
Synchronization in Software Radios - Carrier and Timing Recovery
Using FPGAs

Chris Dick
Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124, USA

Chris. dick@xilinx.com

fred harris
College of Engineering, San Diego State University, San Diego

fred. harris@sdsu.edu

Michael Rice
Department of Electrical and Computer Engineering, Brigham Young University

mdr@ee. byu.edu

Abstract

Software defined radios (S D R) are highly config-
urable hardware platforms that provide the technology
for realizing the rapidly expanding third (and future)
generation digital wireless communication infrastruc-
ture. Many sophisticated signal processing tasks are
performed in a SDR, including advanced compression
algorithms, power control, channel estimation, equal-
ization, forward error control and protocol manage-
ment. While there i s a plethora of silicon alternatives
available for implementing the various functions in a
S D R , field programmable gate arrays (FPGAs) are a n
attractive option for m a n y of these tasks for reasons
of performance, power consumption and configurabil-
ity. Amongst the more complex tasks performed in a
high data rate wireless system i s synchronization. This
paper i s about carrier and timing synchronization in
SDRs using FPGA based signal processors. W e de-
scribe and examine a QPSK Costas loop for perform-
ing coherent demodulation, and report o n the implica-
tions of a n FPGA mechanization. Symbol timing re-
covery i s addressed using a differential matched filter
control system. A tutorial style approach i s adopted
to describe the operation of the timing recovery loop
and considerations for FPGA implementation are out-
lined.

1 Introduction

The ever-increasing demand for mobile and
portable communication requires high-performance
systems employing advanced signal processing tech-
niques to allow operation as close as possible to the

Shannon information theoretic bound [2]. However,
not only must these systems provide exceptional per-
formance, but due to market and fiscal pressures, they
must be flexible enough to allow the rapid tracking of
evolving and fluid standards. Software defined radios
(SDRs) are emerging as a viable solution for meeting
the conflicting demands in this arena. SDRs support
multimode and multiband modes of operation to al-
low service providers an economic means of future-
proofing these increasingly complex and costly sys-
tems.

During the last decade or so, radio system function-
ality has migrated from analog to digital implementa-
tions. We have observed, and continue to observe, the
migration of the digital portion of a receiver along the
signal conditioning chain, moving ever closer to the an-
tenna. The implementation of these high-performance
digital communication systems has been made possible
by advances in semiconductor process technology, that
has allowed the concept of system o n a chip to become
a reality. In a communication environment the hard-
ware platform must execute sophisticated source cod-
ing algorithms, modulation, demodulation, power con-
trol, channel coding, multiple access (TDMA, FDMA,
CDMA) schemes and many levels of synchronization,
starting at the physical layer, and moving up through
the open system interconnection (OSI) protocol stack.

The communication systems engineer has had a
vast range of semiconductor technologies to choose
from when developing such a system. These have in-
cluded application specific standard parts (ASSPs),
full custom silicon, instruction set based digital sig-
nal processors (DSPs) and high performance general
purpose processors (GPP). In a current generation
system, the hardware solution is often best provided

195
0-7695-0871-5/00 $10.00 0 2000 IEEE

mailto:dick@xilinx.com
mailto:harris@sdsu.edu

using a heterogenous computing approach, using the
appropriate type of silicon for each particular func-
tion. In the early 1990’s field programmable gate ar-
rays (FPGAs) also played a role in digital communi-
cation hardware, often being used for glue logic, bus
interfacing, complex state machines and memory con-
trollers. However, in recent years, FPGA technology
has undergone revolutionary changes. The gate densi-
ties and clock speeds of recent generation FPGAs pro-
vide the communication system architect with a highly
configurable logic fabric that can be used for realizing
sophisticated real-time signal processing functions.

One of the challenging tasks in a communication
system is carrier and symbol timing recovery. A large
amount of time is spent solving these problems, and
frequently a large amount of hardware and software in
a SDR is dedicated to synchronization [l].

This paper examines techniques for developing,
modeling and generating FPGA implementations of
carrier and timing loops. The paper is organzied as
follows. Section 2 provides an overview of synchro-
nization in a digital communication system and high-
lights its importance in a coherent communication en-
vironment. Section 3 provides a brief review of phase
locked loop (PLL) theory before describing a Costas
loop for performing carrier recovery using quadrature
phase shift keying (QPSK) modulation. The devel-
opment of the FPGA design using Matlab [3] and
Simulink [4] is outlined. The FPGA logic resource re-
quirements and performance is reported. In Section 4
a technique suitable for implementing timing recov-
ery in an FPGA is described. The method is based
on a differential matched filter approach. Finally, in
Section 5 we draw our conclusions.

2 Synchronization in Software Radios

At the simplest level, synchronization is the process
of aligning the frequency and phase of a set of remote
oscillators. This alignment occurs at two distinct lev-
els. One is at the waveform level and is closely related
to the physical layer of the communication process.
The second is at the bit stream level and is more
closely related to data representation at higher levels
in the communication process. At the waveform level,
synchronization entails oscillator frequency and phase
alignment for waveform timing, for carrier acquisition,
and chip alignment and hopping boundaries for spread
spectrum modulation overlays. At the bit level, syn-
chronization entails frequency and phase alignment of
logical boundaries such as bits, words, frames and net-

work event boundaries. Our discussion addresses the
physical layer synchronization of waveforms

Henry David Thoreau stated, ”If a man does not
keep pace with his companions, perhaps it is because
he hears a different drummer. Let him step to the
music he hears, however measured or far away”. This
commentary on social tolerance runs counter to the
needs of a synchronous communication system. In a
modern digital communication system every user must
march to the sound of the same drummer.

This need to align clocks in the communication
process is related to how the physical layer moves data
through the channel. Figure 1 presents a model of a
conventional modulator and demodulator. Bits are de-
livered to the modulator at a specified transfer rate of,
say 100 kbits/sec. The bit field is parsed into nibbles
of widths typically 2, 3, or 4 bits. For the rest of this
discussion we will use the 4-bit wide nibble. The 4-bit
nibble is used to identify one of 16 (preselected) base-
band waveforms to be placed on a carrier and delivered
by the modulator to the channel. A DSP based way to
accomplish this is to use the nibble as an address to a
table that outputs four possible amplitudes for I(n) [3,
11 and for Q(n) [3, 11 of the wave shapes to be carried
by the cosine (in phase) and by the sine (quadrature
phase) carrier waveforms. Remember that since the
sine and cosine of a carrier frequency are orthogonal
(i.e. the average value of their product is zero), we
can think of the sine and cosine as being two indepen-
dent carriers in the same frequency band. When the
cosine and the sine waveforms are each assigned the
task of delivering one of 4-possible amplitudes we call
the process 16-Quadrature Amplitude Modulation or

The waveforms must be generated at the symbol
(or nibble) rate of the modulator, which for this ex-
ample is 25 kSymbols/sec. The shape of the wave-
form is chosen to minimize the bandwidth required to
carry the waveform as well as to satisfy a constraint
related to acceptable out-of-band spectral levels. The
duration of the waveform extends over many symbol
durations, typically on the order of 16 to 24 sym-
bols, consequently, the waveforms are overlapped and
the modulated waveform is the summation of a set
of time shifted and scaled waveforms. In most imple-
mentations, the modulator constructs samples of the
base-band waveform with digital filters that respond
to the amplitudes delivered by the look-up table in re-
sponse to each input nibble. The filter performs the
simultaneous tasks of shaping the waveform, of merg-
ing the weighted overlapped symbols, and of raising
the sample rate of the time series from input symbol

16-QAM.

196

rate to output sample rate. The increase in sample
rate is invoked so that the up-conversion or placement
of the waveforms on a carrier can be accomplished by
multiplying the waveforms samples with samples of a
sine and cosine carrier in the DSP domain. For this
example, let us up-sample to 50 MHz and then up-
convert to the range 1-to-20 MHz. The samples of
the heterodyned signal are converted to a waveform
by a digital to analog converter (DAC) and low pass
filter and most often upconverted again by additional
analog processing.

The receiver’s task is to invert the process just de-
scribed. The signal is first subjected to an analog
down conversion to the range 1-to-20 MHz, is sam-
pled at 50 MHz and converted to digital data with an
analog to digital converter (ADC). In the DSP based
receiver the sampled signal is down converted from its
digital carrier by samples of the sine and cosine car-
rier formed by the output of a local sine wave genera-
tor and then filtered by product-sums matched to the
known transmitted wave shapes. The filters multiply
the baseband input samples by a template replica and
accumulate the product terms to gather all the energy
of the transmitted signal as a single observable para-
meter, This parameter is delivered to a decision device
that estimates the amplitude of the transmitted signal
from the processed output of the filter.

We have been very cavalier in our description of
the receiver’s task. In order for the receiver to reverse
the up-conversion operation by a matching down-
conversion it has to use a phase coherent replica of
the sinusoid delivering the waveform to the demodula-
tor. In addition, when we perform the matched filter-
ing operation, we have to align the template with the
boundaries of the received waveform so we know when
to start the product-sum and when to finish it. The
first task of forming a frequency and phase-matched
replica of the local oscillator for the down conversion
operation is called carrier acquisition. The second task
of collecting a set of input samples time aligned with
the replica template is called (symbol) timing recovery.
The demodulator must perform a task not performed
at the modulator; by mining clues embedded in the re-
ceived signal, it must replicate the carrier and symbol
clocks associated with the signal in order to process
the received signal. This differs considerably from lo-
cal systems such as state machines or FPGAs with a
distributed clock, or from a distributed system with
shared clock (plesiosynchronous) in which the timing
is available from a separate parallel distribution sys-
tem. There the concern of aligning the clock and the
data is a matter of differential delay or skew. In the

communication case we must align totally asynchro-
nous oscillators and clocks. When we teach this ma-
terial in an undergraduate course, we attribute this
task to a friendly genie (called PLL) and claim this
material is beyond the scope of the course. When we
build the equipment we have to don our genie suits.

3 Carrier Recovery

There are many options for implementing carrier
phase and frequency synchronization in a digital com-
munication system. At the heart of all synchronizers
is the phase-locked loop (PLL).

3.1 Phase Locked loops

The generic PLL is shown in Figure 2. PLLs are

Phase Loop Filter
Detector

Figure 2: Basic phase locked loop.

servo control mechanisms whose controlled parameter
is the phase of a locally generated replica of the incom-
ing carrier wave. Phase locked loops have three basic
components: a phase detector, voltage controlled os-
cillator (VCO) and a loop filter. The phase detector
measures the difference between phase of the local os-
cillator and the input carrier. This signal is fed to
a loop filter that governs the response of the PLL to
variations in the error signal. The Loop filter is de-
signed to track changes in the error signal, but not be
overly responsive to receiver noise. The loop filter de-
termines the type of disturbances the PLL can track,
for example, a phase or frequency step. A detailed
description of PLL operation can be found in [2]

In an all-digital receiver a digital phase-locked loop
(DPLL) like that shown in Figure 3 is required. This
DPLL employs a second order infinite impulse re-
sponse (IIR) loop filter. The two filter coefficients ki
and kp control the filter corner frequency and damp-
ing ratio. In the digital implementation, the VCO in
Figure 2 is replaced with a direct digital synthesizer
(DDS). The phase detector is implemented using the
arc-tan functionel unit in the figure.

197

p y I I

sln(8,n) cos(@

--&I+-
Shape &
Upsample

fs

+I
I
I
I
I
I
I
I
I
!

I
1

Figure 1: Modulator and demodulator for QAM and QPSK: Note asymmetry: PLLs at demodulator

lDDSll I

Figure 3: Digital phase-locked loop

3.2 QPSK Costas Loop

Communication systems employing QPSK modula-
tion are very common. The basic Costas loop [2] can
be enhanced to perform carrier recovery and symbol
detection for a QPSK modulation scheme as shown in
Figure 4.

To understand the operation of this loop, consider
the scenario when the loop is reasonably near lock.
The signal on the I processing arm (or rail) after the
LPF is close to the data symbol value a: and the sig-
nal on the quadrature arm is close to a?. The slicer
enforces this by ignoring small perturbations in the
signal, which could be due to the opposite-rail symbol
if the loop is not locked, or the shaping of the pulse, or
simply channel noise. The fl symbol decisions feed

-Q(t)sin AI) + I(t) COSAI)

I 2sinA4
-nsin(oot+eo)

Figure 4: QPSK Costas loop. The carrier phase is
obtained and the symbols detected in the one loop.
~4 = ?lo - eo.

a network that produces from the received baseband
signals a phase difference signal 2sin(+o - e o) . This
signal, working with the loop filter and the VCO, op-
erate like the basic PLL shown in Figure 2.

3.3 QPSK Costas Loop Implementation

To produce a fixed-point arithmetic realization of
the QPSK Costas loop in Figure 4 a combination of
Matlab [3] and Simulink [4] where employed. After
the quantized model was verified in the Simulink do-
main, a conventional FPGA implementation flow us-

198

-la - I

bv,+,
I

I page 111

Figure 5: Simulink model of a digital QPSK Costas loop - floating-point arithmetic implementation.

r
M I P U U U T

Figure 6: Simulink model of a digital QPSK Costas loop - fixed-point implementation.

199

ing VHDL and the Xilinx Core Generator are used to
produce the final design.

Figure 5 shows the floating-point arithmetic
simulink model while Figure 6 illustrates the fixed-
point arithmetic, or quantized, model.

To verify the operation of the loop a system level
design was developed that modeled a simple trans-
mitter and channel that simulated a Doppler shift of
the transmitter carrier wave. In practice, the Doppler
shift is associated with movement between the trans-
mit and receive platforms, as might be the case with
a cellular handset user traveling in a car.

The transmitter generated a pseudo random com-
plex sequence that was shaped by a multirate trans-
mit filter with an excess bandwidth Q = 0.25 and
an interpolation factor of 1-to-8. The channel model
introduced a small frequency translation of the car-
rier. Therefore, the receiver was presented with a sig-
nal that had a frequency and phase offset compared
to the nominal local oscillator. The purpose of the
Costas loop is to track the frequency and phase off-
set to allow coherent demodulation of the transmitted
waveform. The sequence of plots in Figure 7 provide
some insight to the operation of the carrier recovery
loop. Figure 7(a) shows the QPSK constellation dia-
gram after the matched filter. Figure 7(b) is the corre-
sponding eye diagram. The eye is clearly open and, in
the absence of any channel impairments, the receiver
can easily make correct symbol decisions using this
waveform. The frequency translation applied to the
transmitted signal causes the constellation to rotate as
shown in Figure 7(c). The receiver eye diagram shown
in Figure 7(d) clearly shows the eye is closed, indicat-
ing that valid symbols decisions cannot be made. The
Doppler shift modeled in this experiment causes a fre-
quency translation of the carrier. The corresponding
phase slope is linear, with a gradient that corresponds
to the magnitude of the frequency offset. One way
to observe and quantify the performance of the car-
rier tracking loop is to monitor the phase function of
the interfering signal and that of the oscillator in the
Costas loop. This is shown in Figures 7(e) and 7(f).
We observe that the loop attains lock after a few hun-
dred samples. The difference between the two phase
functions, or phase error, is presented in Figure 7(g).
Finally the de-rotated constellation is shown in Fig-
ure 7(h).

The quantized model was developed using the
Simulink fixed-point blockset. This approach al-
lowed a high degree of design compression. After the
Simulink floating-point model was completed and ver-
ified, approximately 30 minutes was required to gen-

1.5-

1-

0.5.

0-

-0.5

1-

U

Modulstion CoMtdbtion Diagram

1
Eye Diagram, Modulation Data

7 ,

1 5

1

0 5

0

-0 5

-1

-1 5

(a)
Rotatinu Constellation

(b)
Eve Diagram a1 Receivei . -

0 5

Figure 7: (a) QPSK modulation constellation. (b) Eye
diagram - transmitter. (c) Rotating constellation due
to frequency offset. (d) Eye diagram - receiver. (e)
Input and output phase slopes. (f) Input and output
phase slopes - exploded view. (g) Phase error. (h)
De-rotated constellation.

200

erate the quantized solution. This approach also pro-
vided a simple mechanism to compare corresponding
values in the floating-point and fixed-point models.
For example, in Figure 6 , a floating-point and fixed-
point loop filter are operating in parallel. The two
filter outputs are overlayed on a time-series plot -
the scope token in the figure. This permits a sim-
ple method of observing the fixed-point system and
evaluating its performance in the context of the ideal
floating-point filter realization. The precision of the
components in the loop filter can be interactively ad-
justed in real-time as the model is running. The con-
ventional Matlab environment was also invaluable for
performing detailed analysis of data exported to the
workspace from the Simulink model.

3.4 FPGA Implementation

Several functional units are required to implement
the carrier recovery loop. A complex heterodyne is
employed to down-convert the input signal. This is
of course recognized as a complex multiplier. There
are two matched filters, one for each of the I and Q
arms. The phase detector is straightforward, consist-
ing of two l-bit slicers (sign detector), two 2’s com-
plementers and a subtractor. The second-order loop
filter is realized using two multipliers, an integrator
and an adder. The local replica of the carrier wave is
generated by a DDS.

The complex multiplier is implemented using 4 mul-
tiplications and two additions. The ADC samples are
represented using 8-bits, while the heterodyning sig-
nal employs 12-bit samples. Each 8 x 12 multiplier
occupies approximately 81 logic slices. The complete
multiplier occupies 344 slices. the recursive nature of
the Costas loop demands the use of purely combina-
torial multipliers and adders.

Two matched filters are required. One for each of
the I and Q processing arms. These filters are 97-
tap symmetrical FIR filters with 12-bit coefficients
and support 9-bit precision input samples. The fil-
ters were generated using the Xilinx Core Genera-
tor [6] filter compiler. The implementation employs
serial distributed arithmetic. Taking advantage of the
symmetrical coefficient data, each filter occupies 248
Virtex FPGA [5] logic slices. Using 9-bit precision
input samples, the filter requires 10 clock cycles to
compute a new output. The bit-clock for the filter is
a function of the FPGA speed grade. Typical values
are between 100 and 150 MHz. This translates to a
sample throughput of 10 to 15 MSamples/sec.

The multipliers in the loop filter occupy most of the
logic resources for this sub-system. The coefficient pa-

rameters are represented using 16-bits while the input
samples are carried with &bit precision. The complete
loop filter occupies 80 slices.

The DDS was implemented using a simple phase
truncation architecture [7]. Using the quantized
Simulink model, a 1024-point sin/cos look-up table
(LUT) with 12-bit precision samples was found to be
adequate for the application. Using quarter wave sym-
metry [7], the sin/cos LUT requires only a single Vir-
tex block RAM (BRAM) [5] . The dual-port nature
of the BRAM permits both the I and Q samples to
be computed simultaneously. The DDS phase accu-
mulator consists of a 28-bit adder and register. These
components occupy a modest 14 logic slices.

The complete QPSK Costas loop occupies approx-
imately 1000 logic slices.

4 Timing Synchronization

Symbol decisions are based on the matched filter
output at the end of each symbol period. The detec-
tor samples the matched filter output at that time and
uses this information to decide which symbol was most
likely to have been sent. In order to make these deci-
sions, the detector must know when the symbols begin
and end - this is called timing synchronization. The
best way to illustrate timing synchronization is with
an eye-diagram such as the one for I channel of QPSK
illustrated in Figure 8. The eye diagram is produced
by plotting segments of successive matched filter out-
puts on top of each other. The end of the symbol
interval corresponds to the point in time where the
eye diagram is the most open as shown.

There are three basic methods to determine the op-
timum sampling point.

The first method finds the point where the slope
of the matched filter output is zero and is illus-
trated in Figure 8 (a). If the current timing esti-
mate is too early, then the slope of the matched
filter output is positive indicating that the timing
phase should be advanced. If the current timing
estimate is too late, then the slope of the matched
filter output is negative indicating that the timing
phase should be retarded. This method imple-
ments maximum likelihood timing synchroniza-
tion.

The second method uses the zero crossings in the
matched filter output to estimate the times in be-
tween the optimum sampling points as shown in
Figure 8. Zero crossings are found by searching

20 1

3.

for sign changes between matched filter outputs
s(n-1) and s(n+l). A sign change means s (n) re-
sides on a zero crossing trajectory. Positive going
zero crossings s (n) are added to an averager while
negative going zero crossings are subtracted. This
method is sometimes called a Gardner loop.

The third method estimates the optimum sam-
pling point by finding the position that minimizes
the variance in the matched filter output. Typ-
ically, the search is performed by estimating the
variance at the next interpolation point. If the
variance increases, then the timing estimate is not
advanced. If the timing decreases, then the tim-
ing estimate is advanced. This method is also
called a dither loop.

A block diagram of the maximum likelihood timing
synchronizer is illustrated in Figure 9. The output
of the matched filter produces the points on the eye
diagram and the derivative matched filter produces
the slope at each of the points. The slope of the
matched filter is multiplied by the sign of the matched
filter output’ to produce an error signal which is av-
eraged (i.e. filtered) and input to a trigger genera-
tor. The trigger generator outputs a trigger signal
which downsamples the matched filter output. The
downsample rate usually such that matched filter out-
puts are sampled once or twice per symbol. Fraction-
ally spaced equalizers require two samples/symbol.
Symbol spaced equalizers or unequalized systems re-
quire one sample/symbol. In what follows, it is as-
sumed that the system requires 2 matched filter sam-
ples/symbol since systems that only require 1 matched
filter sample/symbol can simply discard every other
matched filter output2.

The matched filter is a digital filter which processes
a signal that has been sampled by an asynchronous
clock usually running at twice the symbol rate. Since
it is unlikely that the optimum sampling point corre-
sponds to one of the two samples per symbol period,
interpolation is used to to generate data samples in
between these sample points. This concept can be il-
lustrated using Figure 9. Imagine the data, sampled
at 2 samples/symbol is upsampled by a factor M . (M
is can be as low as 8 for QPSK or as high as 128 for 256
QAM.) Upsampled impulse responses of the matched
filter and derivative matched filter are used to process
this data. Every M-th point (appropriately phased)

‘The sign of the matched filter is used to give the proper
sign on the slope for negative matched filter outputs.

*Of course, care must be taken to throw away the right sam-
ple. The sample corresponding to the maximum eye opening
should be kept, while the other sample is discarded.

is then available to the rest of the system. Now the
purpose of the trigger generator is clear - it indicates
which of the matched filter outputs is to be used for
equalization and data symbol decisions.

A polyphase partition is the most efficient way
to perform the interpolation. To implement the
polyphase matched filter and derivative matched fil-
ter, the matched filter and derivative matched filters
of Figure 9 are replaced by the polyphase partitions
of the upsampled impulse responses of the two fil-
ters as illustrated in Figure 10. The length of each
polyphase filter partition depends on the excess band-
width and the required out-of-band attenuation. For
example, using a square-root raised cosine filter, the
impulse response of a filter with 40% excess band-
width is about 10 symbols long. At a sampling rate
of 2 samples/symbol, the filter is 20 samples long and
at a sampling rate of 16 samples/symbol, the filter is
160 samples long. This represents an 8-to-1 upsam-
pling. Continuing with this example, the polyphase
partition consists of a bank of 8 filters, each with 20
taps and operating at 2 samples/symbols. Each of the
filters outputs data at 2 samples/symbol but with a
different phasing on the interpolation (hence the name
“polyphase”).

The trigger generator of Figure 9 is replaced by
a subsystem that outputs the index associated with
the proper phase of the matched filter output cor-
responding to the maximum eye opening as illus-
trated in Figure 11. The top counter is a modulo-1
counter with free running period equal to the one-
half the symbol interval (remember - 2 matched fil-
ter outputs/symbol). The counter increment is al-
tered by the output of the loop filter so that the
roll-over period is either increased (when the timing
needs to be advanced) or decreased (when the timing
needs to be retarded). Thus an accumulator regis-
ter and adder are required. The second counter cy-
cles through the polyphase filter indices in synchro-
nism with the top counter. Whenever the top counter
rolls over, the accumulator of the lower counter con-
tains the index of the desired polyphase filter. This
counter simple cycles through the integer indices of
the polyphase partition (in the example it needs to
count O , l , . . . ,7,0,1,. . .and so requires 3 bits).

The performance of the receiver is tied directly to
the performance quantization error of the matched fil-
ter outputs and the accuracy of the timing estimate.
In a well designed system, the quantization noise in-
troduced by the matched filter should be less than
dynamic range required to achieve the desired perfor-
mance. The quantization noise in the filter is reduced

202

by 5 dB for each additional bit of precision in the fil-
ter coefficients. For example, QPSK requires approxi-
mately 11 dB &, /No to achieve a bit error probability
of so that this system only needs 3 bit matched
filter coefficients. 16-QAM on the other hand, requires
30 dB &/No to achieve a bit error probability of
so that 6 bits are required in the matched filter in this
system. An S-stage FIR matched filter with bbit data
at the input with obi t coefficients performs S multi-
plies and outputs the sum of the products. At most,
the filter output grows to b + c + log, S bits. However,
the values of a square-root raised cosine FIR filter are
such that b + c + 2-bits is an upper bound on the ac-
cumulator size.

An FPGA implementation of this system requires
resources for two polyphase FIR filters, a possible sign
change for the multiplier, an IIR filter with one pole
and one zero for the loop filter G(z) , and two counters
to track the phase index and the timing of the phase
index. The polyphase filter requires the hardware for
one S-tap FIR filter and memory for M sets of S-
coefficients. Since each tap/coefficient pair requires a
multiply, the hardware requirement for the polyphase
matched filter implementation is S-stage shift register
(b bits/register), S multiplies (b+c bits/multiply), and
one add requiring a b + c + 2 bit accumulator. The
hardware and memory requirements for the derivative
matched filter are identical.

Usually, the form of the loop filter is identical to
that used in the carrier recovery loop described in
the previous section. Except for the coefficient val-
ues, the FPGA implementation of this filter is identi-
cal to the loop filter used in the carrier recovery loop.
The loop filter operates at the upsampled rate of 2M
samples/symbol(l6 samples/symbol in the example).

The key design parameter for the index computer is
the size of the accumulator in the top counter. The ac-
cumulator needs to be large enough to accommodate
the timing resolution and fine tuning of the phase of
the overflow. The timing resolution is the overflow
interval (1.0) divided by the count and is 1/8 in the
example so that a 3-bit accumulator is the smallest ac-
cumulator that can be used. Increasing the size of the
accumulator allows increased resolution in the phasing
of the overflow without causing excessive jitter in the
timing estimate.

early sampling: optimum late sampling

(a)

optimum samping time half
way bdween zem crossings

(b)
larga variance atnon

optimum sampling point small variance at

Figure 8: Eye diagram for the QPSK I channel
and their relationship to common timing synchro-
nization techniques: (a) Maximum Likelihood esti-
mation using the slope of the eye at the current es-
timate, (b)Zero-crossing detector or Gardner loop,
(c)Minimum-variance of dither loop.

to equalizer

I
MF

M F

5 Conclusion
trigger

generator

The continuing evolution of communication stan-
dards and competitive pressure in the market place
dictate that communication system architects must

Figure 9: Block diagram of an approximation to the
maximum likelihood symbol timing estimator.

203

$IzEtf t

I 8 I

Figure 10: A polyphase partition of the matched fil-
ter and derivative matched filter that implements the
interpolation needed to enhance the resolution of the
timing estimate.

start the engineering design and development cycle
while standards are still in a fluid state. Third and
future generation communication infrastructure must
support multiple modulation formats and air interface
standards. FPGAs provide the flexibility to achieve
this goal, while simultaneously providing high levels of
performance. The SDR implementation of tradition-
ally analog and digital hardware functions opens-up
new levels of service quality, channel access flexibility
and cost efficiency.

The software in a SDR defines the system per-
sonality, but currently, the implementation is often
a mix of analog hardware, ASICs, FPGAs and DSP
software. The rapid uptake of state-of-the-art semi-
conductor process technology by FPGA manufactur-
ers is opening-up new opportunities for the effective
insertion of FPGAs in the SDR signal conditioning
chain. Functions frequently performed by ASICs and
DSP processors can now be done by configurable logic.
This paper has provided an overview of how carrier
and timing synchronization can be implemented in an
FPGA. While the QPSK Costas loop and differential
matched filter servo loops described in the paper form
the key components of a QPSK modulation system, a
number of additions and refinements (for example car-
rier acquisition) are required to produce a complete
system. These aspects are the basis of on-going re-
search.

rollova
detector

acsumulator
I
I
I
I
I I

M

polyphas; ‘
[

mod-M
counter

filter
index I I

I I

I I I

I I

! m !
polyphas; 1 m0d-M 1 i

I
I I

counter
filter
index

I I

Figure 11: The counters used to trigger the sam-
pling of the polyphase matched filter and to track the
polyphase index (i.e. the interpolation phase).

References

H. Meyr, M. Moeneclaey and S. A. Fechtal, Digi-
tal Communication Receivers, John Wiley & Sons
Inc., New York, 1998.

B. Sklar, Digital Communications Fundamentals
and Applications, Prentice Hall, Englewood Cliffs,
New Jersey, 1988.

The Mathworks Inc, Matlab, Getting Started with
Matlab, Natick, Massachusetts, U S A , 1999.

The Mathworks Inc, Samulink, Dynamic System
Simulation for Matlab, Using Simulink, Natick,
Massachusetts, U.S.A, 1999.

Xilinx Inc., The Programmable Logic Data Book,
1999.

Xilinx Core Generator System,
http://www.xilinx.com/products/logicore/
coregen/index. htm

C. H. Dick and f. j. harris, “Direct Digital Synthe-
sis - Some Options for FPGA Implementation”,
SPIE International Symposium O n Voice Video
and Data Communication: Reconfigurable Tech-
nology: FPGAs for Computing and Applications
Stream, Boston, MA, USA, pp. 2-10, September
20-21 1999.

204

http://www.xilinx.com/products/logicore

