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We present a model of synchronization in networks of autonomous agents where the topology changes

due to agents motion. We introduce two timescales, one for the topological change and another one for local

synchronization. If the former scale is much shorter, an approximation that averages out the effect of motion

is available. Here we show, however, that the time required for synchronization achievement is larger than the

prediction of the approximation in the opposite case, especially close to the continuum percolation transition

point. The simulation results are confirmed by means of spectral analysis of the time-dependent Laplacian matrix.

Our results show that the tradeoff between these two timescales, which have opposite effects on synchronization,

should be taken into account for the design of mobile device networks.

DOI: 10.1103/PhysRevE.83.025101 PACS number(s): 89.75.Hc, 05.45.Xt

After an initial period of characterizing complex networks

in terms of local and global statistical properties (e.g., Ref. [1]),

attention turned to the dynamics of their interacting units [2].

A widely studied example of such behavior is synchronization

of coupled oscillators arranged into complex networks. The

interplay between topology and dynamics is crucial for

synchronization achievement (see Ref. [3] and references

therein). In most studies of such systems the network has

a fixed structure, but there are also many interesting sce-

narios where the topology changes over time in various

fields, such as power transmission system [4], consensus

problem [5], mobile communication [6], and functional brain

networks [7].

Within the general framework of time-dependent or evolv-

ing networks, we can identify the particular case of networks

whose nodes represent physical agents that move around but

interact with each other only when they are close enough.

Examples include the coordinated motions of robots [8],

vehicles [9], and groups of animals [10], in which cooperative

dynamics emerge. Especially, there are many examples where

synchronization plays a crucial role: chemotaxis [11], mobile

ad hoc networks [12], and wireless sensor networks [13].

Despite the importance of this topic, prior research on

synchronization in time-dependent networks of populations of

agents has concentrated so far on two special cases: (i) where

the network topology changes fast [14–17] and (ii) where the

population is dense and arranged in a ring [18]. In the former

case, the fast-switching approximation (FSA), which averages

out the effect of agent motion, is commonly used. However, for

better understanding of synchronization of mobile agents and

design of an efficient network, it is very important to clarify

when and how FSA fails.

In order to study this point, this Rapid Communication

proposes a general framework in which agents perform random

walks in a two-dimensional (2D) plane. We consider that

each agent possesses a mobile wireless device whose state is

characterized by a phase variable, and the phases approach one

another through the interaction between agents within a certain

spatial range. This model is well suited for communication

problems with short-range wireless devices. In this Rapid

Communication we show a general mechanism of failure of

FSA when the timescale of local synchronization is shorter

than the timescale of the topology change due to the agent

motion. Since we need longer synchronization time due to this

failure, it is an important factor we should take into account

for constructing an efficient mobile network.

Our model consists of N agents moving in a 2D space

(size L × L) with periodic boundary conditions. Each agent

moves with velocity v. The angle of the ith agent’s motion is

ξi(tk) ∈ [0,2π ], and it changes randomly at discrete time steps

tk (tk+1 − tk = τM ). The evolution of the ith agent’s position

is therefore

xi(tk + �t) = xi(tk) + v cos ξi(tk)�t mod L,
(1)

yi(tk + �t) = yi(tk) + v sin ξi(tk)�t mod L,

where �t � τM . The motion of the agents is diffusive, with a

diffusion coefficient of D ∼ v2τM .

In this Rapid Communication the dynamics of the oscilla-

tors are based on the Kuramoto model [19], which has been

applied to technological problems recently [20]. The time

evolution of the phase of oscillator i is represented as

ϕi(t + τP ) = ϕi(t) + σ
∑

j,dij <d

sin[ϕj (t) − ϕi(t)], (2)

where dij =
√

(xi − xj )2 + (yi − yj )2. Since mobile devices

emit signals at discrete time intervals, the individual phases

are updated at discrete time steps of duration τP . Only devices

within a distance d of each other can interact to approach their

phases.

025101-11539-3755/2011/83(2)/025101(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.025101


RAPID COMMUNICATIONS

FUJIWARA, KURTHS, AND DÍAZ-GUILERA PHYSICAL REVIEW E 83, 025101(R) (2011)

When the phase difference is small, Eq. (2) can be well

approximated by the linearized equation

ϕi(t + τP ) = ϕi(t) − σ

N
∑

j=1

Lij (t)ϕj (t), (3)

which provides interesting hints about the dynamical behavior.

Lij (t) = [ki(t)δij − cij (t)] is the time-dependent Laplacian

matrix with cij (t) = 1 if dij < d (i �= j ) and cij (t) = 0

otherwise. ki(t) represents the number of oscillators that are

around i within a range d.

We first note that the instantaneous coordination of agents

has statistical properties similar to those of a continuum

percolation. Simply changing d can be enough for the system

to enter a different topological (static) configuration. The

transition takes place at (N − 1)πd2
c /L2 ≈ 4.51 (see Ref. [21]

and references therein). In this Rapid Communication we

fix N = 100, L = 200, v = 10, and τM = 1, which imply

dc ≈ 24.1. Since agents move and the system is finite, we

do not observe a sudden transition at d = dc.

Starting from random initial phases and positions, we let the

system evolve according to Eqs. (1) and (2). Figure 1 presents

time sequences of four snapshots for three different sets of

parameters [22]. Synchronization emerges through motion and

intermittent communication between agents, even though a

single connected component never forms below dc [Figs. 1(a)

and 1(b)]. Above dc [Fig. 1(c)], agent motion is not necessary

but still helps the system to reach its final state.

In all our simulations, the average phase difference 〈�ϕ〉 ≡
√

2
N(N−1)

∑

j<k(ϕj − ϕk)2 decays exponentially after an initial

transient. We can define then a characteristic time T in

such a way that 〈�ϕ〉 ∝ e−t/T and estimate T by fitting

the numerical data of 〈�ϕ〉. Additionally, nT ≡ T/τP stands

for the number of phase updates the system needs to reach

complete synchronization, and its inverse defines the system

efficiency. Minimizing nT leads to more efficient use of the

mobile devices’ batteries.

(a) t=4 t=400 t=600 t=800

(b) t=0.025 t=12.5 t=20 t=50

(c) t=0.03 t=2.25 t=3.75 t=6

FIG. 1. (Color online) Time evolution of the positions and phases

of the agents. The colors are mapped to phases on the interval [0,2π ];

lines are drawn between two nodes when their separation is less than

d . Each row corresponds to a different set of parameters: τP = 1,

d = 20 < dc for (a), τP = 0.01, d = 20 for (b), and τP = 0.01, d =

40 > dc for (c).

In the literature related to interacting units in time-

dependent networks, authors often use the FSA [14–17].

FSA assumes that the topology changes fast enough, and

the entries in the connectivity matrix are replaced by the

probability that two units are within the interaction range under

completely random motion (ρ = πd2/L2, for d � L/2). The

characteristic time TFS within FSA is expressed as

TFS = −τP / log[1 − σ (N − 1)ρ]. (4)

The effect of agents motion is averaged out, and the parameters

v and τM do not appear in Eq. (4). It is important to note that

it makes sense only when the timescale of network variations

is much shorter than that of the interaction.

Figure 2(a) plots nT as a function of d for various values of

τP . As intuitively expected, there is a decreasing monotonic

relationship between nT and d. We have also drawn a reference

line along TFS/τP , which depends only on d. For large τP FSA

is very accurate over a wide range of d, since the mentioned

condition for FSA is satisfied. However, we also identify a

region in Fig. 2(a) where FSA does not hold for intermediate

values of d. The size of this region increases as τP decreases.

It is important to note that these deviations from FSA take

place close to the continuum percolation transition point. This

is not a sharp transition; instead, T gradually deviates from

FSA. To gain a broader understanding, we plot T/TFS over the

τP -d plane in Fig. 2(b). For large enough τP , FSA is very good

irrespective of d.

In order to qualitatively explain the deviations from FSA,

we consider two characteristic timescales: one for clusters to

synchronize and another one for breaking apart. The number of

time steps (measured in units of τP ) for a cluster to synchronize

is, to first order in σ , ns = 1/σλc
2(d). Here λc

2 stands for the

smallest nonzero eigenvalue of the Laplacian of the cluster. On

the other hand, the number of steps for a single oscillator to

leave a cluster of size ξ (d) (an increasing function of d if d <

dc) is nm = ξ 2(d)/v2τMτP . We can then introduce the ratio

η =
nm

ns

=
σf (d)

v2τMτP

, (5)

which gives us the dominant timescale, where f (d) ≡

ξ 2(d)λc
2(d). Note that the topological parameter d (also N and

L, if they were changed) appears only in f , while the parame-

ters related to agent dynamics appear only in the denominator.

It is clear from Eq. (5) that η decreases if we increase τP .

This fact predicts a transition in the dominant timescale as

we change τP , which is confirmed in Fig. 2. We expect the

same transition in f (d) by changing d. Our numerical results

in Fig. 2 suggest that f (d) is an increasing function of d

well below dc. In the following, we analyze three different

asymptotic behaviors in detail:

(i) The condition η ≪ 1 holds for small d and large τP

in Fig. 2. In this region, the displacement of agents between

τP is large. Thus, the network connectivity changes very fast

before agents synchronize with their neighbors. Figure 1(a)

shows the evolution of a system under these conditions. All

nodes in the system approach complete synchronization at

approximately the same rate, and nonsynchronized nodes may

become spatially isolated. We call this mechanism global

synchronization. FSA is accurate for systems of this type.
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FIG. 2. (Color online) (a) Number of updates required to synchronize nT = T/τP as a function of d . The solid line indicates FSA, TFS/τP

[Eq. (4)]. The dotted line is TSL/τP [Eq. (6)]. (b) The ratio T/TFS in the τP -d plane. In (a) and (b) σ = 0.005, and dc represents the continuum

percolation threshold for an infinite system [21]. (c) T and nT versus τP with different values of σ for d = 5. Filled and open symbols of the

same color are based on Eq. (2) and the matrix product formulation (8), respectively. The colored lines in the top panel represent TFS for each

case. The black line in the bottom panel represents τ−1
P .

(ii) Starting from the previous case, η increases when either

d is increased or τP is decreased. For d ≪ dc, η > 1 implies

that the number of time steps required for agent motions

to rewire disconnected clusters is larger than that required

for synchronization inside an isolated cluster. Local clusters

therefore synchronize very easily before the topology changes

[Fig. 1(b)]. The dynamics toward complete synchronization is

limited by the motion of the agents, and we call this mechanism

multiple cluster local synchronization. Consecutive positions

of agents are correlated, and the evolution of the system

depends heavily on the details of the connectivity pattern.

Since FSA neglects such a correlation, it does not properly

describe the synchronization dynamics in this case. Indeed, as

shown in Fig. 2(b), FSA fails by orders of magnitude. It is

clear from Eq. (5) that this region is broader if τP is smaller.

(iii) For d ≫ dc and η > 1 (implying small τP ), the

whole network is connected (single cluster). In this case,

agent motion is not necessary for the final synchronization.

For a static connected network the characteristic time is

Tstatic = −τP / log(1 − σλ2), where λ2 is the second-smallest

eigenvalue of the Laplacian matrix [3]. When the network

topology changes, its time average

TSL = −τP /〈log(1 − σλ2)〉 (6)

is a reasonable upper bound for the characteristic time, since it

can be improved only by the motion of the agents. Figure 2(a)

shows that TSL is not only an upper bound, but also a good

approximation for small values of τP . When d is large enough

for the system to form a complete graph, FSA fits again the

numerical result.

In real mobile networks, the signal interval τP is one

of the easiest parameters to control. Thus, it is important

to study the dependence of T on τP with other parameters

fixed. Figure 2(c) describes this dependence. Decreasing τP

saturates T , while increasing τP saturates nT . Therefore,

there exists an optimal value of τP in the intermediate region

that simultaneously achieves rapid synchronization and high

efficiency. This result demonstrates the importance of taking

into account the deviation from FSA, since it causes the

saturation of T .

In order to get some analytical insight, we introduce the

normal modes of the linear dynamics (3). Note that Lij

changes with time. Let θl(t) be the normal modes correspond-

ing to an eigenvalue λl at time t , which satisfies ϕj (t) =
∑N

l=1 Uj l(t)θl(t), where Uj l(t) is the orthogonal matrix with a

unit determinant. Multiplying the two sides of Eq. (3) by the

transpose UT
li (t + τP ) from the left, we get

θl(t + τP ) =

N
∑

m=1

Olm(t)[1 − σλm(t)]θm(t). (7)

Here Olm(t) ≡
∑

i U
T
li (t + τP )Uim(t) is orthogonal. Then

after an arbitrary number of time steps we get

θln (t + nτP ) =

n−1
∏

q=0

[

N
∑

lq=1

Olq+1lq (1 − σλlq )

]

θl0 (t), (8)

where lq denotes the suffix corresponding to an eigenmode

at time t + qτP . The product of these matrices separately

describes the transformation of the normal modes of instanta-

neous networks by Olq+1lq and the decay of each eigenmode

by (1 − σλlq ).
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This product of n matrices in Eq. (8) can be diagonalized.

Let its eigenvalues be (1 − σ
i)
n with 0 = 
1 � 
2 � · · · �


N ; the limit of 
i exists for n → ∞. The characteristic time

can then be written as T = −τP / log(1 − σ
2). Figure 2(c)

compares T obtained by this method to that directly measured

from simulations. Their agreement is excellent, even for

smaller values of τP where FSA does not hold. Our procedure

can be generalized to any other evolving network [23].

The two nontrivial behaviors obtained in the simulations

can also be distinguished in the matrix product formulation.

For η ≪ 1, where FSA holds, the agents move a suffi-

ciently long distance during τP , and Lij (t) and Lij (t + τP )

are regarded as independent. Thus, their eigenvalues λl(t) and

λl(t + τP ) are uncorrelated. Then we can expect
∏n

q=1(1 −

σλlq ) ≈ en〈log(1−σλ)〉 if we neglect the fluctuation, where

the bracket represents the average over eigenvalues of the

Laplacian matrix. Then we get T = −τP /〈log(1 − σλ)〉.

Since the average eigenvalue of the Laplacian matrix is

the average degree, we get 〈λ〉 = (N − 1)ρ. Expanding the

characteristic time in powers of σ , we have

τP /T = σ (N − 1)ρ +O(σ 2), (9)

which is equal to τP /TFS up to the lowest order in σ .

For η ≫ 1 and d ≪ dc (multiple clusters), there is more

than one zero eigenmode of the instantaneous Laplacian

matrix, and θl(t) corresponding to a nonzero eigenvalue

λl(t) �= 0 vanishes before the topology changes, implying that

local synchronization is achieved. Hence, the dynamics of

the system is governed by the decay of the zero eigenmodes

caused by the topological change. Even if we increase the

number of signals by decreasing τP , we cannot get a further

decrease of the synchronization error between disconnected

clusters. Therefore, we expect that T converges to a finite

value for τP → 0. Since σ appears only in the nonzero

eigenmodes (1 − σλl), which are neglected in our approx-

imation, the converged value of T does not depend on σ

either [Fig. 2(c)].

In summary, we have presented a model of interactions

between moving agents that takes into account two different

timescales: one related to local synchronization in clusters

and the other related to the topology change. We have shown

that when the second timescale is greater than the first, more

time is required for the system to achieve synchronization

than the prediction of FSA. This new effect is particularly

important, because it affects the optimal parameter values

in terms of synchronization time and efficiency. Although

our model assumes purely random motion, it could be easily

extended to more realistic patterns of motion [24]. Our result

suggests that the interplay between instantaneous topology,

agent motion, and interaction rules plays an important role for

the performance of mobile systems such as ad hoc networks

or sensor networks.
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