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1. INTRODUCTION 

Computer  networks and distributed computat ion have recently at t racted a good 

deal of attention. This is due, in part, to the availability of low-cost processors 

which make the construction of such networks viable. In addition, by distributing 

a computat ion over a number  of processors, it is possible to construct  a system 

that  is immune to various types of failures, has high throughput ,  and exhibits 
incremental  growth capabilities. 

Often, a particular task can be decomposed into disjoint (i.e., no shared 

memory} communicat ing processes in many  different ways. The particular de- 

composition used dictates the extent to which these goals are realized. For 

example, t ightly coupling processes by using synchronous communicat ions pro- 

tocols may  decrease the overall th roughput  of the system because the potential 

for parallelism is reduced. For this reason, the use of asynchronous communica- 

tion protocols seems sensible. Such protocols allow a process to continue executing 

while a message is being delivered on its behalf. This tends to insulate the 

performance of processes from each other and from the communicat ions network. 

Unfortunately,  a consequence of this approach is tha t  no single process can have 

complete knowledge of the entire state of the system, because any state infor- 

mat ion a process obtains from messages reflects a past  state of the sending 

processes, not  the current state. This makes the design and analysis of distributed 
programs very difficult. 

In this paper, one aspect of the construction of distributed programs is ad- 
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dressed--synchronization. In particular, we describe a method for implementing 
synchronization in distributed programs. The method is developed in Section 2. 
In Section 3 it is used to construct a distributed semaphore, a semaphore-like 
mechanism that does not require shared memory, and to implement a conditional 
synchronous message-passing mechanism. Communicating Sequential Processes 
[8] and Ada [14] both use such a message-passing mechanism. In Section 4 the 
method is extended for use in environments in which processes may fail. Some 
issues regarding implementation are discussed in Section 5, while Section 6 
discusses the validity of our assumptions and contrasts this work with other, 

related work. 

2. DISTRIBUTED SYNCHRONIZATION 

2.1 The Environment 

A distributed program is a collection of concurrently executing processes that  do 
not share any memory. 1 Processes communicate using a buffered asynchronous 
communications network. We assume that a process can broadcast a message to 
all other processes and that  the following hold: 

Reliable Broadcast Property. Any broadcast will be received by all running 

processes. 

Transmission Ordering Property. Messages that  originate at a given process 
are received by other processes in the order sent. 

Construction of networks that  exhibit these properties with high probability is 
currently within the state of the art, as is shown in Section 6.1. 

2.2 The Process Interface 

Processes communicate by exchanging messages. Included as part of every 
message is a timestamp, the time that the message was broadcast according to a 
system-wide valid clock. A valid clock is a mapping from events to integers that  
defines a total ordering on events that is consistent with potential causality. Let 
c(E ) be the time event E occurs according to valid clock c. Then, for any distinct 
events E and F, either c(E) < c(F) or c(F) < c(E). Furthermore, if event E 
might be responsible for causing event F, it is required that c(E) < c(F}--the 
time at which E occurs is less than the time at which F occurs. A method for 
implementing valid clocks in distributed programs without using centralized 

control is described in [9]. 
In the following, we also postulate a global observer that can determine with 

great precision the "actual" time an event occurs. This simplifies the characteri- 
zation of the state of a process. Neither the existence of such an observer nor the 
ability to determine such "actual" times is required to implement the protocols 

described in this paper. 
Associated with each process is a message queue: the timestamp-ordered 

sequence of messages broadcast and received by that process. 2 At time t, the 

' These processes may or may not  execute on physically disjoint processors. 

For the tnne being, assume message queues have unbounded length. In Section 5, representation of 

message queues in a bounded amount  of storage is discussed. 
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message queue MQp at process P consisting of the ordered sequence of messages 
m l m 2  . . -  m, is denoted by 

MQp[t] = mlm2  " ' "  r a n .  

Let ts(m) denote the value of the timestamp in message m. By definition, 
messages in a message queue are ordered by timestamp, and so 

ts(ml) < ts(m2) < . . .  < ts(mn). 

We assume that  processes satisfy the 

A c k n o w l e d g m e n t  R e q u i r e m e n t .  Upon receipt of any message that is not an 
acknowledgment message, an acknowledgment message is broadcast. 

At time t, message mi is fu l ly  a c k n o w l e d g e d  at process P, denoted by far (mi)[t], 

if mi is in MQp[t] and acknowledgment messages for mi have been received from 
every other process in the system by that  time. A process can easily determine if 
a particular message is fully acknowledged by inspecting its message queue. 

Although messages are stored in a message queue in ascending order of 
timestamp, a communications network might not deliver them in that order. 
Consequently, upon receipt a message may be inserted into the middle of a 
message queue. The following characterizes the portion of the message queue at 
a process that is not subject to change due to continuing system activity. 

LEMMA (MESSAGE QuEuE S T A B I L I T Y ) .  I f  m e s s a g e  m '  is rece ived  by P a t  t ime  

t, t hen  

fap(m)[t]  ~ ts(m) < t s (m ' ) .  

PROOF. Suppose message m' is broadcast by process Q and received by P after 
fap(m) becomes true. At that time, an acknowledgment message for m must have 
been received from every process. Let a be the acknowledgment message received 
from Q. Q must have broadcast a after receiving m; thus, ts(m) < ta(a). From the 
transmission ordering assumption it follows that Q broadcast m' after a. Since 
timestamps generated by Q are consistent with causality 

ts(m) < ts(a) < ts(m'). Q.E.D. 

LEMMA (MESSAGE QUEUE CONTENTS). L e t  MQe[ t ]  = p i p 2  . . .  pn a n d  MQQ [t] 
= qlq2 . . .  qm. T h e n  

fap(pa)[ t ]  A fav(qb)[t]  ~ (Vi: 1 <-- i <-- min(a,b):  pi  = qi). 3 

PROOF. Since fap(pa)[t] ,  no message with timestamp less than tS(pa) will be 
received by process P, and similarly for qb and Q. This follows from the previous 
lemma. The reliable broadcast property guarantees that every message m'  where 

ts(m') < min(ts(pa), ts(qb)) 

3 T h e  following nota t ional  convent ions  are employed th roughou t  th is  paper: 

(Vx :R(x):  B(x)) m e a n s  "all x in range R(x) sat isfy B(x)";  

(3x : R(x): B(x)) m e a n s  " there  exists an  x in range R(x) 
t h a t  satisfies B(x)";  

(Nx:R(x): B(x)) m e a n s  " the  n u m b e r  o f x  in range R(x) 

t ha t  sat isfy B(x)."  
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has been received by both P and Q. Therefore, the lemma follows from the 
reliable broadcast property and the use of a valid clock to generate timestamps, 
since such timestamps must be uniquely ordered. Q.E.D. 

2.3 Synchronization 

For purposes of synchronization, process execution can be viewed as a sequence 
of phases. The extent of each phase is dependent on the particular application 
being considered. A phase transition occurs when execution of one phase ceases 
and execution of another is attempted. A synchronization mechanism is em- 
ployed to constrain the phase transitions of a collection of processes in accordance 
with some specification. For example, the readers-writers problem concerns 
synchronizing a number of processes that  access a shared database. A process 
can be in one of three phases--read, write, or compute--subject to the restrictions 
that  at most one process should be in a write phase at any time and that  a process 
should only be in a read phase provided no other process is in a write phase. 

In synchronization mechanisms that  use shared memory, information about 
the phase in which each process is executing is encoded in a set of variables 
accessible to all processes. A process evaluates a phase transition predicate on 
these shared variables to determine whether to proceed with a phase transition, 
and updates them when the phase transition has occurred. This approach can be 
viewed as an optimization of the following scheme. A queue is defined that  is 
accessible to all processes. Whenever a process completes a phase transition, it 
appends to the end of this queue an entry containing its name and the name of 
the phase just entered. Using such a queue, a process can determine the relevant 
aspects of the execution history of each process and, consequently, can ascertain 
whether to proceed with a phase transition by evaluating a predicate on this 
queue. 

This can be adapted for use in distributed programs by maintaining a copy of 
the queue at each process. To change phases, a process first broadcasts a phase 
transition message indicating the phase to which transition is desired and then 
waits until a phase transition predicate is true on its message queue. That  is, 

Phase Transition Protocol. In order to perform a phase transition, 

(1) broadcast a phase transition message; 
(2) wait until the corresponding phase transition predicate is true. 

The operation of a synchronization mechanism should not be contingent on 
assumptions about relative execution speeds of processes or message transmission 
delays. For this reason, phase transition predicates should be monotonic with 
respect to time; adding a message to the message queue should never falsify the 
predicate. Otherwise, a phase transition attempt might occur prematurely, or 
might be delayed indefinitely, due to the timing of the receipt of messages. 

Synchronization problems for which monotonic phase transition predicates 
cannot be constructed invariably involve assumptions about timing. This is 
illustrated in the following. Consider a distributed program that consists of two 
processes P and Q. Execution of P alternates between phases OK and NOTOK. 
P may enter these phases at will; so the phase transition predicates are 

OKp ~ t rue  and NOTOKp w_ true.  
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Note that both of these phase transition predicates are monotonic. Execution of 
Q occasionally involves an attempt to enter phase OKTOO. Suppose transition 
to OKTOO is permitted only if P is executing in OK. Then formulation of a phase 
transition predicate OKTOOQ that is monotonic and satisfies the constraints of 
the problem is impossible; for Q cannot ascertain the phase in which P is actually 
executing without making assumptions about the time it takes P ' s  phase transi- 
tion messages to reach Q and the length of time P will remain in that phase. 
Thus, this synchronization problem is time dependent, although this is not 
apparent from the original specification. 

By choosing appropriate phase transition predicates, various types of synchro- 
nization can be implemented. In general, a phase transition predicate Tp(m)[t] to 
regulate entry by process P into phase T at time t after broadcasting phase 
transition message m must satisfy the following: 

R1. It is a function of the local message queue and the message broadcast to 
enter the phase. 

R2. It is total. 
R3. It is monotonic with respect to the length of the message queue. 

3. EXAMPLES 

The use of phase transition predicates to implement synchronization mechanisms 
is now illustrated. First, a distributed version of a semaphore is presented. Next, 
implementation of a conditional synchronous message-passing facility is pre- 
sented. 

3.1 Distributed Semaphores 

A distributed semaphore is a distributed synchronization mechanism that be- 
haves in much the same way as a semaphore [5]. Two operations are defined on 
distributed semaphores: P and V. Execution of a P operation consists of making 
a transition to a P-phase, and, similarly, for a V operation transition to a V-phase 
is attempted. 

For our purposes, the following is a convenient definition of a semaphore. A 
semaphore is a synchronization mechanism that ensures that, for every completed 
P-phase transition, a unique V-phase transition has been made by some process. 
Notice that the semantics of the synchronization have not been defined in terms 
of a "value" {usually a nonnegative integer) and how P and V operations affect 
that value. However, implementations in which a semaphore does have a value--  
for instance, the usual implementation in terms of shared memory--will satisfy 
this definition. 

The following functions are useful for formulating the phase transition predi- 
cates for distributed semaphores: 

atmpt(T, m) - m is a T-phase entry message; 

VQ#(m)[t] -- (N_m':m' in MQQ[t]: ts(m') _ ts(m) /k atmpt(V,m')); 

PQ#(m)[t] ~ (N_m':m' in MQQ[t]: ts(m') __ ts(m)/~ atmpt(P, m')). 

A process should never be delayed when it attempts to enter a V-phase. 
Therefore, V-phaseQ(m)[t], the phase transition predicate for process Q to enter 
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a V-phase at  t ime t af ter  broadcasting phase transit ion message m, is 

V-phaseQ(m)[ t] = t r u e .  

A constant  predicate is total  and monotonic;  so R1-R3 are satisfied. 

A process a t tempt ing  transit ion to a P-phase should be delayed until  a sufficient 
number  of V transitions have been made. Le t  m be the phase transit ion message 

broadcast  by  Q in order  to enter  this P-phase. T h e n  PQ#(m)[t] is the number  of 

P-phase transit ion a t tempts  of which Q is aware at  t ime t tha t  were made by 
processes prior to this a t t empt  by Q.t F rom our  definition of a semaphore,  the 

following should hold in order  to enter  a P-phase  at  t ime t: 

(3rn' :rn' in MQQ[t]: PQ#(m)[t] <_ VQ~(m')[t]).  

Since both  rn and m '  appear  in MQQ, the predicate  is total. Unfortunately,  the 

predicate  is not  monotonic.  I t  would be if Pvrg(rn)[t] were constant  with respect  

to t, since VQ#(m')[t]  monotonical ly increases with time. F rom the message 
queue stability lemma, 

faQ(m)[t] ~ (Yt '  : t <_ t '  : Pv#(m)[t]  = Pv#(m)[t ' ] ) .  

The  following predicate,  then, satisfies R1-R3 and is therefore  a valid phase 

transit ion predicate  for en t ry  to a P-phase at  t ime t: 

P-phaseQ(m)[t] = f a v ( m ) [ t ]  /k (::lm' : m '  in MQQ[t]: 

PQ#(rn)[t] <_ VQ~(rn')[t]). 

In this implementat ion,  V-phase transit ions are associated with P-phase tran- 
sitions in a first-come, first-served manner .  Th e  result  is a semaphore  implemen- 

ta t ion in which processes are awakened in tha t  order. Implementa t ion  of o ther  
deterministic scheduling disciplines is also possible. For  example, to implement  

a last-come, first-served semaphore,  V-phaseQ(m)[t] remains unchanged and P- 
phasev(m)[t] is al tered as follows. A process should be permi t ted  to enter  a P- 

phase at  t ime t if a sufficient number  of V's have been done at  the t ime when the 
P-phase transit ion is a t t e m p t e d - -  

bl(m)[t] =- PQ#(m)[t] <_ VQ~t(m)[t], 

or if by using a last-come, first-served matching the P-phase transit ion 
message rn is ma tched  with some previously unmatched  V-phase transit ion 

message rn ' - -  

b2(m)[t] = (3rn':rn' in MQQ[t] A ts(rn) _< ts(m')  A atmpt(V, m') :  

PQ#(m, rn ')[ t]  + 1 = Vv#(m,  m')[ t ]  

where 

Po#(m,  m')[ t ]  --- PQ#(m' ) [ t ]  -- PQ#(m)[t]; 

V o # ( m  , m')[ t ]  --- V o # ( m ' ) [ t ]  - VQ#(m)[t].  

Clearly, bo th  predicates bl  and b2 are total. F rom the message queue stabili ty 

4 "Prior to" according to the times generated by our valid clock. The ordering implied by these can 
differ from the actual order in which concurrent transitions were attempted. 
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lemma it follows that  bl is monotonic after time t if faQ (m)[t], and b2 is monotonic 
after time t if faQ(m')[t]. Since the union of two monotonic predicates is itself 
monotonic, the following is a valid phase transition predicate for making a P- 
phase transition at time t: 

P-phaseQ(m)[t] =- (faQ(m)[t] A Pv#(m)[t] <_ VQ#(m)[t]) 

k/ (3m':fav(m')[t]/~ ts(m) _< ts(m') A atmpt(V, m'): 

PQ#(m, m')[t] + 1 = VQ#(m, m')[t]). 

3.2 Synchronous Message-Passing Primitives 

In a synchronous message-passing scheme, the sending process or the receiving 
process is delayed until both are ready to perform the message transfer. Thus, an 

input (receive) or output (send) statement is a synchronization point for processes 
that communicate. Interest in this approach stems from the ease in writing 
programs using such primitives. Synchronous message-passing primitives are 
integral to many recent programming language proposals; Communicating Se- 
quential Processes (CSP) [8] and Ada [14] are notable examples. In the following, 
the notation of CSP is used. 

Interprocess communication is accomplished by using input commands, which 
have the form (source)? (target variable), and output commands, which have the 
form (destination)!(expression), where (source) and (destination) are process 
names. In the sequel, input commands and output commands are collectively 
referred to as communication statements. An input command and an output 
command correspond if 

(1) the input command names as its (source) the process containing the output 
command; 

(2) the output command names as its (destination) the process containing the 
input command; and 

(3) the type of the (target variable) in the input command matches the type of 
the value denoted by (expression) in the output command. 

Communication occurs between processes only when each process is ready to 
execute corresponding communication statements. At that time, the value de- 
noted by (expression) is assigned to (target variable ). 

A communication statement can appear either in a command list or in the 
guard of a guarded command G --, C. The guard G may be either (1) a Boolean 
expression optionally followed by a communication statement or (2) the keyword 
otherwise;  C is a command list. Guarded commands may be combined to form 
alternative commands. The syntax of the alternative command is as follows: 

[ G1--* C1D G2 --* (7213 . . .  R Gn --> Cn]. 

A guard is enabled if its Boolean expression evaluates to true; it is ready if 
attempted execution of its communication statement (if present) would not cause 
delay (i.e., some other process can execute a corresponding communication 
statement). The guard o the rwise  is enabled and ready only if no other guard in 
the alternative command is enabled and ready. Execution of the alternative 
command is as follows. The guards G1, G2 . . . . .  Gn are evaluated. Then, one that  
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is both enabled and ready is selected; the communication statement (if any) in it 
is executed, and then the corresponding command list is executed. 

A process executing an alternative command with guard o therwise  cannot be 
delayed. If none of the guards is o therwise ,  then execution of the alternative 
command is delayed until one of the enabled guards becomes ready. 

The use of an alternative command to allow communication between processes 
P and Q is illustrated in the following: 

P :: [Q!valuel --~ . . .  Q :: [P!value2 - - . . . .  

D Q!pvar ---) . . . ]  D P?qvar---) . . . ]  

The effect of executing these two alternative commands is to assign either valuel 
to qvar or value2 to pvar. An implementation must not allow P and Q to become 
deadlocked. This could occur if the communication statement in the guard chosen 
by P did not correspond to the communication statement in the guard chosen by 
Q. This is possible here because both guards in each alternative command can be 
ready and enabled. Such deadlocks can be avoided if each process is able to 
determine the guard selections made by other processes. 

We now proceed with the development of such a conditional communications 
facility. Whenever execution of a communication statement (or an alternative 
command that  contains a communication statement in one or more guards) is 
begun in process P, a phase transition is attempted. The phase transition message 
consists of a set of triples that indicates the communications P is waiting for. 
This set, called COMB, is computed based on the state of P as follows: 

ComB["(source) ? (var) "] = ( ((source), P, type of (var) )}; 

C O m B [ " ( d e s t )  !(expr) "] - ( (P, (dest), type of (expr) )} ; 

rCOmB[IO] if G = "B; IO"/~ B; 
Comp["G-~ C"] ~ ( ( 0 ,  0, o therwise))  if G -- "o therwise" ;  

[{ } otherwise; 

C o m B [ " [ G ]  --> C1 D G2 --~ C2 D . . .  D Gn "") Cn]"] = g C o m p [ G i  --> Ci]. 
iffil 

A phase transition message is formed by listing the triples in Comp in some 
previously defined lexicographic order. 

Two phase transition messages match  if there exists a triple common to both. 
In addition, a phase transition message matches itself ff it contains (0, 0, other-  
wise). Let mi and mj be the i th  and j t h  phase transition messages in some 
message queue. Formally, 

match(m/, mj) = (i ~ j A ( 3 k : k  ~ mi A k ~ mj)) 

V (i = j A  ( 3 k : k  ~ m i : k  = (0, 0, otherwise))) .  

For every communication that  actually occurs, two phase transition messages will 
be broadcast: one by the process that is executing the output command and the 
other by the process that  is executing the input command. Two messages match 
if they describe corresponding communication statements. Consequently, a pair- 
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ing of phase transition messages can be defined that  is isomorphic to the 
actual communications. Based on this, it is easy to construct a phase transition 
predicate. 

A process attempting communication is delayed until it determines the un- 
paired phase transition message with smallest timestamp in its message queue 
that matches the phase transition message it broadcast. The presence of an 
o therwise  guard complicates this somewhat. If P broadcasts phase transition 
message m in an attempt to execute an alternative command that  has an 
o therwise  guard and no matching phase transition message with timestamp 
smaller than ts(m) can be received, P should be allowed to complete the phase 
transition in order to execute the o therwise  alternative. In that  case, m is paired 
with itself. The following predicate achieves this: 

b3(m)[t] =- (3mi : mi in MQp[t]: pairedp(m, mi)[t]) 

where 

pairedp(ma, mb)[t] - match(ma, rnb) 

A (Vi : i < b: -7pairedp(ma, mi)[t]) 

A (Vi : i < a: ~pairedp(mi, mD[t]); 

len(X) ~- (_Nm : m i n X ) .  

It is simple to prove that 

(1) pairedp(ma, rnb)[t] ¢=~ pairedp(mb, ma)[t] and 
(2) i ~ j  A pairedp(ma, mi)[t] ~ ~pairedp(rna, m])[t]. 

Thus pairedp is sufficient for our purposes. Note that b3(m) is total provided m 
is in MQp. Furthermore, b3(m) is monotonic after no phase transition message 
can be received with a smaller timestamp than was found on any message 
involved in the pairing. This can be ensured by exploiting message queue stability 
to arrive at the following phase transition predicate: 

Cp(m)[t] -- fap(m)[t] A (3mi : mi in MQp[t]: fap(mi)[t] A pairedp(m, mi)[t]). 

After the phase transition is completed by both participating processes, the 
actual message exchange may take place. When executing an alternative com- 
mand, the guard that  has been selected can be determined by finding the 
lexicographically smallest matching triple in the paired phase transition messages. 
That  way the two processes will each execute an alternative that  contains a 
communication statement corresponding to the choice of the other. This, then, is 
a strictly deterministic implementation. Use of such a deterministic matching 
scheme allows each process to select the same guard to execute, independently. 

The mechanism defined here differs from that of CSP in two regards. First, 
output commands may be placed in guards. Hoare [8] and Bernstein [3] discuss 
the desirability of this. To simplify imPlementation , such a facility was not 
originally included in CSP. Second, an o therwise  guard has been added, which 
is similar to a feature in the Ada SELECT statement. 

Lastly, note that distributed deadlock detection is easily accomplished. Con- 
sider a set of processes where each is attempting a phase transition. If each of the 
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phase transition messages is unmatched and each contains triples that name only 
other processes in the set, then the processes must be deadlocked. 

4. WHEN PROCESSES CAN FAIL 

Distributed programs should be designed to continue functioning despite the 
failure of one or more processes. A process can malfunction in many ways. Only 
those failure modes that directly affect the operation of our distributed synchro- 
nization technique are considered here. These include failures where a process 
can no longer satisfy the acknowledgment requirement--perhaps because it has 
stopped executing--and failures that cause a process to broadcast erroneous 
phase transition messages. In addition, we take the conservative view that, if a 
process fails, the contents of its message queue might be damaged or lost. 
Therefore, it will be necessary to restore its message queue when it restarts. 

Failures in which a process no longer satisfies the acknowledgment requirement 
have the following effect. Recall that  the message queue stability property implied 
by fully acknowledged messages is useful when constructing phase transition 
predicates that  are monotonic. If the acknowledgment requirement is not satis- 
fied, phase transition messages will not become fully acknowledged. As a result, 
phase transition attempts might be blocked unnecessarily. 

The second failure mode of concern, the generation of erroneous phase transi- 
tion messages, has the obvious consequences. Notably, phase transitions that are 
possible will be denied, because the state of a message queue will not necessarily 
reflect reality. 

4.1 Process Behavior and Failure Detection 

It is convenient to make the following assumptions about the behavior of 
processes (and the manifestations of failures}: 

Process Behavior Assumption 

(1) Processes fail by ceasing to execute. A process that  has stopped executing 
does not broadcast phase transition messages or acknowledgment messages. 

(2) If a process fails, the contents of its message queue are lost. 
(3) A process P that  has been repaired can start broadcasting phase transition 

messages again only after executing a special restart protocol. To initiate this, P 
first broadcasts a ( restar t --P: id)  message, where id is a unique identifier over all 
restart messages broadcast by P. During execution of the restart protocol, P 
broadcasts acknowledgment messages in accordance with the acknowledgment 
requirement. 

Consequently, all malfunctions appear as failures to satisfy the acknowledgment 
requirement. The ease of constructing systems in which this is possible is 
discussed in Section 6.1. 

It is also appropriate, in light of possible process failures, to reconsider the 
reliable broadcast property of the communications network. Rather than require 
that  the network buffer messages that are destined for a failed process, we permit 
it to discard any message it attempts to deliver to that  process. This should cause 
no additional difficulty since, according to (2) above, a process loses the entire 
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contents of its message queue upon failing anyway; the protocol employed to 
restore a message queue can be used to obtain messages that were not delivered 
during the period of failure. 

In accordance with the process behavior assumption, at any time t a process P 
can be in one of three states: it could have stopped, denoted by FAILED( P)[t];  
it could be executing the restart protocol, denoted by RESTART(P)[ t ] ;  or it 
could be executing normally, denoted by RUNNING( P)[t] .  And so the process 
behavior assumption can be restated as 

FAILED(P)[t]  ~ at time t, P does not broadcast any message; 
RESTART(P)[ t ]  ~ a t  time t, P does not broadcast any phase transition 

message but does broadcast acknowledgment messages in 
accordance with the acknowledgment requirement; 

RUNNING(P)[t]  ~ at time t, P can broadcast phase transition messages and 
broadcasts acknowledgment messages in accordance with 
the acknowledgment requirement. 

The effects of process failures must be detected if they are to be circumvented. 
Therefore, we assume that the communications network provides a facility for 
each process P to determine the status of other processes and messages destined 
for P that were broadcast by these processes. We model this facility with the 
statement probeR (Q, f), which has the following operational semantics: probeR (Q, 
f) invoked at time ti terminates at time tc after all messages from Q that  were 
undelivered as of some time tR, ti -- ta --< tc, are delivered to P. Variable f is set 
so that 

f -  FAILED(Q)[tR]. 

The following predicate is used to describe the outcome of an invocation of 
probeR (Q, f): 

PROBER(Q, f)[ti,  tR, tc] -- Process P invoked probeR( Q, f) at time 
t~. Execution completed at time tc, and 
for some tR, t~ _< ta --< tc, 

f - FAILED(Q)[tR]. 

The details of implementing such a facility are dependent on the nature of the 
communications network in use. The definition does, however, suggest the 
following implementation. A "time-out" scheme is used to detect process failures. 
When process P executes probeR(Q, f), a message is sent to Q. If Q is running 
when it receives that message, it responds accordingly. As required above, any 
messages destined to P from Q will be received by P prior to that  response, due 
to the message ordering property. If no response is received by P from Q after 
(say)/to seconds, then P can conclude that Q has probably failed. 

The success of such a scheme is due to the process behavior assumption above: 
failures always cause the offending processor to be stopped. The probability of 
detecting a failure when none has occurred can be made arbitrarily small by using 
a large value for /to. In practice, knowledge about process execution speeds 
and the maximum message delivery delay in a given network can be used to 
bound/ to .  

It is not a good practice to make stipulations about time delays and execution 

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982. 



136 Fred B. Schneider 

speeds when discussing a synchronization mechanism. The results in the earlier 
sections of this paper did not require such assertions. However, here we are 
concerned with avoiding the situation where some process does not make a phase 
transition because another process will not (cannot) broadcast an acknowledg- 
ment message in a timely manner. So, the notion of time creeps in. 

4.2 Protocols to Handle Failures 

4.2.1 The Restart  Protocol. Process P that  has failed and is then restarted 
must execute a restart protocol before broadcasting any phase transition mes- 
sages. The restart protocol consists of a local par t  executed by P and a remote 

part, which is executed by some other running process Q (say}. Q causes P to 
receive every message that  has ever been broadcast. To accomplish this, Q sends 
to P every message that  is in MQQ at the time execution of the remote part 
commences and any messages subsequently received by Q that  might not be 
received by P (because they were delivered to P before it restarted}. In addition 
to restoring MQp, P will update its local clock so that  any timestamps it 
subsequently generates satisfy the valid clock requirement of Section 2. 

To facilitate description of the restart protocol, some useful functions are 
defined: cutoverQ ( P, R, id)[t] is the timestamp on the first message broadcast by 
R that  P received after broadcasting (restart--P:id) for which, at time t, Q has 
received an acknowledgment broadcast by P. That  is, 

cutoverQ(P, R, id)[t] _= 

"ts(m) where m is the message with smallest 
timestamp such that  as of time t 

(1} (restart--P:id) is the restart 
message from P most recently 
received by Q; 

(2) P received and acknowledged m 
after broadcasting (restart--  
P:id); 

(3) R broadcast m; and 
(4) Q received the acknowledgment 

broadcast by P for m; 
oo otherwise. 

Also define 

| the timestamp on the last message broadcast by 
highestQ(R)[t] = ~IR that  has been received by Q as of time t; 

tl0 if no such message has been received; 

org(m) - the process that  broadcast m. 

Then the restart protocol for process P is as follows: 

Restart  Protocol 

Local Part. Suppose P has broadcast (restart--P:id),  where id is a unique 
identifier that d~tinguishes among all restart messages broadcast by P. P 
executes the following: 

(1) Wait for Remote Completion. Delay until receipt of a (remote comple- 
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t ion--P:id) message. During this time, P must satisfy the acknowledgment 
requirement for every message m that is received directly from org(m). Mes- 
sages relayed to P need not be acknowledged. All messages P receives are 
stored in MQ p, provided they are not duplicates of messages already stored 
there. 5 

(2) Wait  for Local Completion. After receipt of a (remote completion-- 
P:id) message, ignore any messages relayed through other processes. Execute 
the following: 

forall processes P'  
prober ( P', f); 

end; 
Broadcast (restart completion--P:id) 

Remote Part. Upon receipt of (restart--P:id) by any process Q at time to 
(say), the following is executed: 

(1) Relay Messages to P. For each message m that  is received by Q, if at 
time t 

ts(m) < cutoverQ(P, org(rn), id)[t], 

then m is sent to P. 

(2) Signal Completion. Send a (remote completion--P:id) message to P 
when at some time t, to -< t, the following is true: 

(Vm:m in MQQ[t] A ts(m) < cutoverQ(P, org(m), id)[t]: Q has relayed 
m to P) 
/k (VP' :  P '  a process : highestQ(P')[t] ___ cutoverQ (P, P ' ,  id)[t] 

A (3ti, tm tc : to - t~ ___ tR ----- tc < t: PROBEQ(P', f)[t,, tR, tc])). 

The correctness of this scheme is proved below. We first show that  execution 
of the restart protocol reconstructs the message queue at a restarting process. 

LEMMA (MESSAGE QUEUE RECONSTRUCTION). At  the time P receives a (re- 

mote completion--P: id) message, every phase transition message that has been 

broadcast is either in MQp or in the communications network and will be 

delivered to P. 

PROOF. Suppose process P receives a (remote completion--P:id) message 
from Q at time trc. From the restart protocol description, it follows that  at some 
time t, t _< trc, the following was true at Q: 

(Vm:m in MQQ[t]/k ts(m) < cutoverQ(P, org(m), id)[t]: Q has relayed m to P) 

/k (VP' : P'  a process: highestQ(P')[t] >_ cutoverQ (P, P ' ,  id)[t] 

~/(3h, tR, tc : to --< t~ ---- tn --< tc < t: PROBEQ (P', f)[t~, tR, tc])) 

where to is the time Q received the (restart--P:id) message. Consider those 
messages that originate at some process P' .  

Case 1. Suppose highestQ(P')[t] >_ cutoverQ(P, P', id)[t]. According to the 
transmission order property and the consistency of timestamps with causality, P 

5 Two messages with the same t imestamp mus t  be duplicates because t imestamps are generated by a 

valid clock. 
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will receive directly from P '  every message m' where 

ts(m') _ cutoverQ(P, P' ,  id)[t]. 

Let cutoverQ (P, P', id)[t] = ts(m). Due to the reliable broadcast property, Q must 
eventually receive m. Assume this happens at time t~m. Due to the transmission 
ordering property, Q has received all messages rn' that  originated at P', where 

ts(rn') _ highestv (P') [trm ]. 

Since highestv (P')[t,n] >-- cutoverv (P, P' ,  id)[t], Q has received all messages m'  
that originated at P' where 

ts(m') <_ cutoverQ(P, P' ,  id)[t]. 

Moreover, all such messages rn' must have been relayed to P, according to the 
precondition for sending the (remote completion--P:id) message at time t. 

Case 2. Suppose highestQ (P')[t] < cutoverv (P, P', id)[t]. Then the following 
must be true: 

(=It[, tR, tc : to <-- tI --< ta -- tc < t: PROBEQ(P', f)[tI, tR, tc]). 

Due to the definition of probeQ, any phase transition message broadcast by P '  
after tR will be received directly by P, since it commenced its restart before to, to 
-< ta. Similarly, any message broadcast by P' before tR is received at Q by tc. 
Hence, every message m' that  Q received from P' will be relayed to P according 
to step (1) of the remote part, since tc < t and 

(Vrn' : rn' in MQQ[t]/k ts(rn') _< highestQ(P')[t] < cutoverv(P, P' ,  id)[t]: 

Q has relayed rn' to P). Q.E.D. 

This lemma does not prove that  a (remote completion--P:id) message will 
actually be sent but only that, if it is, the process executing the local part of the 
protocol will receive a copy of every message that has been broadcast. Without 
additional stipulations about process behavior, there is no guarantee that  some 
process will actually complete the remote part of the restart protocol and send 
the remote completion message. For example, processes might always fail im- 
mediately before sending the remote completion message, and, consequently, the 
restart protocol would never terminate. However, this is not so troublesome as it 
might seem. A system in which processes fail and restart with high frequency 
would be able to accomplish very little, anyway. Thus a protocol that  terminates 
when processes fail and restart infrequently should be acceptable. 

Our restart protocol for process P {say) will terminate provided there exists 
some process Q (say) that, after receipt of a (restart--P:id) message, executes 
without failing long enough to 

(1) invoke probeQ(P', f) for every process P'  and then 
(2) send the contents of MQQ to P. 

The time required to execute the remote part of the restart protocol is reduced 
if P receives and acknowledges phase transition messages while it is restarting. Q 
need not invoke probev for processes that  have broadcast phase transition 
messages that  P acknowledged after broadcasting (restart--P: id). 
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4.2.2 Message Queue Stability. Recall that acknowledgments are used to 
facilitate detection of message queue stability, not to signify that  a particular 
phase transition message has been received. Unfortunately, when processes fail, 
they can no longer broadcast acknowledgments. Thus, to counter the disruptive 
effects of process failure on our synchronization technique, a scheme is required 
that allows a process to determine the stable portion of its message queue, even 
though acknowledgments are not received from all processes. 

Receipt of message m' from process Q constitutes an implicit acknowledgment 
by Q for any message m broadcast by any process where ts(m) < ts(m')--even if 
Q has not yet received rn. This is because Q will not subsequently broadcast a 
message with timestamp less than ts(m'), due to the consistency of timestamps 
with causality. The following predicate therefore defines whether P has received 
an implicit acknowledgment from Q for message rn at time t: 

impackp(Q, m)[t] -= m in MQp[t] 

A (3m'  : m' in MQp[t]: org(m') = Q A ts(m) < ts(m')). 

Acknowledgments are really just a form of implicit acknowledgment. Thus, if 
processes make phase transition attempts with sufficient frequency, then the 
acknowledgment requirement can be relaxed: phase transition messages will serve 
as implicit acknowledgments. Then a process would need to broadcast acknowl- 
edgment messages only while executing the restart protocol or while it was 
delayed in making a phase transition. When such implicit acknowledgments are 
used, the delay until a phase transition message becomes fully acknowledged is 
dependent (in part) on the frequency with which other processes broadcast 
messages that serve as implicit acknowledgments. Clearly, there is a trade-off 
between the time delay for a phase transition and the amount of network capacity 
consumed by explicit acknowledgment messages. Happily, we note that, if there 
is little network capacity to devote to explicit acknowledgments, it is probably 
because processes are making phase transitions with high frequency--ideal cir- 
cumstances for the use of implicit acknowledgments. 

A consequence of the process behavior assumption is that a process that has 
failed does not broadcast phase transition messages until completion of its restart 
protocol. Thus, failed processes cannot possibly destroy message queue stability. 
In light of this, the definition of fully acknowledged can be extended to account 
for process failures: 

fap(m)[t] -- (VP' : P '  a process: impackp(P', rn)[t] 

v ( 3 t I ,  ta, t c : t I - - tR - - - - t c< t :  minMQp[t i ]  

A PROBEp(P', true)[t~, ta, tc])). 

This predicate is monotonic with respect to t (time), as one would expect it to be. 
In effect, it allows acknowledgments to be "forged" on behalf of failed'processes 
when message queue stability is not threatened. Below, we prove that  the message 
queue stability property associated with fully acknowledged messages is not 
destroyed by this. (This lemma is slightly weaker than the corresponding one in 
Section 2. There, message queue stability with respect to all messages, including 
acknowledgments, is proved. The weaker form of the property shown here suffices 
for our purposes because phase transition predicates are defined in terms of the 
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phase transition messages in a message queue, not the acknowledgment mes- 
sages.) 

LEMMA (MESSAGE Q U E U E  STABILITY WITH FAILURE).  I f  m'  is received by P 

at time t and is not ignored because it was relayed and received after a (remote 

completion--P: id) message, then 

faR(re)It] A RUNNING(P)[ t ]  ~ ts(m) < ts(m'). 

PROOF. P must receive m'  directly from org(m') due to the hypothesis of the 
lemma. If fap(m)[t], then, by definition, 

impackp(org(m'), m)[t] V (3t~, tR, tc : tI -- tR ----- tc < t: 

m in MQp[tI] A PROBEp(org(m'), true)[ti ,  tR, tc]). 

If impackp(org(m'), m)[t], then the lemma follows from the consistency of 
timestamps with causality at org(m') and the transmission ordering property, 
since m'  is received directly from org(m'). 

Otherwise 

(3ti, tR, tc : tI -- tR -- tc < t: m in MQp[tI] A PROBEp(org(m'), true)[ti ,  tR, tc]). 

m' must have been broadcast after tR. Otherwise, from the definition of 
PROBER, m'  would have been received by P before tc, which would contradict 
tc < t, given that  m'  is received by P at time t. 

Therefore, due to the process behavior assumption, org(m') must have broad- 
cast m'  after completing the restart protocol executed following its failure before 
tR. Let t,e~c be the time org(m') completes that  restart protocol, and let t~m be the 
time org(m') receives m. Since m' is received by P only after it is broadcast, 

tR < tresc < t. 

To complete the proof we now show that  t~m < t, .... which implies ts(m) < ts(m') 
due to the consistency of timestamps with causality at org(m'). Two cases must 
be considered. 

Case 1. Suppose m was relayed to org(m') by some process Q executing the 
remote part of the restart protocol. Let tQsm be the time Q sends m to org(m'), 
and let tQ,c be the time org(m') receives the (remote completion--org(m'):id) 
message. Due to the transmission ordering property and the definition of the 
restart protocol, all messages relayed by Q will be received before the (remote 
completion--org(m') :id) message broadcast by Q. Thus trm < tQ~c. Since tQ~¢ < 
t~e~c, we get t~m < tr .... 

Case 2. Suppose org(m') received m directly from org(m). Let t~e~ be the time 
org(m') begins its restart protocol. Since m is in MQR[tI] and t~ __ tR --< tres < tQrc, 
m was broadcast before tv,¢. By hypothesis, m was received directly from org(m). 
Thus, m is received by org(m') after tre~. Consequently, from the semantics of the 
invocation of probeo,s(m.~(org(m), f) in step (2) of the restart protocol, trm < 
t~ .... Q.E.D. 

Lastly, we show that  all messages become fully acknowledged. 
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LEMMA (ACKNOWLEDGMENT GENERATION). 

m in MQQ[t'] ~ ( 3 t  : t '  <_ t: faQ(m)[t] V FAILED(Q)[ t ] )  

prov ided  every restarting process either completes execution of  the restart 

protocol  or fails. 

PROOF. If Q fails after receiving m, then the lemma trivially follows. Suppose 
Q does not fail. We show that 

(VP' : P '  a process: impackp(P', m)[t] 

v (3t~, tR, tc : t~ <-- tR <-- tc < t: 

m in MQp[t~] A PROBEp(P', true)[ti ,  tR, tc])). 

To do so, we show that there exists a time t such that for each process P '  at least 
one of these disjuncts is true. If P '  does not fail before broadcasting an acknowl- 
edgment for m, as required by the acknowledgment requirement, then there exists 
a time t,¢k such that impackp(P', m)[t, ck]. Moreover, 

(Vt' : tack --< t': impackp(P', m)[t']). 

If P '  fails before broadcasting an acknowledgment for m, then two cases must 
be considered. 

Case 1. P '  has not successfully restarted by time t. Messages are never deleted 
from a message queue. Thus, 

m in MQQ[t'] A t' < t ~ m in MQQ[t]. 

Moreover, by executing probeQ(P', f) after t', Q can establish 

PROBEQ(P', true)[tb tR, tc] 

for t '  <_ t~ <_ tR <-- tc < t. Thus, the part of the lemma concerning P'  follows. 

Case 2. P '  has successfully restarted by time t. From the Message Queue 
Reconstruction Lemma and the hypothesis of the lemma, we know that  P '  will 
eventually receive m. If P '  receives m before completing the restart protocol, then 
the first phase transition message broadcast by P '  will constitute an implicit 
acknowledgment for m. If P '  receives m after completing the restart protocol, 
then P '  will broadcast an acknowledgment for m, in accordance with the acknowl- 
edgment requirement. In either case the lemma follows. Q.E.D. 

4.3 Avoiding Redundant Work During Restarts 

In the protocols described in the last section, there could be wasteful duplication 
because the remote part of the restart protocol might be executed in parallel by 
a number of processes. One execution would be sufficient. This can be avoided by 
stipulating the following: 

Failure Moni tor ing  Requirement.  For every process P, if FAILED(P), then 
eventually the failure will be noticed by some other process. 

Then, only processes monitoring P would execute the remote part of the restart 
protocol for P when necessary. Redundant work is avoided by minimizing the 
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However, 
sufficient: 

number of processes that  are monitoring each process. A simple scheme to 
accomplish this is outlined below. 

Associated with each process P is a set of processes that P is monitoring at 
time t, mon(P)[t]. Let S be the set of all processes in the system. Previously, 

( V P  : P a process A RUNNING(P)[t]:  mon(P)[t]  = S). 

according to the failure monitoring requirement, the following is 

8 = IJ mon(P)[t]. 
PESARUNNING(P)[t] 

Thus, P periodically checks the status of all processes in mon(P). If P '  E mon(P) 
and P' has failed, then P adds mon(P')  to mon(P). And, if P '  is subsequently 
restarted, then mon(P) is partitioned into mon(P')  (the processes that P '  will 
commence monitoring) and the remaining processes. 

5. IMPLEMENTATION CONSIDERATIONS 

5.1 Message Queues 

Synchronization mechanisms that  could be implemented in terms of a finite 
amount of shared memory accessible to all processes never require message 
queues of unbounded size. This is because, given a collection of phase transition 
predicates, a finite-state machine can be constructed where t he  state of the 
machine always embodies all of the information necessary to determine the value 
of a phase transition predicate. Then, instead of storing the entire message queue 
at each process P, the following is saved: 

Sp the current state of the finite state machine at P; 
sfamp the state of the machine at the time the last phase transition message 

broadcast by P becomes fully acknowledged; 
tp the timestamp on the most recent fully acknowledged message at P; 
Qp a bounded message queue containing the messages that  have been 

received by P but are not yet part of a fully acknowledged prefLx. 

A state transition function D is defined so that a new state S' can be determined 
when the portion of the message queue encoded in the current state S is extended 
by the addition of message m. Thus, 

S' = D(S, m). 

Upon receipt of a message m, if ts(m) > tp, then m is stored in Qp in ascending 
order by timestamp. If ts(m) _ tp, then m is ignored; it is a duplicate of a message 
already received. Whenever a message m in Qp becomes fully acknowledged, tp 

is set to ts(rn), and D is used to extend the portion of the message queue encoded 
in Sp by processing each message rn', ts(m') _< ts(m), in ascending order by 
timestamp. Phase transition predicates can be written so that  only sp and sfamp 
are required for their evaluation. Application of this technique to develop an 
implementation of the FCFS distributed semaphore of Section 3.1 appears 
in [18]. 

Integral to the success of this scheme is that  phase transition predicates be 
monotonic with respect to message queue length. This allows phase transition 
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predicates to be evaluated on any sufficiently long portion of the message queue. 
Thus, the current state of the machine can always be used. 

The actual bound on the size of Qp depends on both the number of processes 
in the system and how long it takes for messages to become fully acknowledged 
relative to the rate that processes attempt phase transitions. This depends on the 
buffering capacity of the communication network. 

Use of such an encoding scheme reduces both the amount of storage required 
for storing a message queue and the time and the volume of communications 
required in step (1) of the restart protocol. 

5.2. Communications 

In a system with N processes, N broadcasts are involved in a phase transition: 
one phase transition message and N - 1 acknowledgment messages. A disciplined 
use of distributed synchronization mechanisms can reduce this communications 
volume substantially, as is shown in the following. 

Once a set of phase transition predicates has been defined, any number of 
instances of the synchronization mechanism implemented by those predicates 
can be defined by parameterizing the predicates and phase transition messages 
with respect to the instance name. In that  case, a separate message queue MQ(p,i) 
can be defined for each instance i of the mechanism at each process P that  
performs operations (phase transitions) on that  instance. Only phase transition 
messages and acknowledgment messages regarding instance i need be stored in 
MQ(p,i). Therefore, only those processes that  actually attempt phase transitions 
on instance i must broadcast acknowledgment messages for phase transition 
messages about instance i in order for message queue stability for MQ(p,i) to be 
ensured. As long as not every process makes phase transitions on an instance, 
fewer than N -  1 acknowledgment messages will be required for a phase transition 
to complete. Notice that recovery from process failure becomes more complicated; 
no single process will necessarily save all messages that  have been broadcast. 
Thus, more than one running process may be needed to reconstruct the message 
queues at the failed process. 

This technique can be exploited by structuring a distributed system as a 
hierarchical collection of subsystems. Synchronization of the highest level sub- 
systems is accomplished by using some collection of synchronization mechanism 
instances. Synchronization within each of the subsystems is performed by other 
instances, etc. In this way, the number of processes that use a particular instance 
of a synchronization mechanism is kept small. In fact, for systems structured in 
this way, the communications network could consist of a collection of broadcast 
channels, where each channel is associated with one or more synchronization 
mechanism instances. In that  case, a process need monitor only those channels 
that correspond to instances of mechanisms on which it performs operations. 

6. DISCUSSION 

6.1. The Assumptions Revisited 

Certain assumptions about the communications network and the failure modes 
of processors have been made. Here, we briefly examine the degree to which these 
assumptions can be satisfied in "real" systems. 
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Two properties of the communications network were postulated. The message 
ordering property requires that  all messages sent by a given process be received 
by other processes in the order sent. This is fairly simple to implement. Each 
message is assigned a sequence number formed by concatenating a unique process 
name with the value of a counter that is updated by that process every time a 
message is broadcast. These sequence numbers can be used to govern the order 
in which messages are delivered to processes. 

Implementing a communications network in which the reliable broadcast 
property holds is somewhat more difficult. So-called broadcast networks--con- 
tention networks such as Ethernet [13] and ring networks like DCS [7]--would 
appear to implement reliable broadcasts, but actually do not. In these networks, 
each processor monitors a "bus" and copies messages with certain address codes 
into its memory. Unfortunately, there is no guarantee that  a processor will 
remove every such message. For example, the processor's message buffer space 
might be full, the processor might not be monitoring the bus at the time the 
message is transmitted, or, in a contention network, an undetected collision could 
affect receipt of the message by only that  processor. 

In point-to-point networks, sending a message to a single destination is an 
atomic action--either it happens or it does not happen--but sending a message 
to more than one destination is not. Therefore, to effect a broadcast, protocols 
are required in which a processor failure causes another processor to assume its 
duties. Previously, such protocols were thought always to require time delays 
linear in the number of processors involved [6]. However, in [19] we show how to 
implement reliable broadcasts where O(log N) time is required to complete a 
broadcast to N processors (unless there are processor failures, in which case the 
delay becomes at worst linear). Postulating the existence of a fast, reliable 
broadcast facility is therefore quite reasonable, since processor failures should be 
rare. 

The process behavior assumption places restrictions on the failure modes of 
processes. In particular, we assume that, if a process fails, it is stopped. Systems 
for which such an assumption holds must be capable of detecting any and all 
errors (malfunctions). Then, when a failure is detected, the processor can be 
turned off or ignored. Unfortunately, it is not possible to construct such a system 
with a finite amount of hardware. 6 Thus, we must settle for systems that  exhibit 
the process behavior assumption with high probability. Such systems can be 
constructed by redundant encoding of information. For example, by including 
redundant information in phase transition messages it becomes increasingly 
unlikely that  a process could broadcast a valid phase transition message while 
malfunctioning; the redundant information allows processes to determine that  
the message is not a real phase transition. Similarly, by replicating unreliable 
hardware it is possible to construct processors that, with high probability, either 
operate correctly or do not operate at all. The amount of replication needed for 
this is quantified in [11]. 

Last, since we have not described protocols to allow addition and deletion of 
processes to the system while it is running, it is tempting to believe that  it is not 

6 Sed quis custodiet ipso custodes? (But who is to guard the guards themselves?) 
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possible using our protocols. This is not true, as is shown in the following. A 
process P can be removed from the system if it first broadcasts a "delete P "  
message. After receipt of such a message, processes would no longer require 
acknowledgments from P in order for a message to become fully acknowledged. 
Similarly, a process Q can be added to the system if it first broadcasts an "add 
Q" message. After receipt of such a message, acknowledgments from Q would be 
required for a message to become fully acknowledged. In addition, Q must then 
complete the restart protocol before broadcasting any phase transition messages. 

6.2 Applications of the Technique 

The technique developed in this paper is useful for solving global synchronization 
problems is distributed systems. Such problems often arise when an invariant 
relation must be preserved that involves the states of several physically distrib- 
uted processes. The consistency problem in distributed database systems is an 
example of such a problem. Implementing synchronization and communications 
primitives in a distributed system is another place where global synchronization 
could be necessary. 

To date, our techniques have been used in a number of contexts. Andrews uses 
distributed semaphores in a distributed implementation of the banker's algorithm 
for deadlock detection [1]. In [18], we describe how distributed semaphores can 
be used to generalize "locking" solutions for the consistency problem in central- 
ized database systems for use in distributed database systems. In fact, many of 
the proposals for concurrency control mechanisms in distributed data base 
systems can be viewed as optimizations of implementations obtained in this 
manner. Unfortunately, many of these proposals (including ours) do not ade- 
quately handle failure and recovery, which should be developed in conjunction 
with a synchronization mechanism. More recently, in [20], we develop a locking 
primitive that is well suited for implementing a fault-tolerant distributed storage 
system by using the techniques described in this paper. 

A second contribution of this work is as a demonstration of how monotonicity 
can be used as a way to control interference in distributed programs. Interference 
occurs in a parallel program when execution of one process invalidates assertions 
required by other concurrently executing processes. If an assertion is monotonic, 
then, once it is true, it remains true; hence it is not interfered with. In this work, 
we were concerned with constructing monotonic phase transition predicates; we 
did this by using acknowledgment messages to ensure message queue stability. 

6.3 Related Work 

Our approach is based on a scheme for totally ordering events in a distributed 
program. Each process makes synchronization decisions by independently simu- 
lating a finite-state machine [9], which is constructed from the phase transition 
predicates that characterize the desired synchronization. Such phase transition 
predicates can be derived from a global invariant by using the wp predicate 
transformer [4] or can be obtained by other means. 

Integral to any synchronization technique intended for use in distributed 
programs should be the ability to deal with failures. The approach described in 
this paper requires a reliable broadcast facility and the ability to detect process 
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failures. This allows acknowledgments to be forged when necessary, thereby 
ensuring that the stable prefix of a message queue will continually increase in 
length. In [10] a different approach is explored. There, in order to maintain the 
message queue stability property, undelivered messages that have become too 
"old" are ignored. Consequently, the ability to detect failures is not required, 
although protocols to synchronize local clocks that could malfunction are neces- 
sary. A voting scheme is used to ensure that  all simulations of the finite-state 
machine accept or that  all reject a given message. Therefore, a reliable broadcast 
facility is not necessary. Instead, a sufficiently large portion of the system must 
be functioning at all times, and conditions about the rate that  failures and restarts 
occur must be satisfied. Lastly, Lamport's work is oriented toward constructing 
arbitrary finite-state machines, in contrast to ours which is concerned only with 
finite-state machines that  implement synchronization mechanisms. Nevertheless, 
our techniques for handling failures and restarts work for the more general case. 
Given an arbitrary finite-state machine, instead of defining monotonic phase 
transition predicates that  take as argument a phase transition message, functions 
of the current machine state that  take as argument a "user request" message are 
defined. The analogue of monotonicity is that, for a given argument, the value of 
such a function remains invariant once it becomes defined. 

Other approaches to synchronization problems in distributed programs, such 
as the use of tokens [12] or sequencers [16], have not completely addressed these 
fault tolerance issues. In these approaches, a process appeals to a designated 
arbitrator (process) for synchronization decisions. Although the responsibility for 
arbitration might migrate from one process to another, the existence of such a 
central authority, however temporary, constitutes a potential bottleneck. 
Moreover, should the process serving as the central authority fail, a new arbitrator 
must be selected and must gather state information from all other processes in 
the system. Both are nontrivial problems. 

Recently, Banino, Kaiser, and Zimmermann [2] have developed a synchroni- 
zation approach based on use of a shared broadcast channel. That  work can be 
derived from our distributed semaphore implementation, although our imple- 
mentation requires considerably fewer message broadcasts. In [17] a lower bound 
for the number of messages that must be exchanged to implement mutual 
exclusion in a distributed system is proved. We happily note that  their solution 
can be viewed as an optimization of a distributed semaphore-based solution to 
the critical section problem. 

Other implementations of the nondeterministic message-passing mechanism in 
CSP are described in [3, 21, 22]. Each uses a different mechanism to allow 
processes to compute independently an ordering on the triples in our "Com" set. 

7. CONCLUSIONS 

To date, numerous language proposals have appeared that  include message 
passing facilities with which process synchronization can be implemented. We 
have pursued a "lower level" approach for two reasons. First, high-level mecha- 
nisms often involve nontrivial implementations. The implementation of the 
nondeterministic message-passing facility in Communicating Sequential Pro- 
cesses without a reliable broadcast network is an illustration of this. Second, as 
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yet there does not appear to be any overwhelming evidence to favor one proposal 

over the others. Therefore, we have developed a technique that can be used to 

solve synchronization problems directly, to implement new synchronization mech- 

anisms (that are presumably well suited for use in distributed programs), and to 

construct distributed versions of existing mechanisms. The appeal of this last 

alternative stems from the fact that it now becomes possible to use many of the 

techniques developed in the context of concurrent programming in distributed 

programs. However, until recently, synchronization mechanisms have not in- 

cluded provisions for allowing a programmer to deal with process failures. (A 

noteworthy exception to this is the work of Reed [15].) Such a facility is important 

for the mechanism to be useful in distributed programs. 
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