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We investigate synchronization in a network of continuous-time dynamical systems with small-
world connections. The small-world network is obtained by randomly adding a small fraction
of connection in an originally nearest-neighbor coupled network. We show that, for any given
coupling strength and a sufficiently large number of cells, the small-world dynamical network
will synchronize, even if the original nearest-neighbor coupled network cannot achieve synchro-
nization under the same condition.

1. Introduction

Collective motions of coupled dynamical networks
are of significant interest in many fields of science
and technology. In particular, synchronization in
networks of coupled chaotic dynamical systems has
received a great deal of attention in recent years.
Most of the existing work on synchronization of cou-
pled networks assumes that the coupling configura-
tion is completely regular (see e.g. [Heagy et al.,
1994; Wu & Chua, 1995]), while a few studies ad-
dress the issue of synchronization in randomly cou-
pled networks [Gade, 1996; Manrubia & Mikhailov,
1999]. However, many biological, technological and
social networks are neither completely regular nor
completely random. To interpolate between these
two extremes, Watts and Strogatz [1998] intro-
duced the interesting concept of small-world net-
works. The so-called small-world networks have
intermediate connectivity properties but exhibit a
high degree of clustering as in the regular networks
and a small average distance between vertices as

in the random networks. They also found that
the small-world networks of coupled phase oscilla-
tors can synchronize almost as readily as the glob-
ally coupled networks, despite the fact that they
have much fewer edges [Watts, 1999]. For a re-
view of recent works on small-world networks, see
[Newman, 2000]. More recently, Gade and Hu
[2000] explored the stability of synchronous chaos
in coupled map lattices with small-world connectiv-
ity and found that in this case synchronous chaos is
possible even in the thermodynamic limit. Lago-
Fernandez et al. [2000] also investigated the fast
response and temporal coherent oscillations in a
small-world network of Hodgkin–Huxley neurons.

In this study, we consider synchronization in
a network of linearly coupled identical continuous-
time dynamical systems. As shown by Wu [1995],
for any given number of cells, strong enough
mutual diffusive coupling will result in synchro-
nization of the cells. Two commonly studied cou-
pling configurations are the so-called easiest-to-
implement nearest-neighbor coupling and the most
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difficult-to-implement global coupling. It has been
shown that for any given coupling strength, if the
number of cells is large enough, the globally cou-
pled network will eventually synchronize, while the
nearest-neighbor coupled network cannot achieve
such synchronization under the same condition.
This observation naturally poses the following ques-
tion: for a nearest-neighbor coupled network with
a sufficiently large number of cells and with an ar-
bitrary coupling strength, is it possible to achieve
synchronization of the network by a small modifica-
tion of the nearest-neighbor coupling configuration,
for example, by adding a small fraction of connec-
tion between some different pairs of cells? In this
paper we provide a positive answer to this question
based on the small-world network models.

2. Preliminaries

We consider a network of N identical cells, lin-
early coupled through the first state variable of each
cell, with each cell being an n-dimensional dynam-
ical subsystem. The state equations of the entire
network are

ẋi1 = f1(xi) + c
N∑
j=1

aijxj1

ẋi2 = f2(xi)
...

ẋin = fn(xi)

i = 1, 2, . . . , N (1)

where xi = (xi1, xi2, . . . , xin) ∈ Rn are the state
variables of cell i, fi(0) = 0, c > 0 represents
the coupling strength, and A = (aij)N×N is the
coupling matrix.

In this paper, we only consider symmetric and
diffusive coupling. In particular, we assume that

(i) A is a symmetric and irreducible matrix.
(ii) The off-diagonal elements, aij (i 6= j) of A, are

either 1 or 0 (when a connection between cell
i and cell j is absent).

(iii) The elements of A satisfy

aii = −
N∑
j=1
j 6=i

aij , i = 1, 2, . . . , N (2)

The above conditions imply that one eigenvalue
of A is zero, with multiplicity 1, and all the other
eigenvalues of A are strictly negative.

Given the dynamics of an isolated cell and the
coupling strength, stability of the synchronization
state of the network can be characterized by those
nonzero eigenvalues of the coupling matrix. A typi-
cal result states that the network will synchronize if
these eigenvalues are negative enough [Wu & Chua,
1995].

Lemma 1. Consider network (1). Let λ1 be the
largest nonzero eigenvalue of the coupling matrix A
of the network. The synchronization state of net-
work (1) defined by x1 = x2 = · · · = xn is asymp-
totically stable, if

λ1 ≤ −
T

c
(3)

where c > 0 is the coupling strength of the network
and T > 0 is a positive constant such that zero is
an exponentially stable point of the n-dimensional
system

ż1 = f1(z) − Tz1

ż2 = f2(z)
...

żn = fn(z)

(4)

Note that system (4) is actually a single cell
model with self-feedback −Tz1. Condition (3)
means that the entire network will synchronize pro-
vided that λ1 is negative enough, e.g. it is suffi-
cient to be less than −T/c, where T is a constant so
that the self-feedback term −Tz1 could stabilize an
isolated cell.

As mentioned above, two commonly studied
coupling configurations are the nearest-neighbor
coupling and the global coupling ones. Experimen-
tally, the nearest-neighbor coupling is perhaps the
easiest one to implement and, on the contrary, the
global coupling is the most expensive one to imple-
ment. The nearest-neighbor coupling configuration
consists of cells arranged in a ring and coupled to
the nearest neighbors. The corresponding coupling
matrix is

Anc =



−2 1 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 1 −2

 (5)

The eigenvalues of Anc are{
−4 sin2

(
kπ

N

)
, k = 0, 1, . . . , N − 1

}
(6)
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Therefore, according to Lemma 1, the nearest-
neighbor coupled network will asymptotically
synchronize if

4 sin2
(
π

N

)
≥ T

c
(7)

The global coupled configuration means that any
two different cells are connected directly. The cor-
responding coupling matrix is

Agc =



−N + 1 1 1 · · · 1

1 −N + 1 1 · · · 1
...

. . .
. . .

. . .
...

1 1 1 · · · 1

1 1 1 · · · −N + 1


(8)

Matrix Agc has a single eigenvalue at 0 and all the
others equal to −N . Hence, Lemma 1 implies that
this network will asymptotically synchronize if

N ≥ T

c
(9)

In summary, for any given coupling strength
c > 0, the globally coupled network can synchronize
as long as the number of cells N is large enough. On
the other hand, since sin(π/N) decreases to zero as
N increases, relation (7) cannot hold for sufficiently
large N . Simulations also show that the nearest-
neighbor coupled network cannot synchronize if the
number of cells is sufficiently large. Thus, we have
seen a trade-off between these two situations.

3. Synchronization in
Small-World Networks

Aiming to describe a transition from a regular net-
work to a random network, Watts and Strogatz
[1998] introduced an interesting model, now referred
to as the small-world (SW) network. The original
SW model can be described as follows. Take a one-
dimensional lattice of N vertices arranged in a ring
with connections between only nearest neighbors.
We “rewire” each connection with some probabil-
ity, p. Rewiring in this context means shifting one
end of the connection to a new vertex chosen at
random from the whole lattice, with the constraint
that no two different vertices can have more than
one connection in between, and no vertex can have
a connection with itself.

Note, however, that there is a possibility for the
SW model to be broken into unconnected clusters.
This problem can be circumvented by a slight mod-
ification of the SW model, suggested by Newman
and Watts [1999], which is referred to as the NW
model hereafter. In the NW model, we do not break
any connection between any two nearest neighbors.
We add with probability p a connection between
each other pair of vertices. Likewise, we do not al-
low a vertex to be coupled to another vertex more
than once, or coupling of a vertex with itself. For
p = 0, it reduces to the originally nearest-neighbor
coupled system; for p = 1, it becomes a globally
coupled system.

In this paper, we are interested in the NW
model with 0 < p < 1.

From a coupling-matrix point of view, network
(1) with small-world connections amount to that,
in the nearest-neighbor coupling matrix Anc, if
aij = 0, we set aij = aji = 1 with probability p.
Then, we recompute the diagonal elements accord-
ing to formula (2). We denote the new small-world
coupling matrix by Ans(p, N) and let λ1ns(p, N)
be its largest nonzero eigenvalue. According to
Lemma 1, if

λ1ns(p, N) ≤ −T
c

(10)

then the corresponding network with small-world
connections will synchronize.

Figures 1 and 2 show the numerical values of
λ1ns(p, N) as a function of the probability p and
the number of cells N . In these figures, for each
pair of values of p and N , λ1ns(p, N) is obtained
by averaging the results of 20 runs. It can be seen
that

(i) For any given value of N , λ1ns(p, N) decreases
to −N as p increases from 0 to 1.

(ii) For any given value of p ∈ (0, 1], λ1ns(p, N)
decreases to −∞ as N increases to +∞.

The above results imply that, for any given cou-
pling strength c > 0, we have

(i) For any given N > T/c, there exists a critical
value p so that if p ≤ p ≤ 1, then the small-
world connected network will synchronize.

(ii) For any given p ∈ (0, 1], there exists a critical
value N so that if N ≥ N , then the small-world
connected network will synchronize.
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(a) (b)

Fig. 1. Numerical values of λ1ns(p, N) as a function of the probability p: (a) N = 200; (b) N = 500.

(a) (b)

Fig. 2. Numerical values of λ1ns(p, N) as a function of the number of cells N : (a) p = 0.05; (b) p = 0.1.

4. Synchronization in a
Network of Small-World
Coupled Chua’s Circuits

As an example, we now study synchronization in a
network of small-world connected Chua’s circuits.
In the dimensionless form, a single Chua’s circuit is
described by [Chua et al., 1993]: ẋ1

ẋ2

ẋ3

 =

α(x2 − x1 + f(x1))

x1 − x2 + x3

−βx2 − γx3

 (11)

where f(·) is a piecewise-linear function,

f(x1) =


−bx1 − a+ b x1 > 1

−ax1 |x1| ≤ 1

−bx1 + a− b x1 < −1

(12)

in which α > 0, β > 0, γ > 0, and a < b < 0. The
state equations of the entire network are

 ẋi1ẋi2
ẋi3

=


α(xi2 − xi1 + f(xi1)) + c

N∑
j=1

aijxj1

xi1 − xi2 + xi3

−βxi2 − γxi3

 ,

i = 1, 2, . . . , N .

(13)

For this network to synchronize, according to
Lemma 1, we may take T = −α. In simulations,
the system parameters are chosen to be

α = 10.0000 , β = 15.0000 , γ = 0.0385 ,

a = −1.2700 , b = −0.6800 , c = 1 .
(14)
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Fig. 3. Chaotic attractor of Chua’s circuit (11), with
parameters given in (14).

Fig. 4. Values of p and N achieving synchronization in the
small-world network of Chua’s circuits.

For this set of parameters, Chua’s circuit (11) has a
chaotic attractor, as shown in Fig. 3. The nearest-
neighbor coupled Chua’s network cannot synchro-
nize for N > 6. According to Lemma 1, the small-
world network will synchronize if

λ1ns(p, N) ≤ a

c
= −1.27 (15)

Figure 4 shows the values of p and N which can
achieve network synchronization. For example, for
N = 100, 150 and 200, synchronization of the
small-world connected network can be achieved,
for p > 0.0366, p > 0.0257 and p > 0.021,
respectively.

5. Conclusions

Starting with a nearest-neighbor coupled dynamical
network, we can construct a small-world dynamical
network by adding with probability p a connection
between each of the other pair of cells. We found
that, for any given coupling strength and a suffi-
ciently large number of cells, synchronization in a
network of linearly small-world coupled continuous-
time dynamical systems can be achieved with a
small value of p. In other words, the ability of
achieving synchronization in an originally nearest-
neighbor coupled system can be greatly enhanced
by simply adding a small fraction of new connec-
tion, revealing an advantage of small-world network
for chaos synchronization.
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