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Synchronization in networks of linear singularly perturbed systems

Jihene Ben Rejeb, Irinel-Constantin Morărescu and Jamal Daafouz

Abstract— This work is motivated by the fact that many real
systems are characterized by two features. The first one is
that they are obtained by interconnecting a bunch of simpler
subsystems that have to synchronize in order to reach a
global goal. The second one is that each subsystem presents
dynamics that evolves on different time-scales. Taking into
account the two features leads to the problem of synchronization
in networks of singularly perturbed systems. In this work we
are providing a preliminary study that considers the problem
where each subsystem is linear and the network topology is
represented by a connected undirected graph that is fixed in
time. We show that we can proceed to a time-scale separation
of the overall network dynamics and design the controls that
synchronize the slow dynamics and the fast ones. Applying the
joint control actions to the network of singularly perturbed
systems we obtain an approximation of the synchronization
behavior imposed for each scale. The methodology requires a
variable transformation to overcome the fact that we are dealing
with non-standard singularly perturbed systems. One example
illustrates the synchronization behavior of linear singularly
perturbed systems.

Index Terms— Multiagent systems; consensus; singularly per-
turbed systems.

I. INTRODUCTION

Physical systems are often characterized by several dy-

namical processes evolving on different time scales and

influencing each other [1]. When several orders of magnitude

differentiate the various time scale the analysis of the overall

systems becomes more difficult. In this case, standard control

techniques lead to ill-conditioned problems. To overcome

this, singular perturbation theory [2], [3] propose to approxi-

mate the dynamics by decoupling the slow dynamical process

of the faster ones. Consequently, the control design is also

decoupled with respect to each time scale and then is proven

that the joint actions performs well when applied to the

overall system.

The analysis and control design for multiple time-scales

systems attracted a lot of interest due to their various

applications going from biological systems such as gene

expression systems [4], neurons behavior [5] to engineering

problems [6]. General stability and stabilization of linear and

nonlinear singularly perturbed systems can be found in [2],

[3]. For linear singularly perturbed systems a linear quadratic

optimal control design is proposed in [7]. Stabilization and
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exponential stability of singularly perturbed linear switched

systems is considered in [8], [9]. Various biological sin-

gularly perturbed systems are analyzed from a geometric

perspective in [10].

The particularity of existing studies presented above is

that they consider singularly perturbed systems as being

stand alone systems. Motivated by the fact that biological

as technological systems are often composed of several

coupled singularly perturbed systems, we are considering,

in this work, the problem of synchronization of singularly

perturbed systems. When only one time-scale characterizes

the systems dynamics, the problem of synchronization has

been extensively studied [11], [12], [13], [14], [15]. However,

the synchronization of singularly perturbed systems has not

been treated. We point out that time-scale separation has been

observed and analyzed in power networks [16], [17], [18]

but the systems composing the grid evolve on only one time

scale.

In this work we consider a network of singularly perturbed

linear systems and we provide the methodology allowing at

extending the stabilization control design to the synchroniza-

tion one. Precisely, we show that we can proceed to a time-

scale separation of the overall network dynamics and design

the controls that synchronize the slow dynamics and the fast

ones. Next, applying the joint control actions to the network

of singularly perturbed systems we obtain an approximation

of the synchronization behavior imposed for each scale. The

main difficulty that we have to overcome is that the matrix

defining the fast dynamics in closed loop is not invertible.

In this preliminary study we consider that the coupling

topology, between the systems composing the network, is

fixed and undirected. Therefore, the control feedback nec-

essary for synchronization will use only local information

provided by this fixed coupling topology. Extensions to di-

rected and time-varying topologies as well as generalization

to nonlinear dynamics will be considered in our future works.

The rest of the paper is organized as follows. In Section II

we introduce the basic concepts that are used throughout the

paper and we formulate the problem under consideration.

The main results, concerning the design of the controllers

that synchronize the subsystems using only local informa-

tion, are presented in Section III. One numerical example

illustrating the results is provided in Section IV. The paper

ends with some concluding remarks and perspectives.

Notation

The following standard symbols are used throughout the

paper. R is the set of real numbers, |A| is the cardinality of

a given finite set A, ‖x‖ is the Euclidean norm of the vector



x and ⊗ denotes the Kronecker product of two matrices. We

also denote by In ∈ R
n×n the identity matrix of size n and

by 1n,0n ∈ R
n the column vector whose components are all

1 and 0, respectively. We also denote by 0n×m ∈ R
n×m the

matrix whose all components are 0. The transpose of a given

matrix A is denoted by A⊤. We denote diag(A1, . . . , An)
the block diagonal matrix having the matrices A1 to An on

the diagonal and 0 everywhere else.

II. PRELIMINARIES AND PROBLEM FORMULATION

We consider a network of n identical singularly perturbed

linear systems. For any i = 1, . . . , n, the ith system at time

t is characterized by the state (xi(t), zi(t)) ∈ R
nx+nz and

there exists a small ǫ > 0 such that its dynamics is given by:

{

ẋi(t) = A11xi(t) +A12zi(t) +B1ui(t)

ǫżi(t) = A21xi(t) +A22zi(t) +B2ui(t), i = 1, . . . , n
(1)

where ui ∈ R
m is the control input and

A11 ∈ R
nx×nx , A12 ∈ R

nx×nz B1 ∈ R
nx×m,

A21 ∈ R
nz×nx A22 ∈ R

nz×nz , B2 ∈ R
nz×m

such that rank(B1) = rank(B2) = m.

A standard assumption, in singular perturbation theory,

which aims at ensuring the well posedness of (1) is the

following.

Assumption 1: The matrix A22 is invertible.

With the network of n systems we associate a graph G
which is a couple (V, E) where V = {1, . . . , n} represents

the vertex set and E ⊂ V × V is the edge set. In the sequel

we suppose that the graph is undirected meaning that (i, j) ∈
E ⇔ (j, i) ∈ E . We also assume that G has no self-loop (i.e.

∀ i = 1, . . . , n one has (i, i) /∈ E). A weighted adjacency

matrix associated with G is G = [gi,j ] ∈ R
n×n such that

{

gij > 0 if (i, j) ∈ E

gij = 0 otherwise
.

The corresponding Laplacian matrix is L = [lij ] ∈ R
n×n

defined by











lii =

n
∑

j=1

gi,j , ∀i = 1, . . . , n

lij = −gi,j if i 6= j

.

By definition L is symmetric and all of its rows sum are

zero.

Definition 1: A path of length p in the graph

G = (V, E) is a union of edges
⋃p

k=1
(ik, jk) such

that ik+1 = jk, ∀k ∈ {1, . . . , p − 1}. The node j is

connected with node i in G = (V, E) if there exists at

least a path in G from i to j (i.e. i1 = i and jp = j).

A connected graph is such that any of its two distinct

elements are connected.

Assumption 2: The undirected graph G is connected.

Remark 1 (Basic properties of the Laplacian matrix [19]):

Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of L. Then

• λ1 = 0 is a simple eigenvalue of L associated with the

eigenvector 1n.

• λ2 > 0 as far as G is connected. In other words, L is

positive semi-definite.

• λ1 = 0 is an eigenvalue with multiplicity r of L⊗Ir and

it has r different eigenvectors defined by 1n ⊗ ei, i =
1, . . . , r where ei ∈ R

r is the column vector whose ith

components equals 1 and all the others are 0.

• there exists an orthonormal matrix T ∈ R
n×n (i.e.

TT⊤ = T⊤T = In) such that

TLT⊤ = D = diag(λ1, λ2, . . . , λn)

Definition 2: The n singularly perturbed systems defined

by (1) achieve asymptotic synchronization using local infor-

mation if there exists a state feedback controller of the form

ui(t) = K1

n
∑

j=1

gi,j(xi(t)− xj(t))+

K2

n
∑

j=1

gi,j(zi(t)− zj(t))

K1 ∈ R
m×nx , K2 ∈ R

m×nz

(2)

such that

lim
t→∞

‖xi(t)− xj(t)‖ = 0 and lim
t→∞

‖zi(t)− zj(t)‖ = 0.

The main goal of this paper is the characterization of the

feedback controllers that use local information and asymptot-

ically synchronize the singularly perturbed systems defined

by (1). In order to do that we firstly define the collective

dynamics describing the behavior of the overall network of

n feedback coupled systems.

Let us denote by x(t) ∈ R
n·nx and z(t) ∈ R

n·nz the

vectors collecting the states xi(t) and zi(t), i = 1, . . . , n,

respectively (i.e. x(t) = (x1(t)
⊤, . . . , xn(t)

⊤)⊤ and

z(t) = (z1(t)
⊤, . . . , zn(t)

⊤)⊤).

Remark 2: Let us observe that the asymptotic synchro-

nization is equivalent with

lim
t→∞

(

L⊗ Inx

)

x(t) = 0, and lim
t→∞

(

L⊗ Inz

)

z(t) = 0

and since TL = DT , the synchronization is also charac-

terized by

lim
t→∞

(

D ⊗ Inx

)(

T ⊗ Inx

)

x(t) = 0, and

lim
t→∞

(

D ⊗ Inz

)(

T ⊗ Inz

)

z(t) = 0 (3)

Replacing (2) in (1) one obtains the following collective

closed-loop dynamics:



{

ẋ(t) = Ā11x(t) + Ā12z(t)

ǫż(t) = Ā21x(t) + Ā22z(t)
(4)

where

Ā11 = In ⊗A11 − (In ⊗B1K1)(L⊗ Inx
),

Ā12 = In ⊗A12 − (In ⊗B1K2)(L⊗ Inz
)

Ā21 = In ⊗A21 − (In ⊗B2K1)(L⊗ Inx
),

Ā22 = In ⊗A22 − (In ⊗B2K2)(L⊗ Inz
)

We note that one has no guaranty that the matrix Ā22

is invertible. Therefore, the well posedness of the closed-

loop system(4) has also to be ensured by the choice of the

controller gains.

A final change of variable

x̃(t) =
(

T ⊗ Inx

)

x(t), z̃(t) =
(

T ⊗ Inz

)

z(t)

allows at rewriting the collective dynamics (4) as
{

˙̃x(t) = Ã11x̃(t) + Ã12z̃(t)

ǫ ˙̃z(t) = Ã21x̃(t) + Ã22z̃(t)
(5)

where

Ã11 = In ⊗A11 − (In ⊗B1K1)(D ⊗ Inx
),

Ã12 = In ⊗A12 − (In ⊗B1K2)(D ⊗ Inz
)

Ã21 = In ⊗A21 − (In ⊗B2K1)(D ⊗ Inx
),

Ã22 = In ⊗A22 − (In ⊗B2K2)(D ⊗ Inz
)

Discussion

1) Using the properties of Kronecker product, the closed-

loop system (5) can be decoupled in n independent

singularly perturbed systems. Precisely, one uses that

for any matrices M,N of appropriate dimension we

have

In ⊗M − (In ⊗N)(D ⊗ Im) = In ⊗M −D ⊗N

= diag
(

M, . . . ,M
)

− diag
(

λ1N, . . . , λnN
)

= diag
(

M − λ1N, . . . ,M − λnN
)

yielding

Ã11 = diag
(

A11 − λ1B1K1, . . . , A11 − λnB1K1

)

,

Ã12 = diag
(

A12 − λ1B1K2, . . . , A12 − λnB1K2

)

Ã21 = diag
(

A21 − λ1B2K1, . . . , A21 − λnB2K1

)

,

Ã22 = diag
(

A22 − λ1B2K2, . . . , A22 − λnB2K2

)

Therefore, the closed-loop system (5) is equivalent

with










˙̃xi(t) = (A11 − λiB1K1)x̃i(t) + (A12 − λiB1K2)z̃i(t)

ǫ ˙̃zi(t) = (A21 − λiB2K1)x̃i(t) + (A22 − λiB2K2)z̃i(t)

i = 1, . . . , n
(6)

2) The asymptotic synchronization problem with local

information becomes a problem of simultaneous sta-

bilization of systems in (6) for i = 2, . . . , n. Indeed

(3) can be seen as

lim
t→∞

(

D⊗ Inx

)

x̃(t) = 0 and lim
t→∞

(

D⊗ Inz

)

z̃(t) = 0

but since D = diag(λ1, . . . , λn) with λ1 = 0 the

condition is transformed as

lim
t→∞

x̃i(t) = 0 and lim
t→∞

z̃i(t) = 0, i = 2, . . . n

3) We emphasize that from the definition of T , the

following also hold x(t) =
(

T⊤⊗Inx

)

x̃(t) and z(t) =
(

T⊤ ⊗ Inz

)

z̃(t). Thus, the synchronization manifold

depends on the dynamics of (x̃(t), z̃(t)). Precisely, if

the system











˙̃x1(t) = A11x̃1(t) +A12z̃1(t)

ǫ ˙̃z1(t) = A21x̃1(t) +A22z̃1(t)

i = 1, . . . , n

(7)

has a stable equilibrium point (x̃∗, z̃∗), then systems

(1) will asymptotically reach a finite consensus. If (7)

is unstable then all the systems in (1) will synchronize

on divergent trajectories.

4) The well posedness of system (4) is equivalent with

the one of system (5) which in turn is ensured if all

systems in (6) are well posed. Let us notice that for

i = 1 the system is well posed due to Assumption 1.

The rest of the systems in (5) are well posed if K2

is chosen such that A22 − λiB2K2 is invertible for

i = 2, . . . , n.

III. CONTROL DESIGN

Before giving our main result let us introduce some

notation that allows at completely decouple the slow and

fast dynamics that occur in the overall system. This is done

by following the classical singular perturbation design (see

[2] for instance). Let us consider the slow systems










˙̃xi,s(t) =
(

A0 − λiB0K0

)

x̃i,s(t), x̃i,s(0) = x̃i(0)

z̃i,s(t) = −A−1

22

(

A21 − λiB2K0

)

x̃i,s(t)

i = 1, . . . , n

where

A0 = A11 −A12A
−1

22 A21, B0 = B1 −A12A
−1

22 B2.

Consequently, the corresponding fast systems are

ǫ ˙̃zi,f (t) =
(

A22−λiB2K2

)

z̃i,f (t), z̃i,f (0) = z̃i(0)−z̃i,s(0)

Using the notation above the following result holds.

Theorem 3: Let K2 and K0 be designed such that for

i = 2, . . . , n the matrices A22 − λiB2K2 and A0 − λiB0K0

are all Hurwitz. Then, there exists ǫ∗ > 0 such that the

controllers (2) with



K1 = (Im −K2A
−1

22 B2)K0 +K2A
−1

22 A21.

asymptotically synchronize with local information the

systems (1).

Proof: Following [2], the choice of K1 and K2 as in

the statement above ensures that for i = 2, . . . , n the systems

in (6) are asymptotically stable. Moreover, for all ǫ ∈ (0, ǫ∗]
and all t ≥ 0 one has

x̃i(t) = x̃i,s(t) +O(ǫ),

z̃i(t) = −A−1

22

(

A21 − λiB2K0

)

x̃i,s(t) + z̃i,f (t) +O(ǫ).

We recall here that the asymptotic synchronization is equiv-

alent with

lim
t→∞

(

L⊗ Inx

)

x(t) = 0 and lim
t→∞

(

L⊗ Inz

)

z(t) = 0

which hold true since

(

L⊗ Inx

)

x(t) =
(

D ⊗ Inx

)

x̃(t) =











0
λ2x̃2

...

λnx̃n











and

(

L⊗ Inz

)

z(t) =
(

D ⊗ Inz

)

z̃(t) =











0
λ2z̃2

...

λnz̃n











Remark 3: Theorem 3 basically says that in order to

asymptotically synchronize systems in (1) we have to

separately synchronize the fast and slow dynamics by

stabilizing the dynamics of the error between the different

systems.

Corollary 1: Let K0 be designed such that for

i = 2, . . . , n the matrices A0 − λiB0K0 are Hurwitz.

If the matrix A22 is Hurwitz the controllers ui in (2) with

K1 = K0 and K2 = 0m×nz
, asymptotically synchronize

the systems (1).

Remark 4: We note that A22 is Hurwitz corresponds to

the case in which the fast dynamics is stable. In this case,

the control design can be directly realized by approximating

the dynamics (1) with the corresponding decoupled slow and

fast dynamics. Thus, we have to synchronize only the slow

linear dynamics representing the reduced systems in (1).

We also note that, when A22 is Hurwitz the dynamics (7)

can be approximated by its decoupled version in fast and

slow dynamics.

Using Theorem 3 we reduce the synchronization problem

to the one of state feedback simultaneous stabilization

(SFSS) of linear systems [20], [21]. Simultaneous

stabilization is in general a difficult undecidable problem

that received a lot of attention [22], [23]. Nevertheless,

we are facing a very particular SFSS problem that can be

formulated as follows.

Problem 1: For A ∈ R
p×p, B ∈ R

p×m and

0 < λ2 ≤ λ3 ≤ . . . ≤ λn find K ∈ R
m×p such that

for i = 2, . . . , n the matrices A− λiBK are Hurwitz.

It is obvious that the problem is feasible as far as the

states xi(t) and zi(t) are scalar since depending on the sign

of B we have to render negative only the scalar A− λ2BK
or A − λnBK. When xi(t) and zi(t) are not scalars we

have to simultaneously render the n−1 matrices A−λiBK
Hurwitz.

Proposition 4: If the pair (A,B) is controllable then there

exists K solving Problem 1.

Before giving the proof of this result let us state the follow-

ing.

Lemma 5: The matrix M ∈ R
n×n is Hurwitz if ∀x ∈

R
n \ {0n} one has x⊤Mx < 0.

Proof: Let ν be an eigenvalue of M . It means (see [24])

that there exists x ∈ C
n \ {0n} such that ν = x̄⊤Mx where

x̄ stands for the complex conjugate of x. Let us consider

r, q ∈ R
n the real and imaginary part of x ∈ C

n. Since M
is a matrix with real components, the following computation

is straightforward

2ℜ(ν) = ν + ν̄ = x̄⊤Mx+ x⊤Mx̄ = 2(r⊤Mr + q⊤Mq)

which leads to ℜ(ν) < 0 since r, q ∈ R
n and at least one of

them is not 0n.

Proof of Proposition 4: In order to prove the existence of

K solving Problem 1 we show that there exists K such that

∀x ∈ R
p \ {0p}, ∀i = 2, . . . , n one has

x⊤(A+ λiBK)x < 0. (8)

If (A,B) is controllable then (A, λ2B) is controllable too.

Let us notice that 0 < λ2 ≤ λ3 ≤ . . . ≤ λn. Therefore, the

following makes sense for i = 2, . . . , n

A+ λiBK =
λi

λ2

(

A+ λ2BK +

(

λ2

λi

− 1

)

A

)

. (9)

Considering

µ = max
i=2,...,n

∥

∥

∥

∥

(

λ2

λi

− 1

)

A

∥

∥

∥

∥

one has

x⊤

(

λ2

λi

− 1

)

Ax ≤ µ‖x‖ = x⊤µIpx

Therefore,

x⊤(A+ λiBK)x ≤
λi

λ2

x⊤ (A+ λ2BK + µIp)x (10)

Since (A, λ2B) is controllable we can choose K such that

all the eigenvalues ηj , j = 1, . . . , p of A+ λ2BK are real,

different one from another and smaller than −µ. Doing so,

there exists a nonsingular matrix T ∈ R
p such that

T−1(A+ λ2BK)T = diag(η1, . . . , ηp)



meaning that

T−1(A+ λ2BK + µIp)T = diag(η1 + µ, . . . ηp + µ) < 0.

Using (10) and the previous inequality we conclude that

(8) holds.

Remark 5: It is noteworthy that the controller design can

be done in a decentralized manner since each agent needs to

compute only norm of A22 and A0 in order to get K2 and

K0 respectively.

Another practical way of finding the gain K is by solving

the following n− 1 linear matrix inequalities (LMIs):

(A− λiBK)⊤P + P (A− λiBK) < 0, i = 2, . . . , n

where P = P⊤ > 0 is a matrix to be found if it exists.

More exactly, one has P = S−1 and K = RS−1 if S =
S⊤ > 0, R ∈ R

m×p solve the following standard LMIs

[25]:

SA⊤ +AS − λi(R
⊤B⊤ +BR) < 0, i = 2, . . . , n

Note that the previous LMIs are used to numerically find

the value of K that simultaneously renders A − λiBK
Hurwitz for i = 2, . . . , n.

IV. ILLUSTRATIVE EXAMPLES

In this section, we consider the synchronisation of three

agents described by an undirected graph G. One representa-

tive example is given for illustration.

The system is given by (1) where :

A11 =

(

2, 5 −6
−2 2

)

, A12 =

(

2 3
0 −2

)

A21 =

(

0, 5 2
−1 1

)

, A22 =

(

−2 1
0 −1

)

B1 =

(

2
1

)

, B2 =

(

1
1

)

To each agent we assign a vector state having 4 components

characterized by slow and fast dynamics. For any agent i ∈
{1, . . . , n}, let us denote by [xi,1, xi,2]

⊤ and [zi,1, zi,2]
⊤ its

slow and fast state’ components, respectively. The Laplacian

matrix describing the undirected topology of the graph G is

defined by:

L =





2 −1 −1
−1 2 −1
−1 −1 2



 (11)

In simulation we fix ǫ = 0.001 and all the components of

the initial condition are chosen within [−4, 5]. Since A22 is

Hurwitz we have to solve numerically 2 LMIs to stabilize

the dynamics (6) such that K1 = K0. Figure 1 highlights the

synchronization of the slow dynamics for an ǫ sufficiently

small.
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Fig. 1. Trajectories of the x components of system (4). The red bullet is
the stable equilibrium x∗ of (7).

To highlight the fast transient dynamics, we represent the

evolution of the fast states function of the slow ones.
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Fig. 2. Slow and fast manifolds

Figures 3 and 4 show that the slow and fast models ap-

proximate the decoupled system within O(ǫ) neighborhood.
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Fig. 3. The trajectories of x̃ (solid) and x̃s (dotted)
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Fig. 4. The trajectories of z̃ (solid) and z̃s + z̃f (dotted)



To emphasize the fast dynamics we also plot in Figure 7

the fast part of z variables.
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Fig. 5. The fast part of z̃ components z̃fi ∀i ∈ {1, . . . , n}

The synchronization of the two-time scale model (1)

ensures the stabilization of the errors between the slow states

as shown in figure 6.
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Fig. 6. The differences xi − xj , ∀i 6= j ∈ {1, . . . , n}

The trajectories of system are also provided in figure 7
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Fig. 7. The trajectories of system

V. CONCLUSIONS

This paper provides a decentralized controller design for

the synchronization of coupled singularly perturbed sys-

tems. The feedback controller use only local information.

The standard singular perturbation analysis and design are

adapted to synchronization purposes. The controller design is

computationally oriented since it is obtained by solving some

LMIs. We also show that under mild assumptions the LMIs

are always feasible. One numerical example illustrates the

method implementation. Stabilization of linear and nonlinear

singularly perturbed systems for directed graphs and time-

varying topologies are is our future focus.
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[16] J. Chow and P. Kokotović, “Time scale modeling of sparse dynamic
networks,” IEEE Transactions on Automatic Control, vol. 30, no. 8,
pp. 714–722, 1985.

[17] E. Bıyık and M. Arcak, “Area aggregation and time-scale modeling
for sparse nonlinear networks,” Systems & Control Letters, vol. 57,
no. 2, pp. 142–149, 2007.

[18] D. Romeres, f. Dörfler, and F. Bullo, “Novel results on slow coherency
in consensus and power networks,” in Proc. of the European Control

Conference (ECC), 2013.
[19] C. Godsil and G. Royle, Algebraic Graph Theory. Springer-Verlag,

New-York, 2001.
[20] R. Luke, P. Dorato, and C. Abdallah, “A survey of state feedback

simultaneous stabilization techniques,” in Proceedings of 2nd World

Automation Congress, 1996.
[21] F. Saadatjoo, V. Derhami, and S. Karbassi, “Simultaneous control of

linear systems by state feedback,” Computers & Mathematics with

Applications, vol. 58, no. 1, pp. 154–160, 2009.
[22] V. Blondel, Simultaneous stabilization of linear systems, ser. Lecture

Notes in Control and Information Sciences. Springer-Verlag, 1994,
vol. 191.

[23] D. Henrion, S. Tarbouriech, and M. Sebek, “Rank-one lmi approach
to simultaneous stabilization of linear systems,” Systems & Control

Letters, vol. 38, no. 2, pp. 79–89, 1999.
[24] H. Wielandt, “On the eigenvalues of a+b and ab,” Journal of research

of the National Bureau of Standards - B. Mathematical Sciences, vol.
778, no. 1 & 2, 1973.

[25] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in system and control theory. SIAM, 1994.




