitude. By using the Heisenberg-Langevin (HL)

approach and linearizing the HL equations, we separate the

deterministic dynamics and fluctuation dynamics, in order to

obtain the covariance matrix (CM) to study the correlations.

Defining the phase difference fluctuation operator allows

us to investigate the effects of quantum fluctuations and

thermal noise on synchronization, and to reveal the regimes

where synchronization is obtained in the quantum realm.

In particular, we find that the quantum uncertainty in the

relative phase can be one order of magnitude smaller than

the corresponding uncertainty in the classical case. Therefore,

phase synchronization in this system is robust with respect to

quantum noise. Subsequently, we show that at a finite heat

bath temperature, thermal fluctuations have a significant effect

on phase synchronization in the quantum case, and we also

investigate whether quantum synchronization is associated

with quantum correlations such as entanglement or nonzero

quantum discord. In agreement with the results of Ref. [22],

that focused on a different model, we find that entanglement

is always zero in correspondence of phase-synchronized

membranes, while quantum discord appears to be a pos-

sible candidate quantum signature of synchronized limit

cycles.

The paper is organized as follows. In Sec. II, we describe

the physical model and derive the HL equations of motion

for the system operators. In Sec. III, we first present and

discuss the classical equations of motion and show how

to synchronize two membranes in the classical regime.

We then introduce the notion of phase difference in the

quantum regime and examine the effect of quantum and

thermal noise on the generated synchronization between the

membranes. In Sec. IV, we discuss the presence of quantum

correlations, i.e., entanglement and Gaussian discord, in the

system. Finally, in Sec. V, we present our concluding

remarks.

II. SYSTEM HAMILTONIAN AND EQUATIONS

OF MOTION

As depicted in Fig. 1, we consider the interaction between

two membranes, placed within an optical Fabry-Perot cavity.

The coupling between them is through the optical field

and there is no direct mechanical coupling [66,67]. The

Hamiltonian of the system can be written as

H = h̄ωcâ
†â +

2
∑

j=1

h̄ωj

2

(

p̂2
j + q̂2

j

)

+
2

∑

j=1

h̄Gj â
†âq̂j

+ ih̄(ηâ†e−iωLt − η∗âeiωLt ). (1)

In this Hamiltonian, the first and second terms describe the

cavity and the MOs’ free Hamiltonian, respectively, the

third term is the optomechanical interaction, and the last

term describes the input driving by a laser with frequency

ωL and amplitude η. The optical mode with frequency ωc

is described by the usual bosonic annihilation and creation

operators â,â† satisfying the commutation relation [â,â†] = 1.

The j th mechanical mode with frequency ωj is described

by the dimensionless position and momentum operators

q̂j = (b̂j + b̂
†
j )/

√
2 and p̂j = (b̂j − b̂

†
j )/

√
2i satisfying the

commutation relation [q̂j ,p̂k] = iδjk . The membrane-cavity

coupling strength is given by Gj = (dωc/dqj )
√

h̄/mjωj ,

where mj is the effective mass of the j th MO.

We then add fluctuation-dissipation processes affecting the

optical and the mechanical modes, by adding for each of

them the corresponding damping and noise term, and write the

following nonlinear HL equations (written in the interaction

picture with respect to h̄ωLa†a),

˙̂a =

⎛

⎝i� − κ − i

2
∑

j=1

Gj q̂j

⎞

⎠â + η +
√

2κâin, (2a)

˙̂pj = −ωj q̂j − Gj â
†â − γj p̂j + ξ̂j , (2b)

˙̂qj = ωj p̂j , (2c)

where � = ωL − ωc denotes the detuning of the driving laser

from the cavity resonance, κ is the decay rate of the Fabry-

Perot cavity, and γj is the mechanical damping rate of the

j th membrane. The operator âin denotes the vacuum optical

FIG. 1. Schematic illustration of a driven optical cavity contain-

ing two membranes as mechanical elements. The two membranes

interact because they are coupled to the same cavity field by the

radiation pressure force. The optical cavity is pumped with a strong

blue-detuned laser drive to achieve self-sustained oscillations, which

can be then synchronized.
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input noise with zero mean value, satisfying the Markovian

correlation functions

〈âin(t)âin†(t ′)〉 = δ(t − t ′), (3a)

〈âin†(t)âin(t ′)〉 = 0, (3b)

〈âin(t)âin(t ′)〉 = 〈âin†(t)âin†(t ′)〉 = 0. (3c)

Each mechanical mode is coupled to its own independent

thermal bath at temperature Tj and it is subject to a Brownian

stochastic force ξ̂j (t) with zero mean value. In the limit of

high mechanical quality factor, i.e., Q
j
m = ωj/γj ≫ 1, the

Brownian noise operator ξ̂j is delta correlated [68,69], and

its symmetrized correlation function becomes

〈ξ̂j (t)ξ̂j (t ′)+ξ̂j (t ′)ξ̂j (t)〉/2 = γj (2n̄j+1)δ(t − t ′) (j = 1,2),

(4)

where n̄j = [exp (h̄ωj/kBTj ) − 1]−1 denotes the mean num-

ber of thermal phonons of the j th membrane at temperature Tj ,

with kB being the Boltzmann constant. Equations (2), together

with the correlation functions of Eqs. (3) and (4), fully describe

the dynamics of the system under consideration. An important

feature of these sets of coupled equations is the intrinsic

nonlinearity resulting from the optomechanical interaction

between the cavity field and the two MOs. This nonlinearity

plays a key role in achieving self-sustained oscillations for the

MOs and their synchronization.

III. DYNAMICS OF THE SYSTEM

We can use the mean-field approximation in which the

quantum operators are separated into Ô(t) = O(t) + δÔ(t),

where O(t) is the mean field describing the classical behavior

of the system, and δÔ(t) is the quantum fluctuation with a zero

mean value around the classical mean field [70].

A. Classical dynamics

The equations of motion for the classical mean fields form

a set of nonlinear differential equations given by

ȧ =

⎛

⎝i� − κ − i

2
∑

j=1

Gjqj

⎞

⎠a + η, (5a)

ṗj = −ωjqj − Gj |a|2 − γjpj , (5b)

q̇j = ωjpj , (5c)

which are obtained by averaging Eqs. (2) over classical and

quantum fluctuations. This set of equations can have both static

and dynamic solutions; however, here we are interested in

dynamic solutions leading to self-induced oscillations, which

we expect to be achieved when the cavity is driven on the

blue-sideband � ≃ ω1 and the driving power is large enough.

The emergence of phase synchronization can be understood

in terms of an effective Kuramoto-type equation, �φ̇ = −A −
B sin �φ + C cos �φ, describing the classical dynamics of the

phase difference between the two cavity-coupled MOs. The

starting point of those calculations is to consider a sinusoidal

solution of the form qj = Aj sin (ωj t + φ0
j ) for both MOs in

the self-sustained regime, and then derive an effective equation
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FIG. 2. Time evolution of the system dynamical variables vs the

scaled time ω1t for parameters η/ω1 = 3600 and (ω1 − ω2)/ω1 =
0.001 (other parameters are given in the main text). (a) and (b) show

the normalized position of each mechanical oscillator; (c) shows the

photon number inside the optical cavity. After a transient time ω1t ∼
104, the two membranes synchronize out of phase, φ1 − φ2 ≃ π .

for �φ = φ0
1 − φ0

2 . Although this ansatz will break down in the

limit of chaotic dynamics, it is a good approximation in a large

parameter region which is also experimentally achievable.

Synchronization takes place after a transient time when the

equation �φ̇ = 0 has a solution, otherwise synchronization

cannot occur. Therefore, in order to get a synchronized system,

the coefficients A, B, and C have to satisfy the condition

|A| �
√

B2 + C2, which implies an involved relation between

the system parameters, but is satisfied at large enough driving

amplitude η and not too different mechanical frequencies.

We now turn to the direct numerical investigation of the

classical dynamics of the system given by Eqs. (5). From now

on we will use parameters normalized with respect to ω1,

therefore, we set κ/ω1 = 0.05, �/ω1 = 1, γ1/ω1 = γ2/ω1 =
5 × 10−6, and Gj/ω1 = 1 × 10−5, which are parameters

achievable in a typical setup in the resolved sideband regime

[71]. The time evolution of the normalized position of each

MO driven by a strong blue-detuned driving laser is depicted

in Figs. 2(a) and 2(b) in the case of two membranes with a

natural frequency separation (ω1 − ω2)/ω1 = 0.001. As it can

be seen, after some transient time the mechanical oscillations

reach a steady state with a constant amplitude. In fact, this

corresponds to self-sustained mechanical oscillations at a

stable amplitude for both MOs due to nonlinear effects.

Phase-space trajectories of the membranes are a closed circle

in this periodic steady state. It should be noted that the two

MOs oscillate with different amplitudes, due to their natural

frequency separation. The ratio between the two amplitudes is

extremely sensitive to the frequency difference, as discussed

in Ref. [66], and confirmed by the plots of Figs. 2(a) and 2(b).

The mean photon number inside the Fabry-Perot cavity also

behaves in a similar way, as shown in the bottom panel of

Fig. 2(c). The time evolution of the phase difference under

three different pumping rates is shown in Fig. 3. As it can

be seen, after the same transient time of Fig. 2, the two

membranes synchronize out of phase, i.e., �φ ≃ π . From

the numerical analysis we see also that the time needed to

reach the steady state depends on both the natural frequency
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FIG. 3. Time evolution of the phase difference between the two

membranes vs the scaled time ω1t for parameters (a) η/ω1 = 2000,

(b) η/ω1 = 2800, and (c) η/ω1 = 3600 (other parameters are given in

the main text). For these input driving amplitudes, the two mechanical

modes synchronize out of phase with a very good approximation, and

φ1 − φ2 → π for increasing η/ω1.

separation of the two membranes and the pumping rate, and the

results found here are consistent with the theoretical analysis

of Ref. [66]. Depending on the system parameters, i.e., driving,

frequency difference, and coupling constants Gj , the system

under consideration can also exhibit a synchronization jump. In

fact, the time evolution of the phase difference between the two

membranes for a smaller value of pumping rate, η/ω1 = 1200,

is shown in Fig. 4(a) and we see that the stationary phase

difference is no longer approximately equal to π . We can

derive a sort of phase synchronization diagram by plotting

the asymptotic value of the phase difference versus the input

driving amplitude, as in Fig. 4(b), versus (ω1 − ω2)/ω1, as

shown in Fig. 4(c), and versus the ratio between the two

optomechanical couplings in Fig. 4(d). We see in Fig. 4(b)

that phase synchronization of the two membranes at too small

driving amplitudes cannot be reached; when (ω1 − ω2)/ω1 =
0.001, phase synchronization emerges in the system only if

η/ω1 � ηcrit/ω1 = 620. Moreover, Fig. 4(b) shows that the

stationary relative phase has a sudden jump roughly from π/2

to π at η/ω1 ≃ 1725.

The dependence of the stationary relative phase between

the two membranes upon their natural frequency separation

under two different pumping rates is depicted in Fig. 4(c). One

has various transitions to different values of the stationary

phase difference, and the results are consistent with those

derived in Ref. [66]. Here, we set the frequency separation

of the oscillators to be rather small in order to stay within

the classical synchronized regime. In fact, phase synchro-

nization is lost when the frequency difference between the

membranes is too large and, as expected, the larger the

driving, the larger is the maximum frequency difference for

which one has phase synchronization. In particular, we have

numerically checked that the stationary phase difference is

no longer synchronized for �ω/ω1 � �ωcrit/ω1 = 0.004 12

when η/ω1 = 3600, and for �ω/ω1 � �ωcrit/ω1 = 0.003 50

when η/ω1 = 3000. Finally, also the ratio between the two

couplings G2/G1 is a critical parameter, and Fig. 4(d) shows

various transitions to different values of the stationary phase

difference for increasing G2/G1. Phase synchronization is

no longer present also if this coupling ratio is too large,

FIG. 4. (a) Time evolution of the phase difference between

the two membranes vs the scaled time ω1t for η/ω1 = 1200. (b)

Stationary value of the phase difference between the two membranes

with natural frequency separation (ω1 − ω2)/ω1 = 0.001 vs η/ω1.

There is a clear phase jump at η/ω1 ≃ 1750. (c) Dependence

of the stationary phase difference upon the mechanical frequency

separation, under two different pumping rates, η/ω1 = 3600 (solid

line) and η/ω1 = 3000 (dashed line). (d) Dependence of the stationary

phase difference upon the ratio of optomechanical couplings G2/G1

for G1/ω1 = 10−5 under two different pumping rates, η/ω1 = 4000

(solid line) and η/ω1 = 3000 (dashed line). Other parameters are

given in the main text.

i.e., the two couplings are very different. We have verified

that the critical coupling ratio beyond which synchronization

disappears is (G2/G1)crit = 14.72 when η/ω1 = 3000, and it

is equal to (G2/G1)crit = 9.94 when η/ω1 = 4000.

B. Quantum dynamics

Here, we are interested in characterizing the quantum

dynamics of the fluctuations of the system operators in the

parameter regime corresponding to synchronized membranes.

Reference [66] also afforded a preliminary investigation of

such a quantum dynamics via the master equation approach,

however, focusing only on the output spectra and neglecting

thermal fluctuations. Here, we focus on the quantum dynamics

of the main signature of quantum synchronization, i.e., the

variance of the phase difference operator, and adapt the

approach of Ref. [22] to the general case in which the two

MOs oscillate at different amplitudes.

In the regime of self-sustained oscillations, the amplitude

and phase fluctuate around the limit cycle values
√

nj and φj .

We can write the classical mean field bj = √
nje

iφj , and the
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quantum field operator can be written as

b̂j = ei(φj +δφ̂j )
√

nj + δn̂j ≃ √
nje

iφj

(

1 + iδφ̂j +
δn̂j

2nj

)

.

(6)

In this representation, we have introduced the intensity

fluctuation δn̂j and the phase fluctuation δφ̂j , which can be

easily related to the usual decomposition of the field operator

in the linearized regime b̂j = bj + δb̂j ,

δb̂j = √
nje

iφj

(

iδφ̂j +
δn̂j

2nj

)

, (7)

from which we get the following form of the phase operator

fluctuations,

δφ̂j ≡
1

√

2nj

δp̂φj
=

1

2i
√

nj

(e−iφj δb̂j − eiφj δb̂
†
j )

=
1

√

2nj

(− sin φjδq̂j + cos φjδp̂j ), (8)

where δp̂φj
is a rotated momentum operator. Therefore, the

fluctuation in the phase difference of the two membranes reads

δφ̂1 − δφ̂2 =
δp̂φ1√

2n̄1

−
δp̂φ2√

2n̄2

. (9)

With this in hand, one can directly use the CM formalism to

calculate the variance of the fluctuation in phase difference.

The quantum statistical properties of the system can be

investigated through the small fluctuations of the operators

around the time-dependent mean values evolving according

to Eqs. (5). The corresponding dynamical linearized Langevin

equations can be expressed in compact matrix form as

u̇(t) = A(t)u(t) + n(t), (10)

where we have defined the vector of fluctuation op-

erators u(t) = (δq1,δp1,δq2,δp2,δX,δY )T and the corre-

sponding vector of noises n(t) = [0,ξ1(t),0,ξ2(t),
√

κXin(t),√
κY in(t)]T . Furthermore, the drift matrix A is given by

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 ω1 0 0 0 0

−ω1 −γ1 0 0 A1 B1

0 0 0 ω2 0 0

0 0 −ω2 −γ2 A2 B2

−B1 0 −B2 0 −κ C

A1 0 A2 0 −C −κ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (11)

with the elements Ai = −Gi

√
2 Re[a], Bi = −Gi

√
2 Im [a],

and C = −� +
∑2

j=1 Gjqj . These latter coefficients are

generally time dependent because they are the so-

lution a(t) and qj (t) of Eqs. (5). We have also

used the definition of the optical mode quadra-

tures δX = (δa + δa†)/
√

2 and δY = (δa − δa†)/i
√

2 to-

gether with their corresponding Hermitian noise opera-

tors Xin ≡ (ain + ain,†)/
√

2 and Y in ≡ (ain − ain,†)/i
√

2 in

Eq. (10). The evolution of the quadratures’ fluctuations

is described by the formal solution of Eq. (10) given by

[22,72,73]

u(t) = U (t,t0)u(t0) +
∫ t

t0

U (t,s)n(s)ds, (12)

in which the principal matrix solution of the homoge-

neous system U (t,t0) satisfies U̇ (t,t0) = A(t)U (t,t0) and

U (t0,t0) = 1.

In particular, the CM with entries given by Vij ≡
[〈ui(t)uj (t) + uj (t)ui(t)〉]/2 fully characterizes the mechan-

ical and optical variances. It also includes information on

the quantum correlation between the two mechanical and the

optical cavity modes. The time evolution of the CM is governed

by [22,73]

d

dt
V(t) = A(t)V(t) + V(t)AT (t) + D, (13)

where D = diag[0,γ1(2n̄1 + 1),0,γ2(2n̄2 + 1),κ,κ] is the dif-

fusion matrix. This inhomogeneous differential equation can

be solved numerically. We consider initial conditions such

that both membranes are prepared in a thermal state at

temperature T and the cavity mode fluctuations are in the

vacuum state. Therefore, the initial CM is of the form V(0) =
diag[n̄1 + 1/2,n̄1 + 1/2,n̄2 + 1/2,n̄2 + 1/2,1/2,1/2].

In Figs. 5(a)–5(c), we illustrate the time evolution of the

variance of the phase difference in the presence of only

quantum noise, i.e., in the case when T = 0, for three different

values of the optical pumping rate η. We see that when the

classical dynamics corresponds to synchronized membranes,

quantum noise alone is not able to destroy it: The two

membranes remain essentially synchronized, with a phase

difference variance which remains very small even at longer

times. Moreover, the time average of the variance of the phase

difference, 〈(�φ̂)
2〉av = lim

T →∞
1
T

∫ T

0
〈[�φ̂(t)]

2〉dt , is shown in

Fig. 5(d) which states the larger the driving, the smaller is

the stationary value of such a phase difference variance. In

order to better quantify the fact that quantum noise alone does

not affect phase synchronization of the classical dynamics,

we compare the quantum uncertainty in the relative phase

of the membranes, i.e.,
√

〈(�φ̂)2〉av , with a classical phase

uncertainty, which we take equal to the amplitude of the small

residual oscillations of the phase difference at long times (see

Fig. 3, right panels). In fact, the contribution of quantum noise

in phase uncertainty is at least one order of magnitude smaller

than the classical uncertainty.

As soon as thermal noise is included, by assuming a nonzero

temperature of the membrane baths, synchronization tends to

be destroyed, in the sense that the stationary value of the phase

difference variance is much larger and becomes proportional

to the temperature, as it typically occurs in thermal phase

diffusion processes [see Figs. 6(a) and 6(b) where the time

evolution at two different temperatures is shown]. In Fig. 6(c)

we show the stationary value of the phase difference variance

as a function of temperature and for two different values of

the driving rate η. The linear dependence upon temperature,

typical of diffusion processes, is evident, as well as the

fact that the larger the optical driving, the smaller is the

stationary phase difference variance. This is also expected

023805-5



F. BEMANI et al. PHYSICAL REVIEW A 96, 023805 (2017)

(b)

− 9

− 8

− 7

− 6

− 5

− 4

lo
g

[<
2
>

] (a)

3

4

5

6

<
2
>

− 9

− 8

− 7

− 6

− 5

12

15

18

<
2
>

0 50 000 100 000
− 9

− 8

− 7

− 6

1t

99 980 100 000

5

6

7

8

1t

<
2
>

2000 4000 6000 8000 10 000

0.1

0.5
1

5
10

50
100

<
2

>
av

(d)

/ 1

10×

−7

−8

×10

−8

×10

−8

×10

1
0

>
]

2
[<

o
g

l
1
0

>
]

2
[<

o
g

l
1
0

(c)

FIG. 5. Time evolution of the variance of the phase difference

in the presence of quantum noise only (T = 0), for different values

of the optical pumping rate: (a) η/ω1 = 2000, (b) η/ω1 = 2800, and

(c) η/ω1 = 3600. The stationary value of the variance remains very

small, showing that synchronization is not destroyed by quantum

fluctuations, and that it is more robust for a larger driving rate. (d) The

average of the variance of the phase difference in the self-sustained

oscillation regime vs the scaled input laser power η/ω1.

from the fact the larger the driving, the stronger are the

coherent processes induced by the radiation pressure coupling

which tend to counteract the incoherent processes brought

by thermal noise. Even though significantly larger than the
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FIG. 6. The effect of thermal noise on the variance of the phase

difference for η/ω1 = 3600, ω1 = 107 Hz, and (a) T = 10 K, (b)

T = 20 K. (c) The average of the variance of the phase difference

in the self-sustained oscillation regime under two different pumping

rates, η/ω1 = 2800 (dashed line), and η/ω1 = 3600 (solid line).

value at zero temperature, the phase difference variance is still

comparable with the classical uncertainty defined above and

derived from Fig. 3, at temperatures T ≃ 4.8 K and T ≃ 20 K

for η/ω1 = 2800 and η/ω1 = 3600, respectively. In this sense

we can say phase synchronization shows some robustness with

respect to the thermal noise, at least at cryogenic temperatures.

IV. QUANTUM CORRELATIONS

We now discuss the eventual presence of quantum cor-

relations between the two membranes corresponding to a

classical regime of synchronization. These correlations can

be calculated from the reduced CM of the two mechanical

oscillators

V =
[

VA VC

V
T
C VB

]

, (14)

where VA, VB , and VC are 2 × 2 matrices. VA and VB

account for the local properties of mechanical modes 1 and

2, respectively, while VC describes intermode correlations.

We quantify the degree of entanglement in terms of the

logarithmic negativity, which is an entanglement monotone,

and it is given by EN = max{0,E ≡ − ln 2ν−}, with ν̃− =

2−1/2(�− −
√

�2
− − 4 det V)

1/2

being the smallest of the two

symplectic eigenvalues of the partial transpose CM and �± =
det VA + det VB ± 2 det VC . The time evolution of the quantity

E for three different values of the pumping rate is shown

in Fig. 7: It is always negative and therefore the logarithm

negativity is always zero even though synchronization is

reached. This result is in agreement with that of Ref. [22]

(even though for a different model in which the two resonators

are directly coupled). It is then interesting to see if a weaker

form of quantum correlation, quantum discord [74,75], is

eventually present in correspondence with synchronization

of the classical motion of the two membranes (see also

Refs. [7,8]). The Gaussian quantum discord of a two-mode

Gaussian state is given by [76,77]

DG = f (
√

β) − f (υ−) − f (υ+) − f (
√

ε), (15)

0
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FIG. 7. Time evolution of E ≡ − ln 2ν−, where ν− is the smallest

symplectic eigenvalue, in the self-sustained regime, at T = 0 for (a)

η/ω1 = 2000, (b) η/ω1 = 2800, and (c) η/ω1 = 3600. This quantity

is always negative, showing that the two membranes are never

entangled when they are phase synchronized.
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where

f (x) =
(

x + 1

2

)

log10

(

x + 1

2

)

−
(

x − 1

2

)

log10

(

x − 1

2

)

, (16)

υ± =

√

√

√

√
�+ ±

√

�2
+ − 4 det V

2
(17)

are the two symplectic eigenvalues of the two-mode CM and

ε =

⎧

⎨

⎩

2γ 2+(β−1)(δ−α)+2|γ |
√

γ 2+(β−1)(δ−α)

(β−1)2 , (δ − αβ)2
� (β + 1)γ 2(α + δ),

αβ−γ 2+δ−
√

γ 2+(δ−αβ)2−2γ 2(δ+αβ)

2β
, otherwise,

(18)

where α = det VA, β = det VB , γ = det VC , and δ = det V

are the symplectic invariants. Generally, quantum discord is

intrinsically an asymmetric quantity and by swapping the roles

of the two MOs, A and B, one can obtain the B discord. The

two Gaussian discords for four different pumping rates, and

in the case without thermal noise, i.e., T = 0, are shown in

Figs. 8(b)–8(d). The Gaussian discord has nonzero values at

times when the system classical dynamics undergoes limit-

cycle-synchronized oscillations. This fact shows the existence

of nonclassical correlations between the two mechanical

oscillators, in terms of a nonzero discord, when they are phase

synchronized, and similarly to synchronization, the quantum

Gaussian discord tends to increase for increasing driving rates,

even though the behavior is nonmonotonic. This is visible in
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FIG. 8. Time evolution of the Gaussian quantum discord in the

self-sustained regime, at T = 0. (a) η/ω1 = 2800, (b) η/ω1 = 5200,

(c) η/ω1 = 7600, and (d) η/ω1 = 10 000. (e) The time-averaged

Gaussian quantum discord vs the pump intensity. The red solid curves

correspond to A discord while the blue dashed curves correspond to

the B discord which can be calculated by exchanging the roles of A

and B.

Fig. 8(e), where the time-averaged Gaussian quantum discord

Dav
G = limT →∞

1
T

∫ T

0
DG(t)dt is plotted versus the pump

intensity. We also notice that the B discord, the one referred to

as the MO with lower frequency and typically larger oscillation

amplitude, is always larger than the A discord, and that the

time-averaged B discord has a peak in correspondence to the

classical phase-synchronization jump in Fig. 4(b) at η/ω1 ≃
1750. We are not able to provide an exhaustive explanation of

this jump, but we observe that this is strongly reminiscent of

the correspondence between classical and quantum transitions

studied in Ref. [59], which focused on synchronization in

a more involved system formed by two optically coupled

optomechanical cavities. In such a system, the transition from

in-phase to antiphase classical synchronization has a quantum

manifestation as a second-order-like phase transition of the

entanglement between the two mechanical resonators in the

two coupled cavities. The model studied here is simpler and

does not show entanglement, as it occurs also in the model

of Ref. [22], but also here the sudden jump in the value of

the stationary relative phase has a quantum manifestation as

an abrupt change of the B discord in Fig. 8(e) and also as
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FIG. 9. Time evolution of the Gaussian quantum discord in the
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(a) T = 1 K and (b) T = 2 K, for η/ω1 = 10 000. The time-averaged

Gaussian quantum discord vs the heat bath temperature for two

different pump intensities, (c) η/ω1 = 4500 and (d) η/ω1 = 10 000.

Again, the solid curves correspond to the A discord while the dashed

curves correspond to the B discord.
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a jump in the stationary variance of the relative phase in

Fig. 5(d).

In Fig. 9 we show the effect of the heat bath temperature on

the Gaussian discord. The B discord is again always distinctly

larger than the discord refereed to the higher-frequency MO;

as expected, apart from a peak at very low T , they both decay

for increasing temperatures, but they are both non-negligible

up to cryogenic temperatures.

V. CONCLUDING REMARKS

We have studied the case of a membrane-in-the-middle

optomechanical setup in which two membranes, interacting

with the same mode of an optical Fabry-Perot cavity, can

be synchronized when the cavity mode is driven with a

sufficiently large power, due to the intrinsic nonlinearity of

the radiation pressure interaction which leads to self-sustained

oscillations. We have here focused on the dynamics of

the quantum fluctuations around the synchronized classical

dynamics in order to understand (i) if there are quantum

signatures of synchronization, and (ii) the robustness of these

eventual signatures and of synchronization itself (quantified

by the variance of the phase difference between the two

mechanical oscillators) with respect to quantum and thermal

noise. We have seen that, as already pointed out in Ref. [22],

entanglement is not related in general to synchronization, and,

in fact, it is absent in correspondence with synchronization of

the classical motion. A more promising quantum signature

of synchronization seems to be instead quantum discord.

In the linearized regime of Gaussian fluctuations considered

here, quantum discord is almost always nonzero, as expected,

but its dependence upon the relevant parameters controlling

synchronization, i.e., laser driving amplitude and temperature,

is always the same of the variance of the phase difference.

In fact, phase synchronization and quantum discord are both

robust with respect to quantum noise, and both survive in the

presence of thermal noise, even though both of them decay for

increasing temperatures. In conclusion, the radiation pressure

interaction of a sufficiently driven cavity mode is able to

synchronize two membranes both coupled with the mode, and

phase synchronization is also quite robust with respect to noise.

As an outlook, the present scheme can be easily generalized

to synchronize multiple MOs coupled to a single cavity mode.
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