
Synchronization

FRED B. SCHNEIDER

Cornell University

in Distributed Programs

A technique for solving synchronization problems in distributed programs is described. Use of this
technique in environments in which processes may fail is discussed. The technique can be used to
solve synchronization problems directly, to implement new synchronization mechanisms (which are
presumably well suited for use in distributed programs), and to construct distributed versions of
existing synchronization mechanisms. Use of the technique is illustrated with implementations of
distributed semaphores and a conditional message-passing facility.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.4.1 [Operating Systems]: Process Management--rnultiprocessing/rnultiprogramrning;
synchronization; D.4.5 [Operating Systems]: Reliability--fault tolerance

General Terms: Design, Reliability

Additional Key Words and Phrases: Logical clocks

1. INTRODUCTION

Computer networks and distributed computat ion have recently at t racted a good

deal of attention. This is due, in part, to the availability of low-cost processors

which make the construction of such networks viable. In addition, by distributing

a computat ion over a number of processors, it is possible to construct a system

that is immune to various types of failures, has high throughput , and exhibits
incremental growth capabilities.

Often, a particular task can be decomposed into disjoint (i.e., no shared

memory} communicat ing processes in many different ways. The particular de-

composition used dictates the extent to which these goals are realized. For

example, t ightly coupling processes by using synchronous communicat ions pro-

tocols may decrease the overall th roughput of the system because the potential

for parallelism is reduced. For this reason, the use of asynchronous communica-

tion protocols seems sensible. Such protocols allow a process to continue executing

while a message is being delivered on its behalf. This tends to insulate the

performance of processes from each other and from the communicat ions network.

Unfortunately, a consequence of this approach is tha t no single process can have

complete knowledge of the entire state of the system, because any state infor-

mat ion a process obtains from messages reflects a past state of the sending

processes, not the current state. This makes the design and analysis of distributed
programs very difficult.

In this paper, one aspect of the construction of distributed programs is ad-

This research was supported in part by National Science Foundation Grant MCS 76-22360.
Author's address: Department of Computer Science, Cornell University, Ithaca, NY 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0400-0125 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982, Pages 179-195.

126 • Fred B. Schneider

dressed--synchronization. In particular, we describe a method for implementing
synchronization in distributed programs. The method is developed in Section 2.
In Section 3 it is used to construct a distributed semaphore, a semaphore-like
mechanism that does not require shared memory, and to implement a conditional
synchronous message-passing mechanism. Communicating Sequential Processes
[8] and Ada [14] both use such a message-passing mechanism. In Section 4 the
method is extended for use in environments in which processes may fail. Some
issues regarding implementation are discussed in Section 5, while Section 6
discusses the validity of our assumptions and contrasts this work with other,

related work.

2. DISTRIBUTED SYNCHRONIZATION

2.1 The Environment

A distributed program is a collection of concurrently executing processes that do
not share any memory. 1 Processes communicate using a buffered asynchronous
communications network. We assume that a process can broadcast a message to
all other processes and that the following hold:

Reliable Broadcast Property. Any broadcast will be received by all running

processes.

Transmission Ordering Property. Messages that originate at a given process
are received by other processes in the order sent.

Construction of networks that exhibit these properties with high probability is
currently within the state of the art, as is shown in Section 6.1.

2.2 The Process Interface

Processes communicate by exchanging messages. Included as part of every
message is a timestamp, the time that the message was broadcast according to a
system-wide valid clock. A valid clock is a mapping from events to integers that
defines a total ordering on events that is consistent with potential causality. Let
c(E) be the time event E occurs according to valid clock c. Then, for any distinct
events E and F, either c(E) < c(F) or c(F) < c(E). Furthermore, if event E
might be responsible for causing event F, it is required that c(E) < c(F}--the
time at which E occurs is less than the time at which F occurs. A method for
implementing valid clocks in distributed programs without using centralized

control is described in [9].
In the following, we also postulate a global observer that can determine with

great precision the "actual" time an event occurs. This simplifies the characteri-
zation of the state of a process. Neither the existence of such an observer nor the
ability to determine such "actual" times is required to implement the protocols

described in this paper.
Associated with each process is a message queue: the timestamp-ordered

sequence of messages broadcast and received by that process. 2 At time t, the

' These processes may or may not execute on physically disjoint processors.

For the tnne being, assume message queues have unbounded length. In Section 5, representation of

message queues in a bounded amount of storage is discussed.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 127

message queue MQp at process P consisting of the ordered sequence of messages
m l m 2 . . - m, is denoted by

MQp[t] = mlm2 " ' " r a n .

Let ts(m) denote the value of the timestamp in message m. By definition,
messages in a message queue are ordered by timestamp, and so

ts(ml) < ts(m2) < . . . < ts(mn).

We assume that processes satisfy the

A c k n o w l e d g m e n t R e q u i r e m e n t . Upon receipt of any message that is not an
acknowledgment message, an acknowledgment message is broadcast.

At time t, message mi is fu l ly a c k n o w l e d g e d at process P, denoted by far (mi)[t],

if mi is in MQp[t] and acknowledgment messages for mi have been received from
every other process in the system by that time. A process can easily determine if
a particular message is fully acknowledged by inspecting its message queue.

Although messages are stored in a message queue in ascending order of
timestamp, a communications network might not deliver them in that order.
Consequently, upon receipt a message may be inserted into the middle of a
message queue. The following characterizes the portion of the message queue at
a process that is not subject to change due to continuing system activity.

LEMMA (MESSAGE QuEuE S T A B I L I T Y) . I f m e s s a g e m ' is rece ived by P a t t ime

t, t hen

fap(m)[t] ~ ts(m) < t s (m ') .

PROOF. Suppose message m' is broadcast by process Q and received by P after
fap(m) becomes true. At that time, an acknowledgment message for m must have
been received from every process. Let a be the acknowledgment message received
from Q. Q must have broadcast a after receiving m; thus, ts(m) < ta(a). From the
transmission ordering assumption it follows that Q broadcast m' after a. Since
timestamps generated by Q are consistent with causality

ts(m) < ts(a) < ts(m'). Q.E.D.

LEMMA (MESSAGE QUEUE CONTENTS). L e t MQe[t] = p i p 2 . . . pn a n d MQQ [t]
= qlq2 . . . qm. T h e n

fap(pa)[t] A fav(qb)[t] ~ (Vi: 1 <-- i <-- min(a,b): pi = qi). 3

PROOF. Since fap(pa)[t] , no message with timestamp less than tS(pa) will be
received by process P, and similarly for qb and Q. This follows from the previous
lemma. The reliable broadcast property guarantees that every message m' where

ts(m') < min(ts(pa), ts(qb))

3 T h e following nota t ional convent ions are employed th roughou t th is paper:

(Vx :R(x): B(x)) m e a n s "all x in range R(x) sat isfy B(x)";

(3x : R(x): B(x)) m e a n s " there exists an x in range R(x)
t h a t satisfies B(x)";

(Nx:R(x): B(x)) m e a n s " the n u m b e r o f x in range R(x)

t ha t sat isfy B(x)."

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

128 Fred B. Schneider

has been received by both P and Q. Therefore, the lemma follows from the
reliable broadcast property and the use of a valid clock to generate timestamps,
since such timestamps must be uniquely ordered. Q.E.D.

2.3 Synchronization

For purposes of synchronization, process execution can be viewed as a sequence
of phases. The extent of each phase is dependent on the particular application
being considered. A phase transition occurs when execution of one phase ceases
and execution of another is attempted. A synchronization mechanism is em-
ployed to constrain the phase transitions of a collection of processes in accordance
with some specification. For example, the readers-writers problem concerns
synchronizing a number of processes that access a shared database. A process
can be in one of three phases--read, write, or compute--subject to the restrictions
that at most one process should be in a write phase at any time and that a process
should only be in a read phase provided no other process is in a write phase.

In synchronization mechanisms that use shared memory, information about
the phase in which each process is executing is encoded in a set of variables
accessible to all processes. A process evaluates a phase transition predicate on
these shared variables to determine whether to proceed with a phase transition,
and updates them when the phase transition has occurred. This approach can be
viewed as an optimization of the following scheme. A queue is defined that is
accessible to all processes. Whenever a process completes a phase transition, it
appends to the end of this queue an entry containing its name and the name of
the phase just entered. Using such a queue, a process can determine the relevant
aspects of the execution history of each process and, consequently, can ascertain
whether to proceed with a phase transition by evaluating a predicate on this
queue.

This can be adapted for use in distributed programs by maintaining a copy of
the queue at each process. To change phases, a process first broadcasts a phase
transition message indicating the phase to which transition is desired and then
waits until a phase transition predicate is true on its message queue. That is,

Phase Transition Protocol. In order to perform a phase transition,

(1) broadcast a phase transition message;
(2) wait until the corresponding phase transition predicate is true.

The operation of a synchronization mechanism should not be contingent on
assumptions about relative execution speeds of processes or message transmission
delays. For this reason, phase transition predicates should be monotonic with
respect to time; adding a message to the message queue should never falsify the
predicate. Otherwise, a phase transition attempt might occur prematurely, or
might be delayed indefinitely, due to the timing of the receipt of messages.

Synchronization problems for which monotonic phase transition predicates
cannot be constructed invariably involve assumptions about timing. This is
illustrated in the following. Consider a distributed program that consists of two
processes P and Q. Execution of P alternates between phases OK and NOTOK.
P may enter these phases at will; so the phase transition predicates are

OKp ~ t rue and NOTOKp w_ true.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 129

Note that both of these phase transition predicates are monotonic. Execution of
Q occasionally involves an attempt to enter phase OKTOO. Suppose transition
to OKTOO is permitted only if P is executing in OK. Then formulation of a phase
transition predicate OKTOOQ that is monotonic and satisfies the constraints of
the problem is impossible; for Q cannot ascertain the phase in which P is actually
executing without making assumptions about the time it takes P ' s phase transi-
tion messages to reach Q and the length of time P will remain in that phase.
Thus, this synchronization problem is time dependent, although this is not
apparent from the original specification.

By choosing appropriate phase transition predicates, various types of synchro-
nization can be implemented. In general, a phase transition predicate Tp(m)[t] to
regulate entry by process P into phase T at time t after broadcasting phase
transition message m must satisfy the following:

R1. It is a function of the local message queue and the message broadcast to
enter the phase.

R2. It is total.
R3. It is monotonic with respect to the length of the message queue.

3. EXAMPLES

The use of phase transition predicates to implement synchronization mechanisms
is now illustrated. First, a distributed version of a semaphore is presented. Next,
implementation of a conditional synchronous message-passing facility is pre-
sented.

3.1 Distributed Semaphores

A distributed semaphore is a distributed synchronization mechanism that be-
haves in much the same way as a semaphore [5]. Two operations are defined on
distributed semaphores: P and V. Execution of a P operation consists of making
a transition to a P-phase, and, similarly, for a V operation transition to a V-phase
is attempted.

For our purposes, the following is a convenient definition of a semaphore. A
semaphore is a synchronization mechanism that ensures that, for every completed
P-phase transition, a unique V-phase transition has been made by some process.
Notice that the semantics of the synchronization have not been defined in terms
of a "value" {usually a nonnegative integer) and how P and V operations affect
that value. However, implementations in which a semaphore does have a value--
for instance, the usual implementation in terms of shared memory--will satisfy
this definition.

The following functions are useful for formulating the phase transition predi-
cates for distributed semaphores:

atmpt(T, m) - m is a T-phase entry message;

VQ#(m)[t] -- (N_m':m' in MQQ[t]: ts(m') _ ts(m) /k atmpt(V,m'));

PQ#(m)[t] ~ (N_m':m' in MQQ[t]: ts(m') __ ts(m)/~ atmpt(P, m')).

A process should never be delayed when it attempts to enter a V-phase.
Therefore, V-phaseQ(m)[t], the phase transition predicate for process Q to enter

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

130 Fred B. Schneider

a V-phase at t ime t af ter broadcasting phase transit ion message m, is

V-phaseQ(m)[t] = t r u e .

A constant predicate is total and monotonic; so R1-R3 are satisfied.

A process a t tempt ing transit ion to a P-phase should be delayed until a sufficient
number of V transitions have been made. Le t m be the phase transit ion message

broadcast by Q in order to enter this P-phase. T h e n PQ#(m)[t] is the number of

P-phase transit ion a t tempts of which Q is aware at t ime t tha t were made by
processes prior to this a t t empt by Q.t F rom our definition of a semaphore, the

following should hold in order to enter a P-phase at t ime t:

(3rn' :rn' in MQQ[t]: PQ#(m)[t] <_ VQ~(m')[t]).

Since both rn and m ' appear in MQQ, the predicate is total. Unfortunately, the

predicate is not monotonic. I t would be if Pvrg(rn)[t] were constant with respect

to t, since VQ#(m')[t] monotonical ly increases with time. F rom the message
queue stability lemma,

faQ(m)[t] ~ (Yt ' : t <_ t ' : Pv#(m)[t] = Pv#(m)[t ']) .

The following predicate, then, satisfies R1-R3 and is therefore a valid phase

transit ion predicate for en t ry to a P-phase at t ime t:

P-phaseQ(m)[t] = f a v (m) [t] /k (::lm' : m ' in MQQ[t]:

PQ#(rn)[t] <_ VQ~(rn')[t]).

In this implementat ion, V-phase transit ions are associated with P-phase tran-
sitions in a first-come, first-served manner . Th e result is a semaphore implemen-

ta t ion in which processes are awakened in tha t order. Implementa t ion of o ther
deterministic scheduling disciplines is also possible. For example, to implement

a last-come, first-served semaphore, V-phaseQ(m)[t] remains unchanged and P-
phasev(m)[t] is al tered as follows. A process should be permi t ted to enter a P-

phase at t ime t if a sufficient number of V's have been done at the t ime when the
P-phase transit ion is a t t e m p t e d - -

bl(m)[t] =- PQ#(m)[t] <_ VQ~t(m)[t],

or if by using a last-come, first-served matching the P-phase transit ion
message rn is ma tched with some previously unmatched V-phase transit ion

message rn ' - -

b2(m)[t] = (3rn':rn' in MQQ[t] A ts(rn) _< ts(m') A atmpt(V, m') :

PQ#(m, rn ')[t] + 1 = Vv#(m, m')[t]

where

Po#(m, m')[t] --- PQ#(m') [t] -- PQ#(m)[t];

V o # (m , m')[t] --- V o # (m ') [t] - VQ#(m)[t].

Clearly, bo th predicates bl and b2 are total. F rom the message queue stabili ty

4 "Prior to" according to the times generated by our valid clock. The ordering implied by these can
differ from the actual order in which concurrent transitions were attempted.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 131

lemma it follows that bl is monotonic after time t if faQ (m)[t], and b2 is monotonic
after time t if faQ(m')[t]. Since the union of two monotonic predicates is itself
monotonic, the following is a valid phase transition predicate for making a P-
phase transition at time t:

P-phaseQ(m)[t] =- (faQ(m)[t] A Pv#(m)[t] <_ VQ#(m)[t])

k/ (3m':fav(m')[t]/~ ts(m) _< ts(m') A atmpt(V, m'):

PQ#(m, m')[t] + 1 = VQ#(m, m')[t]).

3.2 Synchronous Message-Passing Primitives

In a synchronous message-passing scheme, the sending process or the receiving
process is delayed until both are ready to perform the message transfer. Thus, an

input (receive) or output (send) statement is a synchronization point for processes
that communicate. Interest in this approach stems from the ease in writing
programs using such primitives. Synchronous message-passing primitives are
integral to many recent programming language proposals; Communicating Se-
quential Processes (CSP) [8] and Ada [14] are notable examples. In the following,
the notation of CSP is used.

Interprocess communication is accomplished by using input commands, which
have the form (source)? (target variable), and output commands, which have the
form (destination)!(expression), where (source) and (destination) are process
names. In the sequel, input commands and output commands are collectively
referred to as communication statements. An input command and an output
command correspond if

(1) the input command names as its (source) the process containing the output
command;

(2) the output command names as its (destination) the process containing the
input command; and

(3) the type of the (target variable) in the input command matches the type of
the value denoted by (expression) in the output command.

Communication occurs between processes only when each process is ready to
execute corresponding communication statements. At that time, the value de-
noted by (expression) is assigned to (target variable).

A communication statement can appear either in a command list or in the
guard of a guarded command G --, C. The guard G may be either (1) a Boolean
expression optionally followed by a communication statement or (2) the keyword
otherwise; C is a command list. Guarded commands may be combined to form
alternative commands. The syntax of the alternative command is as follows:

[G1--* C1D G2 --* (7213 . . . R Gn --> Cn].

A guard is enabled if its Boolean expression evaluates to true; it is ready if
attempted execution of its communication statement (if present) would not cause
delay (i.e., some other process can execute a corresponding communication
statement). The guard o the rwise is enabled and ready only if no other guard in
the alternative command is enabled and ready. Execution of the alternative
command is as follows. The guards G1, G2 Gn are evaluated. Then, one that

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

132 Fred B. Schneider

is both enabled and ready is selected; the communication statement (if any) in it
is executed, and then the corresponding command list is executed.

A process executing an alternative command with guard o therwise cannot be
delayed. If none of the guards is o therwise , then execution of the alternative
command is delayed until one of the enabled guards becomes ready.

The use of an alternative command to allow communication between processes
P and Q is illustrated in the following:

P :: [Q!valuel --~ . . . Q :: [P!value2 - -

D Q!pvar ---) . . .] D P?qvar---) . . .]

The effect of executing these two alternative commands is to assign either valuel
to qvar or value2 to pvar. An implementation must not allow P and Q to become
deadlocked. This could occur if the communication statement in the guard chosen
by P did not correspond to the communication statement in the guard chosen by
Q. This is possible here because both guards in each alternative command can be
ready and enabled. Such deadlocks can be avoided if each process is able to
determine the guard selections made by other processes.

We now proceed with the development of such a conditional communications
facility. Whenever execution of a communication statement (or an alternative
command that contains a communication statement in one or more guards) is
begun in process P, a phase transition is attempted. The phase transition message
consists of a set of triples that indicates the communications P is waiting for.
This set, called COMB, is computed based on the state of P as follows:

ComB["(source) ? (var) "] = (((source), P, type of (var))};

C O m B [" (d e s t) !(expr) "] - ((P, (dest), type of (expr))} ;

rCOmB[IO] if G = "B; IO"/~ B;
Comp["G-~ C"] ~ ((0 , 0, o therwise)) if G -- "o therwise" ;

[{ } otherwise;

C o m B [" [G] --> C1 D G2 --~ C2 D . . . D Gn "") Cn]"] = g C o m p [G i --> Ci].
iffil

A phase transition message is formed by listing the triples in Comp in some
previously defined lexicographic order.

Two phase transition messages match if there exists a triple common to both.
In addition, a phase transition message matches itself ff it contains (0, 0, other-
wise). Let mi and mj be the i th and j t h phase transition messages in some
message queue. Formally,

match(m/, mj) = (i ~ j A (3 k : k ~ mi A k ~ mj))

V (i = j A (3 k : k ~ m i : k = (0, 0, otherwise))) .

For every communication that actually occurs, two phase transition messages will
be broadcast: one by the process that is executing the output command and the
other by the process that is executing the input command. Two messages match
if they describe corresponding communication statements. Consequently, a pair-

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 133

ing of phase transition messages can be defined that is isomorphic to the
actual communications. Based on this, it is easy to construct a phase transition
predicate.

A process attempting communication is delayed until it determines the un-
paired phase transition message with smallest timestamp in its message queue
that matches the phase transition message it broadcast. The presence of an
o therwise guard complicates this somewhat. If P broadcasts phase transition
message m in an attempt to execute an alternative command that has an
o therwise guard and no matching phase transition message with timestamp
smaller than ts(m) can be received, P should be allowed to complete the phase
transition in order to execute the o therwise alternative. In that case, m is paired
with itself. The following predicate achieves this:

b3(m)[t] =- (3mi : mi in MQp[t]: pairedp(m, mi)[t])

where

pairedp(ma, mb)[t] - match(ma, rnb)

A (Vi : i < b: -7pairedp(ma, mi)[t])

A (Vi : i < a: ~pairedp(mi, mD[t]);

len(X) ~- (_Nm : m i n X) .

It is simple to prove that

(1) pairedp(ma, rnb)[t] ¢=~ pairedp(mb, ma)[t] and
(2) i ~ j A pairedp(ma, mi)[t] ~ ~pairedp(rna, m])[t].

Thus pairedp is sufficient for our purposes. Note that b3(m) is total provided m
is in MQp. Furthermore, b3(m) is monotonic after no phase transition message
can be received with a smaller timestamp than was found on any message
involved in the pairing. This can be ensured by exploiting message queue stability
to arrive at the following phase transition predicate:

Cp(m)[t] -- fap(m)[t] A (3mi : mi in MQp[t]: fap(mi)[t] A pairedp(m, mi)[t]).

After the phase transition is completed by both participating processes, the
actual message exchange may take place. When executing an alternative com-
mand, the guard that has been selected can be determined by finding the
lexicographically smallest matching triple in the paired phase transition messages.
That way the two processes will each execute an alternative that contains a
communication statement corresponding to the choice of the other. This, then, is
a strictly deterministic implementation. Use of such a deterministic matching
scheme allows each process to select the same guard to execute, independently.

The mechanism defined here differs from that of CSP in two regards. First,
output commands may be placed in guards. Hoare [8] and Bernstein [3] discuss
the desirability of this. To simplify imPlementation , such a facility was not
originally included in CSP. Second, an o therwise guard has been added, which
is similar to a feature in the Ada SELECT statement.

Lastly, note that distributed deadlock detection is easily accomplished. Con-
sider a set of processes where each is attempting a phase transition. If each of the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

134 Fred B. Schneider

phase transition messages is unmatched and each contains triples that name only
other processes in the set, then the processes must be deadlocked.

4. WHEN PROCESSES CAN FAIL

Distributed programs should be designed to continue functioning despite the
failure of one or more processes. A process can malfunction in many ways. Only
those failure modes that directly affect the operation of our distributed synchro-
nization technique are considered here. These include failures where a process
can no longer satisfy the acknowledgment requirement--perhaps because it has
stopped executing--and failures that cause a process to broadcast erroneous
phase transition messages. In addition, we take the conservative view that, if a
process fails, the contents of its message queue might be damaged or lost.
Therefore, it will be necessary to restore its message queue when it restarts.

Failures in which a process no longer satisfies the acknowledgment requirement
have the following effect. Recall that the message queue stability property implied
by fully acknowledged messages is useful when constructing phase transition
predicates that are monotonic. If the acknowledgment requirement is not satis-
fied, phase transition messages will not become fully acknowledged. As a result,
phase transition attempts might be blocked unnecessarily.

The second failure mode of concern, the generation of erroneous phase transi-
tion messages, has the obvious consequences. Notably, phase transitions that are
possible will be denied, because the state of a message queue will not necessarily
reflect reality.

4.1 Process Behavior and Failure Detection

It is convenient to make the following assumptions about the behavior of
processes (and the manifestations of failures}:

Process Behavior Assumption

(1) Processes fail by ceasing to execute. A process that has stopped executing
does not broadcast phase transition messages or acknowledgment messages.

(2) If a process fails, the contents of its message queue are lost.
(3) A process P that has been repaired can start broadcasting phase transition

messages again only after executing a special restart protocol. To initiate this, P
first broadcasts a (restar t --P: id) message, where id is a unique identifier over all
restart messages broadcast by P. During execution of the restart protocol, P
broadcasts acknowledgment messages in accordance with the acknowledgment
requirement.

Consequently, all malfunctions appear as failures to satisfy the acknowledgment
requirement. The ease of constructing systems in which this is possible is
discussed in Section 6.1.

It is also appropriate, in light of possible process failures, to reconsider the
reliable broadcast property of the communications network. Rather than require
that the network buffer messages that are destined for a failed process, we permit
it to discard any message it attempts to deliver to that process. This should cause
no additional difficulty since, according to (2) above, a process loses the entire

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs • 135

contents of its message queue upon failing anyway; the protocol employed to
restore a message queue can be used to obtain messages that were not delivered
during the period of failure.

In accordance with the process behavior assumption, at any time t a process P
can be in one of three states: it could have stopped, denoted by FAILED(P)[t];
it could be executing the restart protocol, denoted by RESTART(P)[t] ; or it
could be executing normally, denoted by RUNNING(P)[t] . And so the process
behavior assumption can be restated as

FAILED(P)[t] ~ at time t, P does not broadcast any message;
RESTART(P)[t] ~ a t time t, P does not broadcast any phase transition

message but does broadcast acknowledgment messages in
accordance with the acknowledgment requirement;

RUNNING(P)[t] ~ at time t, P can broadcast phase transition messages and
broadcasts acknowledgment messages in accordance with
the acknowledgment requirement.

The effects of process failures must be detected if they are to be circumvented.
Therefore, we assume that the communications network provides a facility for
each process P to determine the status of other processes and messages destined
for P that were broadcast by these processes. We model this facility with the
statement probeR (Q, f), which has the following operational semantics: probeR (Q,
f) invoked at time ti terminates at time tc after all messages from Q that were
undelivered as of some time tR, ti -- ta --< tc, are delivered to P. Variable f is set
so that

f - FAILED(Q)[tR].

The following predicate is used to describe the outcome of an invocation of
probeR (Q, f):

PROBER(Q, f)[ti, tR, tc] -- Process P invoked probeR(Q, f) at time
t~. Execution completed at time tc, and
for some tR, t~ _< ta --< tc,

f - FAILED(Q)[tR].

The details of implementing such a facility are dependent on the nature of the
communications network in use. The definition does, however, suggest the
following implementation. A "time-out" scheme is used to detect process failures.
When process P executes probeR(Q, f), a message is sent to Q. If Q is running
when it receives that message, it responds accordingly. As required above, any
messages destined to P from Q will be received by P prior to that response, due
to the message ordering property. If no response is received by P from Q after
(say)/to seconds, then P can conclude that Q has probably failed.

The success of such a scheme is due to the process behavior assumption above:
failures always cause the offending processor to be stopped. The probability of
detecting a failure when none has occurred can be made arbitrarily small by using
a large value for /to. In practice, knowledge about process execution speeds
and the maximum message delivery delay in a given network can be used to
bound/ to .

It is not a good practice to make stipulations about time delays and execution

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

136 Fred B. Schneider

speeds when discussing a synchronization mechanism. The results in the earlier
sections of this paper did not require such assertions. However, here we are
concerned with avoiding the situation where some process does not make a phase
transition because another process will not (cannot) broadcast an acknowledg-
ment message in a timely manner. So, the notion of time creeps in.

4.2 Protocols to Handle Failures

4.2.1 The Restart Protocol. Process P that has failed and is then restarted
must execute a restart protocol before broadcasting any phase transition mes-
sages. The restart protocol consists of a local par t executed by P and a remote

part, which is executed by some other running process Q (say}. Q causes P to
receive every message that has ever been broadcast. To accomplish this, Q sends
to P every message that is in MQQ at the time execution of the remote part
commences and any messages subsequently received by Q that might not be
received by P (because they were delivered to P before it restarted}. In addition
to restoring MQp, P will update its local clock so that any timestamps it
subsequently generates satisfy the valid clock requirement of Section 2.

To facilitate description of the restart protocol, some useful functions are
defined: cutoverQ (P, R, id)[t] is the timestamp on the first message broadcast by
R that P received after broadcasting (restart--P:id) for which, at time t, Q has
received an acknowledgment broadcast by P. That is,

cutoverQ(P, R, id)[t] _=

"ts(m) where m is the message with smallest
timestamp such that as of time t

(1} (restart--P:id) is the restart
message from P most recently
received by Q;

(2) P received and acknowledged m
after broadcasting (restart--
P:id);

(3) R broadcast m; and
(4) Q received the acknowledgment

broadcast by P for m;
oo otherwise.

Also define

| the timestamp on the last message broadcast by
highestQ(R)[t] = ~IR that has been received by Q as of time t;

tl0 if no such message has been received;

org(m) - the process that broadcast m.

Then the restart protocol for process P is as follows:

Restart Protocol

Local Part. Suppose P has broadcast (restart--P:id), where id is a unique
identifier that d~tinguishes among all restart messages broadcast by P. P
executes the following:

(1) Wait for Remote Completion. Delay until receipt of a (remote comple-

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 137

t ion--P:id) message. During this time, P must satisfy the acknowledgment
requirement for every message m that is received directly from org(m). Mes-
sages relayed to P need not be acknowledged. All messages P receives are
stored in MQ p, provided they are not duplicates of messages already stored
there. 5

(2) Wait for Local Completion. After receipt of a (remote completion--
P:id) message, ignore any messages relayed through other processes. Execute
the following:

forall processes P'
prober (P', f);

end;
Broadcast (restart completion--P:id)

Remote Part. Upon receipt of (restart--P:id) by any process Q at time to
(say), the following is executed:

(1) Relay Messages to P. For each message m that is received by Q, if at
time t

ts(m) < cutoverQ(P, org(rn), id)[t],

then m is sent to P.

(2) Signal Completion. Send a (remote completion--P:id) message to P
when at some time t, to -< t, the following is true:

(Vm:m in MQQ[t] A ts(m) < cutoverQ(P, org(m), id)[t]: Q has relayed
m to P)
/k (VP' : P ' a process : highestQ(P')[t] ___ cutoverQ (P, P ' , id)[t]

A (3ti, tm tc : to - t~ ___ tR ----- tc < t: PROBEQ(P', f)[t,, tR, tc])).

The correctness of this scheme is proved below. We first show that execution
of the restart protocol reconstructs the message queue at a restarting process.

LEMMA (MESSAGE QUEUE RECONSTRUCTION). At the time P receives a (re-

mote completion--P: id) message, every phase transition message that has been

broadcast is either in MQp or in the communications network and will be

delivered to P.

PROOF. Suppose process P receives a (remote completion--P:id) message
from Q at time trc. From the restart protocol description, it follows that at some
time t, t _< trc, the following was true at Q:

(Vm:m in MQQ[t]/k ts(m) < cutoverQ(P, org(m), id)[t]: Q has relayed m to P)

/k (VP' : P' a process: highestQ(P')[t] >_ cutoverQ (P, P ' , id)[t]

~/(3h, tR, tc : to --< t~ ---- tn --< tc < t: PROBEQ (P', f)[t~, tR, tc]))

where to is the time Q received the (restart--P:id) message. Consider those
messages that originate at some process P' .

Case 1. Suppose highestQ(P')[t] >_ cutoverQ(P, P', id)[t]. According to the
transmission order property and the consistency of timestamps with causality, P

5 Two messages with the same t imestamp mus t be duplicates because t imestamps are generated by a

valid clock.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

138 Fred B. Schneider

will receive directly from P ' every message m' where

ts(m') _ cutoverQ(P, P' , id)[t].

Let cutoverQ (P, P', id)[t] = ts(m). Due to the reliable broadcast property, Q must
eventually receive m. Assume this happens at time t~m. Due to the transmission
ordering property, Q has received all messages rn' that originated at P', where

ts(rn') _ highestv (P') [trm].

Since highestv (P')[t,n] >-- cutoverv (P, P' , id)[t], Q has received all messages m'
that originated at P' where

ts(m') <_ cutoverQ(P, P' , id)[t].

Moreover, all such messages rn' must have been relayed to P, according to the
precondition for sending the (remote completion--P:id) message at time t.

Case 2. Suppose highestQ (P')[t] < cutoverv (P, P', id)[t]. Then the following
must be true:

(=It[, tR, tc : to <-- tI --< ta -- tc < t: PROBEQ(P', f)[tI, tR, tc]).

Due to the definition of probeQ, any phase transition message broadcast by P '
after tR will be received directly by P, since it commenced its restart before to, to
-< ta. Similarly, any message broadcast by P' before tR is received at Q by tc.
Hence, every message m' that Q received from P' will be relayed to P according
to step (1) of the remote part, since tc < t and

(Vrn' : rn' in MQQ[t]/k ts(rn') _< highestQ(P')[t] < cutoverv(P, P' , id)[t]:

Q has relayed rn' to P). Q.E.D.

This lemma does not prove that a (remote completion--P:id) message will
actually be sent but only that, if it is, the process executing the local part of the
protocol will receive a copy of every message that has been broadcast. Without
additional stipulations about process behavior, there is no guarantee that some
process will actually complete the remote part of the restart protocol and send
the remote completion message. For example, processes might always fail im-
mediately before sending the remote completion message, and, consequently, the
restart protocol would never terminate. However, this is not so troublesome as it
might seem. A system in which processes fail and restart with high frequency
would be able to accomplish very little, anyway. Thus a protocol that terminates
when processes fail and restart infrequently should be acceptable.

Our restart protocol for process P {say) will terminate provided there exists
some process Q (say) that, after receipt of a (restart--P:id) message, executes
without failing long enough to

(1) invoke probeQ(P', f) for every process P' and then
(2) send the contents of MQQ to P.

The time required to execute the remote part of the restart protocol is reduced
if P receives and acknowledges phase transition messages while it is restarting. Q
need not invoke probev for processes that have broadcast phase transition
messages that P acknowledged after broadcasting (restart--P: id).

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 139

4.2.2 Message Queue Stability. Recall that acknowledgments are used to
facilitate detection of message queue stability, not to signify that a particular
phase transition message has been received. Unfortunately, when processes fail,
they can no longer broadcast acknowledgments. Thus, to counter the disruptive
effects of process failure on our synchronization technique, a scheme is required
that allows a process to determine the stable portion of its message queue, even
though acknowledgments are not received from all processes.

Receipt of message m' from process Q constitutes an implicit acknowledgment
by Q for any message m broadcast by any process where ts(m) < ts(m')--even if
Q has not yet received rn. This is because Q will not subsequently broadcast a
message with timestamp less than ts(m'), due to the consistency of timestamps
with causality. The following predicate therefore defines whether P has received
an implicit acknowledgment from Q for message rn at time t:

impackp(Q, m)[t] -= m in MQp[t]

A (3m' : m' in MQp[t]: org(m') = Q A ts(m) < ts(m')).

Acknowledgments are really just a form of implicit acknowledgment. Thus, if
processes make phase transition attempts with sufficient frequency, then the
acknowledgment requirement can be relaxed: phase transition messages will serve
as implicit acknowledgments. Then a process would need to broadcast acknowl-
edgment messages only while executing the restart protocol or while it was
delayed in making a phase transition. When such implicit acknowledgments are
used, the delay until a phase transition message becomes fully acknowledged is
dependent (in part) on the frequency with which other processes broadcast
messages that serve as implicit acknowledgments. Clearly, there is a trade-off
between the time delay for a phase transition and the amount of network capacity
consumed by explicit acknowledgment messages. Happily, we note that, if there
is little network capacity to devote to explicit acknowledgments, it is probably
because processes are making phase transitions with high frequency--ideal cir-
cumstances for the use of implicit acknowledgments.

A consequence of the process behavior assumption is that a process that has
failed does not broadcast phase transition messages until completion of its restart
protocol. Thus, failed processes cannot possibly destroy message queue stability.
In light of this, the definition of fully acknowledged can be extended to account
for process failures:

fap(m)[t] -- (VP' : P ' a process: impackp(P', rn)[t]

v (3 t I , ta, t c : t I - - tR - - - - t c< t : minMQp[t i]

A PROBEp(P', true)[t~, ta, tc])).

This predicate is monotonic with respect to t (time), as one would expect it to be.
In effect, it allows acknowledgments to be "forged" on behalf of failed'processes
when message queue stability is not threatened. Below, we prove that the message
queue stability property associated with fully acknowledged messages is not
destroyed by this. (This lemma is slightly weaker than the corresponding one in
Section 2. There, message queue stability with respect to all messages, including
acknowledgments, is proved. The weaker form of the property shown here suffices
for our purposes because phase transition predicates are defined in terms of the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

140 Fred B. Schneider

phase transition messages in a message queue, not the acknowledgment mes-
sages.)

LEMMA (MESSAGE Q U E U E STABILITY WITH FAILURE). I f m' is received by P

at time t and is not ignored because it was relayed and received after a (remote

completion--P: id) message, then

faR(re)It] A RUNNING(P)[t] ~ ts(m) < ts(m').

PROOF. P must receive m' directly from org(m') due to the hypothesis of the
lemma. If fap(m)[t], then, by definition,

impackp(org(m'), m)[t] V (3t~, tR, tc : tI -- tR ----- tc < t:

m in MQp[tI] A PROBEp(org(m'), true)[ti , tR, tc]).

If impackp(org(m'), m)[t], then the lemma follows from the consistency of
timestamps with causality at org(m') and the transmission ordering property,
since m' is received directly from org(m').

Otherwise

(3ti, tR, tc : tI -- tR -- tc < t: m in MQp[tI] A PROBEp(org(m'), true)[ti , tR, tc]).

m' must have been broadcast after tR. Otherwise, from the definition of
PROBER, m' would have been received by P before tc, which would contradict
tc < t, given that m' is received by P at time t.

Therefore, due to the process behavior assumption, org(m') must have broad-
cast m' after completing the restart protocol executed following its failure before
tR. Let t,e~c be the time org(m') completes that restart protocol, and let t~m be the
time org(m') receives m. Since m' is received by P only after it is broadcast,

tR < tresc < t.

To complete the proof we now show that t~m < t, which implies ts(m) < ts(m')
due to the consistency of timestamps with causality at org(m'). Two cases must
be considered.

Case 1. Suppose m was relayed to org(m') by some process Q executing the
remote part of the restart protocol. Let tQsm be the time Q sends m to org(m'),
and let tQ,c be the time org(m') receives the (remote completion--org(m'):id)
message. Due to the transmission ordering property and the definition of the
restart protocol, all messages relayed by Q will be received before the (remote
completion--org(m') :id) message broadcast by Q. Thus trm < tQ~c. Since tQ~¢ <
t~e~c, we get t~m < tr

Case 2. Suppose org(m') received m directly from org(m). Let t~e~ be the time
org(m') begins its restart protocol. Since m is in MQR[tI] and t~ __ tR --< tres < tQrc,
m was broadcast before tv,¢. By hypothesis, m was received directly from org(m).
Thus, m is received by org(m') after tre~. Consequently, from the semantics of the
invocation of probeo,s(m.~(org(m), f) in step (2) of the restart protocol, trm <
t~ Q.E.D.

Lastly, we show that all messages become fully acknowledged.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 141

LEMMA (ACKNOWLEDGMENT GENERATION).

m in MQQ[t'] ~ (3 t : t ' <_ t: faQ(m)[t] V FAILED(Q)[t])

prov ided every restarting process either completes execution of the restart

protocol or fails.

PROOF. If Q fails after receiving m, then the lemma trivially follows. Suppose
Q does not fail. We show that

(VP' : P ' a process: impackp(P', m)[t]

v (3t~, tR, tc : t~ <-- tR <-- tc < t:

m in MQp[t~] A PROBEp(P', true)[ti , tR, tc])).

To do so, we show that there exists a time t such that for each process P ' at least
one of these disjuncts is true. If P ' does not fail before broadcasting an acknowl-
edgment for m, as required by the acknowledgment requirement, then there exists
a time t,¢k such that impackp(P', m)[t, ck]. Moreover,

(Vt' : tack --< t': impackp(P', m)[t']).

If P ' fails before broadcasting an acknowledgment for m, then two cases must
be considered.

Case 1. P ' has not successfully restarted by time t. Messages are never deleted
from a message queue. Thus,

m in MQQ[t'] A t' < t ~ m in MQQ[t].

Moreover, by executing probeQ(P', f) after t', Q can establish

PROBEQ(P', true)[tb tR, tc]

for t ' <_ t~ <_ tR <-- tc < t. Thus, the part of the lemma concerning P' follows.

Case 2. P ' has successfully restarted by time t. From the Message Queue
Reconstruction Lemma and the hypothesis of the lemma, we know that P ' will
eventually receive m. If P ' receives m before completing the restart protocol, then
the first phase transition message broadcast by P ' will constitute an implicit
acknowledgment for m. If P ' receives m after completing the restart protocol,
then P ' will broadcast an acknowledgment for m, in accordance with the acknowl-
edgment requirement. In either case the lemma follows. Q.E.D.

4.3 Avoiding Redundant Work During Restarts

In the protocols described in the last section, there could be wasteful duplication
because the remote part of the restart protocol might be executed in parallel by
a number of processes. One execution would be sufficient. This can be avoided by
stipulating the following:

Failure Moni tor ing Requirement. For every process P, if FAILED(P), then
eventually the failure will be noticed by some other process.

Then, only processes monitoring P would execute the remote part of the restart
protocol for P when necessary. Redundant work is avoided by minimizing the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

142 Fred B. Schneider

However,
sufficient:

number of processes that are monitoring each process. A simple scheme to
accomplish this is outlined below.

Associated with each process P is a set of processes that P is monitoring at
time t, mon(P)[t]. Let S be the set of all processes in the system. Previously,

(V P : P a process A RUNNING(P)[t]: mon(P)[t] = S).

according to the failure monitoring requirement, the following is

8 = IJ mon(P)[t].
PESARUNNING(P)[t]

Thus, P periodically checks the status of all processes in mon(P). If P ' E mon(P)
and P' has failed, then P adds mon(P') to mon(P). And, if P ' is subsequently
restarted, then mon(P) is partitioned into mon(P') (the processes that P ' will
commence monitoring) and the remaining processes.

5. IMPLEMENTATION CONSIDERATIONS

5.1 Message Queues

Synchronization mechanisms that could be implemented in terms of a finite
amount of shared memory accessible to all processes never require message
queues of unbounded size. This is because, given a collection of phase transition
predicates, a finite-state machine can be constructed where t he state of the
machine always embodies all of the information necessary to determine the value
of a phase transition predicate. Then, instead of storing the entire message queue
at each process P, the following is saved:

Sp the current state of the finite state machine at P;
sfamp the state of the machine at the time the last phase transition message

broadcast by P becomes fully acknowledged;
tp the timestamp on the most recent fully acknowledged message at P;
Qp a bounded message queue containing the messages that have been

received by P but are not yet part of a fully acknowledged prefLx.

A state transition function D is defined so that a new state S' can be determined
when the portion of the message queue encoded in the current state S is extended
by the addition of message m. Thus,

S' = D(S, m).

Upon receipt of a message m, if ts(m) > tp, then m is stored in Qp in ascending
order by timestamp. If ts(m) _ tp, then m is ignored; it is a duplicate of a message
already received. Whenever a message m in Qp becomes fully acknowledged, tp

is set to ts(rn), and D is used to extend the portion of the message queue encoded
in Sp by processing each message rn', ts(m') _< ts(m), in ascending order by
timestamp. Phase transition predicates can be written so that only sp and sfamp
are required for their evaluation. Application of this technique to develop an
implementation of the FCFS distributed semaphore of Section 3.1 appears
in [18].

Integral to the success of this scheme is that phase transition predicates be
monotonic with respect to message queue length. This allows phase transition

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 143

predicates to be evaluated on any sufficiently long portion of the message queue.
Thus, the current state of the machine can always be used.

The actual bound on the size of Qp depends on both the number of processes
in the system and how long it takes for messages to become fully acknowledged
relative to the rate that processes attempt phase transitions. This depends on the
buffering capacity of the communication network.

Use of such an encoding scheme reduces both the amount of storage required
for storing a message queue and the time and the volume of communications
required in step (1) of the restart protocol.

5.2. Communications

In a system with N processes, N broadcasts are involved in a phase transition:
one phase transition message and N - 1 acknowledgment messages. A disciplined
use of distributed synchronization mechanisms can reduce this communications
volume substantially, as is shown in the following.

Once a set of phase transition predicates has been defined, any number of
instances of the synchronization mechanism implemented by those predicates
can be defined by parameterizing the predicates and phase transition messages
with respect to the instance name. In that case, a separate message queue MQ(p,i)
can be defined for each instance i of the mechanism at each process P that
performs operations (phase transitions) on that instance. Only phase transition
messages and acknowledgment messages regarding instance i need be stored in
MQ(p,i). Therefore, only those processes that actually attempt phase transitions
on instance i must broadcast acknowledgment messages for phase transition
messages about instance i in order for message queue stability for MQ(p,i) to be
ensured. As long as not every process makes phase transitions on an instance,
fewer than N - 1 acknowledgment messages will be required for a phase transition
to complete. Notice that recovery from process failure becomes more complicated;
no single process will necessarily save all messages that have been broadcast.
Thus, more than one running process may be needed to reconstruct the message
queues at the failed process.

This technique can be exploited by structuring a distributed system as a
hierarchical collection of subsystems. Synchronization of the highest level sub-
systems is accomplished by using some collection of synchronization mechanism
instances. Synchronization within each of the subsystems is performed by other
instances, etc. In this way, the number of processes that use a particular instance
of a synchronization mechanism is kept small. In fact, for systems structured in
this way, the communications network could consist of a collection of broadcast
channels, where each channel is associated with one or more synchronization
mechanism instances. In that case, a process need monitor only those channels
that correspond to instances of mechanisms on which it performs operations.

6. DISCUSSION

6.1. The Assumptions Revisited

Certain assumptions about the communications network and the failure modes
of processors have been made. Here, we briefly examine the degree to which these
assumptions can be satisfied in "real" systems.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

144 Fred B. Schneider

Two properties of the communications network were postulated. The message
ordering property requires that all messages sent by a given process be received
by other processes in the order sent. This is fairly simple to implement. Each
message is assigned a sequence number formed by concatenating a unique process
name with the value of a counter that is updated by that process every time a
message is broadcast. These sequence numbers can be used to govern the order
in which messages are delivered to processes.

Implementing a communications network in which the reliable broadcast
property holds is somewhat more difficult. So-called broadcast networks--con-
tention networks such as Ethernet [13] and ring networks like DCS [7]--would
appear to implement reliable broadcasts, but actually do not. In these networks,
each processor monitors a "bus" and copies messages with certain address codes
into its memory. Unfortunately, there is no guarantee that a processor will
remove every such message. For example, the processor's message buffer space
might be full, the processor might not be monitoring the bus at the time the
message is transmitted, or, in a contention network, an undetected collision could
affect receipt of the message by only that processor.

In point-to-point networks, sending a message to a single destination is an
atomic action--either it happens or it does not happen--but sending a message
to more than one destination is not. Therefore, to effect a broadcast, protocols
are required in which a processor failure causes another processor to assume its
duties. Previously, such protocols were thought always to require time delays
linear in the number of processors involved [6]. However, in [19] we show how to
implement reliable broadcasts where O(log N) time is required to complete a
broadcast to N processors (unless there are processor failures, in which case the
delay becomes at worst linear). Postulating the existence of a fast, reliable
broadcast facility is therefore quite reasonable, since processor failures should be
rare.

The process behavior assumption places restrictions on the failure modes of
processes. In particular, we assume that, if a process fails, it is stopped. Systems
for which such an assumption holds must be capable of detecting any and all
errors (malfunctions). Then, when a failure is detected, the processor can be
turned off or ignored. Unfortunately, it is not possible to construct such a system
with a finite amount of hardware. 6 Thus, we must settle for systems that exhibit
the process behavior assumption with high probability. Such systems can be
constructed by redundant encoding of information. For example, by including
redundant information in phase transition messages it becomes increasingly
unlikely that a process could broadcast a valid phase transition message while
malfunctioning; the redundant information allows processes to determine that
the message is not a real phase transition. Similarly, by replicating unreliable
hardware it is possible to construct processors that, with high probability, either
operate correctly or do not operate at all. The amount of replication needed for
this is quantified in [11].

Last, since we have not described protocols to allow addition and deletion of
processes to the system while it is running, it is tempting to believe that it is not

6 Sed quis custodiet ipso custodes? (But who is to guard the guards themselves?)

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 145

possible using our protocols. This is not true, as is shown in the following. A
process P can be removed from the system if it first broadcasts a "delete P "
message. After receipt of such a message, processes would no longer require
acknowledgments from P in order for a message to become fully acknowledged.
Similarly, a process Q can be added to the system if it first broadcasts an "add
Q" message. After receipt of such a message, acknowledgments from Q would be
required for a message to become fully acknowledged. In addition, Q must then
complete the restart protocol before broadcasting any phase transition messages.

6.2 Applications of the Technique

The technique developed in this paper is useful for solving global synchronization
problems is distributed systems. Such problems often arise when an invariant
relation must be preserved that involves the states of several physically distrib-
uted processes. The consistency problem in distributed database systems is an
example of such a problem. Implementing synchronization and communications
primitives in a distributed system is another place where global synchronization
could be necessary.

To date, our techniques have been used in a number of contexts. Andrews uses
distributed semaphores in a distributed implementation of the banker's algorithm
for deadlock detection [1]. In [18], we describe how distributed semaphores can
be used to generalize "locking" solutions for the consistency problem in central-
ized database systems for use in distributed database systems. In fact, many of
the proposals for concurrency control mechanisms in distributed data base
systems can be viewed as optimizations of implementations obtained in this
manner. Unfortunately, many of these proposals (including ours) do not ade-
quately handle failure and recovery, which should be developed in conjunction
with a synchronization mechanism. More recently, in [20], we develop a locking
primitive that is well suited for implementing a fault-tolerant distributed storage
system by using the techniques described in this paper.

A second contribution of this work is as a demonstration of how monotonicity
can be used as a way to control interference in distributed programs. Interference
occurs in a parallel program when execution of one process invalidates assertions
required by other concurrently executing processes. If an assertion is monotonic,
then, once it is true, it remains true; hence it is not interfered with. In this work,
we were concerned with constructing monotonic phase transition predicates; we
did this by using acknowledgment messages to ensure message queue stability.

6.3 Related Work

Our approach is based on a scheme for totally ordering events in a distributed
program. Each process makes synchronization decisions by independently simu-
lating a finite-state machine [9], which is constructed from the phase transition
predicates that characterize the desired synchronization. Such phase transition
predicates can be derived from a global invariant by using the wp predicate
transformer [4] or can be obtained by other means.

Integral to any synchronization technique intended for use in distributed
programs should be the ability to deal with failures. The approach described in
this paper requires a reliable broadcast facility and the ability to detect process

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

146 Fred B. Schneider

failures. This allows acknowledgments to be forged when necessary, thereby
ensuring that the stable prefix of a message queue will continually increase in
length. In [10] a different approach is explored. There, in order to maintain the
message queue stability property, undelivered messages that have become too
"old" are ignored. Consequently, the ability to detect failures is not required,
although protocols to synchronize local clocks that could malfunction are neces-
sary. A voting scheme is used to ensure that all simulations of the finite-state
machine accept or that all reject a given message. Therefore, a reliable broadcast
facility is not necessary. Instead, a sufficiently large portion of the system must
be functioning at all times, and conditions about the rate that failures and restarts
occur must be satisfied. Lastly, Lamport's work is oriented toward constructing
arbitrary finite-state machines, in contrast to ours which is concerned only with
finite-state machines that implement synchronization mechanisms. Nevertheless,
our techniques for handling failures and restarts work for the more general case.
Given an arbitrary finite-state machine, instead of defining monotonic phase
transition predicates that take as argument a phase transition message, functions
of the current machine state that take as argument a "user request" message are
defined. The analogue of monotonicity is that, for a given argument, the value of
such a function remains invariant once it becomes defined.

Other approaches to synchronization problems in distributed programs, such
as the use of tokens [12] or sequencers [16], have not completely addressed these
fault tolerance issues. In these approaches, a process appeals to a designated
arbitrator (process) for synchronization decisions. Although the responsibility for
arbitration might migrate from one process to another, the existence of such a
central authority, however temporary, constitutes a potential bottleneck.
Moreover, should the process serving as the central authority fail, a new arbitrator
must be selected and must gather state information from all other processes in
the system. Both are nontrivial problems.

Recently, Banino, Kaiser, and Zimmermann [2] have developed a synchroni-
zation approach based on use of a shared broadcast channel. That work can be
derived from our distributed semaphore implementation, although our imple-
mentation requires considerably fewer message broadcasts. In [17] a lower bound
for the number of messages that must be exchanged to implement mutual
exclusion in a distributed system is proved. We happily note that their solution
can be viewed as an optimization of a distributed semaphore-based solution to
the critical section problem.

Other implementations of the nondeterministic message-passing mechanism in
CSP are described in [3, 21, 22]. Each uses a different mechanism to allow
processes to compute independently an ordering on the triples in our "Com" set.

7. CONCLUSIONS

To date, numerous language proposals have appeared that include message
passing facilities with which process synchronization can be implemented. We
have pursued a "lower level" approach for two reasons. First, high-level mecha-
nisms often involve nontrivial implementations. The implementation of the
nondeterministic message-passing facility in Communicating Sequential Pro-
cesses without a reliable broadcast network is an illustration of this. Second, as

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

Synchronization in Distributed Programs 147

yet there does not appear to be any overwhelming evidence to favor one proposal

over the others. Therefore, we have developed a technique that can be used to

solve synchronization problems directly, to implement new synchronization mech-

anisms (that are presumably well suited for use in distributed programs), and to

construct distributed versions of existing mechanisms. The appeal of this last

alternative stems from the fact that it now becomes possible to use many of the

techniques developed in the context of concurrent programming in distributed

programs. However, until recently, synchronization mechanisms have not in-

cluded provisions for allowing a programmer to deal with process failures. (A

noteworthy exception to this is the work of Reed [15].) Such a facility is important

for the mechanism to be useful in distributed programs.

ACKNOWLEDGMENTS

Many people have been kind enough to make helpful comments on earlier drafts

of this paper, including Greg Andrews, Jim Archer, Alan Demers, K. Ekanadham,

N. Francez, Paul Harter, Carl Hauser, Dave Reed, Rick Schlichting, Dave Wright,

and especially Bowen Alpern, David Gries, Leslie Lamport, and Gary Levin. The

encouragement and comments of Tony Hoare are also gratefully acknowledged.

Lastly, the comments of the referees were most helpful.

REFERENCES

1. ANDREWS, G.R. On-the-fly deadlock prevention. Tech. Rep. 80-13, Dep. of Computer Science,
Univ. of Arizona, Tucson, June 1980.

2. BANINO, J.S., KAISER, C., AND ZIMMERMANN, H. Synchronization for distributed systems using

a single broadcast channel. In Proceedings of First International Conference on Distributed

Computing Systems, Oct. 1979, pp. 330-338.

3. BERNSTEIN, A.J. Output guards and nondeterminism in "Communicating Sequential Processes."

ACM Trans. Program. Lang. Syst. 2, 2 (Apr. 1980), 234-238.
4. DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
5. DIJKSTRA, E.W. Cooperating sequential processes. In Programming Languages, F. Genuys

(Ed.). Academic Press, New York, 1968.
6. ELLIS, C.A. Consistency and correctness of duplicate database systems. In Proceedings of the

Sixth Symposium on Operating Systems Principles, Purdue Univ., Lafayette, Ind., Nov. 1977, pp.
67-84.

7. FARBER, D., FELDMAN, J., HEINRICH, F., HOPWOOD, M., LARSON, K., LOOMIS, D., AND ROWE,

L. The distributed computing system. In Proceedings of 7th Annual IEEE Computer Society

International Conference, Feb. 1973, pp. 31-34.

8. HOARE, C.A.R. Communicating sequential processes. Commun. ACM21, 8 (Aug. 1978), 666-677.

9. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM

21, 7 (July 1978), 558-565.

10. LAMPORT, L. The implementation of reliable distributed multiprocess systems. Comput. Net-

works 2 (1978), 95-114.

11. LAMPORT, L., SHOSTAK, R., AND PEASE, S. The Byzantine generals problem. Tech. Rep.,

Computer Science Laboratory, SRI International, Menlo Park, Calif., Mar. 1980.

12. LE LANN, G. Algorithms for distributed datasharing systems which use tickets. In Proceedings,

3rd Berkeley Workshop on Distributed Data Management and Computer Networks, Berkeley,

Calif., Aug. 1978, pp. 259-272.

13. METCALFE, R.M., AND BOGGS, D.R. Ethernet: Distributed packet switching for local computer

networks. Commun. ACM 19, 7 (July 1976), 395-404.

14. PRELIMINARY ADA REFERENCE MANUAL. SIGPLAN Notices (ACM) 14, 6 (June 1979), pt. A.

15. REED, D.P. Implementing atomic actions on decentralized data. In Preprints for the Seventh

Symposium on Operating Systems Principles, Dec. 1979, pp. 66-74.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

148 Fred B. Schneider

16. REED, D.P., AND KANODIA, R.K. Synchronization with eventcounts and sequencers. Commun.

ACM22, 2 (Feb. 1979), 115-123.
17. RICART, G., AND AGRAWALA, A.K. An optimal algorithm for mutual exclusion in computer

networks. Commun. ACM 24, 1 (Jan. 1981), 9-17.
18. SCHNEIDER, F.B. Ensuring consistency in a distributed database system by use of distributed

semaphores. In Proceedings of International Symposium on Distributed Data Bases, Paris,

France, Mar. 1980, pp. 183-189.
19. SCHNEIDER, F.B., AND SCHLICHTING, R.D. Fast reliable broadcasts. In preparation.
20. SCHNEIDER, F.B., AND SCI-ILICI-ITING, R.D. Towards fault-tolerant process control software. In

Proc. 11th Annual Symposium on Fault-Tolerant Computing, Portland, Me., June 1981, pp.

48-55.
21. SCI.IWARZ, J.S. Distributed synchronization of communicating sequential processes. Tech. Rep.,

Dep. of Artificial Intelligence, Univ. of Edinburgh, Edinburgh, Scotland, Oct. 1978.
22. SILBERSCHATZ, A. Communication and synchronization in distributed systems. IEEE Trans.

Softw. Eng. SE-5, 6 (Nov. 1979), 542-546.

Received March 1980; revised April and August 1981; accepted August 1981

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

