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Synchronization in the human cardiorespiratory system
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We investigate synchronization between cardiovascular and respiratory systems in healthy humans under
free-running conditions. For this aim we analyze nonstationary irregular bivariate data, namely, electrocardio-
grams and measurements of respiratory flow. We briefly discuss a statistical approach to synchronization in
noisy and chaotic systems and illustrate it with numerical examples; effects of phase and frequency locking are
considered. Next, we present and discuss methods suitable for the detection of hidden synchronous epochs
from such data. The analysis of the experimental records reveals synchronous regimes of different ordersn:m
and transitions between them; the physiological significance of this finding is discussed.
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I. INTRODUCTION

A well-known common feature of oscillatory systems a
biological oscillators, in particular, is their ability to synchr
nize. Entrainment of periodic~also noisy! self-sustained os
cillators by external periodic force, or mutual synchroniz
tion of several such oscillators is well understood@1–5#, and
this theoretical knowledge is widely used in experimen
studies and in the modeling of interaction between differ
physiological ~sub!systems. The examples range from t
modeling of the heart in the pioneering paper of van der
and van der Mark@6# to investigation of the circadian rhythm
@7,5#, phase locking of respiration with mechanical ventila
@8# or with locomotory rhythms@9#, coordinated movemen
@5# and animal gaits@10#, phase locking of chicken embry
onic heart cells with external stimuli and interaction of sin
node with ectopic pacemakers@5#, synchronization of oscil-
lations of human insulin secretion and glucose infusion@11#,
locking of spiking from electroreceptors of a paddlefish
weak external electromagnetic field@12#, and synchroniza-
tion of heart rate by external audio or visual stimuli@13#. In
the experimental studies, the respective rhythms were
ally treated as noise-perturbed periodic oscillations, a
phase locking was approximately detected via visual insp
tion of the experimental data, or by means of phase den
histograms@14#.

In this paper we use our recent achievements in un
standing hidden synchronization effects in chaotic and no
oscillators@15–19# to address the interaction between card
vascular and respiratory systems in humans. Although
well-known that these systems do not act independently@20#
and in spite of early communications in the medical literat
~that often used different terminology! @21–23#, in the bio-
logical physics community these two systems were of
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considered to be not synchronized. So, an extensive rev
of previous studies of biological rhythms led to the conc
sion that ‘‘there is comparatively weak coupling betwe
respiration and the cardiac rhythm, and the resulting rhyth
are generally not phase locked’’~see@5#, p. 136!. Recently,
the interaction of these vital systems attracted the attentio
several physics groups, and synchronization during pa
respiration @24–26# was investigated. Here, as well as
Refs. @21–23# only synchronous states of ordersn:1 (n
heartbeats within 1 respiratory cycle! were found due to limi-
tation of thead hocmethods used for the analysis of data

In our previous work@27# we have reported on cardiores
piratory synchronization under free-running conditions; t
proposed analysis technique allows us to find out synch
nous epochs of different ordersn:m. This finding gives some
indication for the existence of an unknown form of cardi
respiratory interaction.

Here we systematically study cardiorespiratory synchro
zation from the nonlinear dynamics viewpoint. We discu
the difference between this effect and frequency modula
of the heart rhythm known as respiratory sinus arrhythm
~RSA! @28#. Conceptual models are used to demonstrate
notion of synchronization in noisy systems, effects of pha
and frequency locking are discussed, and different te
niques for quantitative analysis of phase synchronizat
from experimental data are presented.

The paper is organized as follows. In Sec. II we brie
present the physiological background and describe the
periments performed and the data measured. Section III c
tains basic notions of synchronization in noisy and chao
systems illustrated by numerical examples. In Sec. IV
discuss the synchronization approach to the analysis of
variate data and introduce several techniques for such an
sis. Section V presents the results of application of th
methods to our data. Finally, in Sec. VI we discuss our
sults.

II. EXPERIMENT AND PHYSIOLOGICAL BACKGROUND

We performed noninvasive examinations with eig
healthy volunteers~14 to 17 years, high performance swim
mers, 4 male, 4 female, cf. Table I!. The subjects were laying
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TABLE I. List of subjects: the variability of the interbeat intervals and respiratory cycle length is q
tified by the median and the interquartile range~IQR! ~difference between first and third quartile! of respec-
tive distributions.

Code Sex Age

R-R ~s! Respiratory cycle~s!

Median IQR Median IQR

A m 16.1 1.104 0.028 3.110 0.390
B m 14.6 1.018 0.095 3.210 0.610
C m 13.9 0.975 0.110 3.230 0.850
D f 15.2 1.157 0.157 2.930 0.780
E m 16.9 1.026 0.089 3.650 0.620
F f 15.0 1.024 0.143 2.960 0.700
G f 15.9 0.733 0.070 5.615 1.550
H f 16.3 1.256 0.197 4.260 2.100
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at rest and no constraints like paced respiration or me
exercising were used.

The electrocardiogram~ECG! was registered by standar
leads and respiration was measured by a thermistor at
nose synchronously, while respiratory abdominal moveme
were registered for control. The duration of each record is
minutes. All signals were digitized with 1000-Hz samplin
rate and 12-bit resolution.

For the analysis of the heart rate the times ofR peaks in
the ECG@Fig. 1~a!# were extracted by a semiautomatic alg
rithm with manual correction. Only data sets without ext
systoles are used for the subsequent analysis.

The respiratory signals are narrow banded@Fig. 1~b!#; all
these records were visually inspected and, if required,
processed. After low-frequency trend elimination, a seco
order Savitzky-Golay filter@29# was applied to remove high
frequency noise.

Both respiration and heart rate display strong variabil
this can be seen from the distributions of the length of r
piratory and cardiac cycles~Fig. 2!. Both rhythms are typi-
cally irregular and strongly nonstationary, as is illustrated
Fig. 3, where the data for one of the subjects are shown

The human cardiovascular and respiratory systems do
act independently; their interrelation is rather complex a
still remains a subject of physiological research~see, e.g.,
al
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@20,30# and references therein!. As a result of this interac-
tion, in healthy subjects the heart rate normally increa
during inspiration and decreases during expiration, i.e.,
heart rate is modulated by a respiratory-related rhythm. T
frequency modulation of the heart rhythm~see Fig. 4! has
been known for at least a century and is commonly refer
to as RSA. It is well-studied~see, e.g.,@31#! and is thought to
be due to the following mechanisms: reflection of respirat
blood pressure waves via baroreceptor feedback loop in
heart rate@32#, respiratory phase-dependent modulation
baroreflex information processing@33#, and central coupling
between respiratory neurons on the one hand, and sym
thetic and/or parasympathetic neurons on the other h
@34#.

The interaction between the cardiovascular system
respiration involves a large number of feedback and fe
forward mechanisms. As a first approximation one can
gard this coupling as unidirectional, i.e., consider only t
influence of the respiratory-related rhythms on the heart
@20,30#. It is very important to mention that although th
arrhythmia~RSA! is termed ‘‘respiratory,’’ the variation of
the heart rate is not directly caused by respiration its
Moreover, ‘‘periodic changes in the baroreflex efficiency
this frequency range continue without respiration. Th
means that this fluctuation of reflex efficiency is not a sim
FIG. 1. Short segments of an electrocardiogram with theR peaks marked~a! and of a respiratory signal~b!; both signals are in arbitrary
units.
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PRE 60 859SYNCHRONIZATION IN THE HUMAN . . .
‘irradiation’ of a ‘respiratory’ rhythm generator but rather th
expression of an independent rhythm. In most cases the l
is synchronized with the central rhythm, which projects on
the respiratory muscles’’~@20#, see also,@35,33#!. In other
words, there probably exists an additional central gener
producing rhythm in the respiratory frequency range@24#.
This conjecture is very important in the context of investig
tion of cardiorespiratory interaction. Analyzing our data a
searching for synchronization, we should have in mind t
the cardiovascular system may be influenced bytwo rhythms
with close or coinciding frequencies. The exact form of th
influence is unknown, but it is important that this action
modulating the heart rate, i.e., at least one of these rhyth
acts on the cardiovascular system parametrically.

III. SYNCHRONIZATION OF IRREGULAR OSCILLATORS

Synchronization is a universal phenomenon that occ
due to the coupling of two or more nonlinear oscillators.
number of quite different effects are referred to as synch
nization. Understood in a wide sense as the mutual time c
formity of two or more processes@3,36#, this phenomenon
lacks a unique definition and requires more precise desc
tion in particular cases. For example, in the context of

FIG. 2. Distributions of the length of interbeat, or R-R interva
~left panels! and respiratory cycles~right panels! for 1800-s-long
measurements demonstrate high variability of both rhythms
strong interindividual differences. The letters to the right of t
plots correspond to the subjects codes~cf. Table I!.
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interaction of chaotic oscillators one distinguishes betwe
complete, generalized, phase and lag synchronization~see,
e.g., @17#!, with all these states being defined in differe
ways.

Throughout this paper we understand synchronization
an adjustment of rhythms ofnonidenticalself-sustained os-
cillators ~or, of the rhythm of one oscillator and that of a
external force!, due to interaction@36,4#. In the simplest case
of two periodic oscillators, synchronization is classically u
derstood asphase locking,

uwn,mu5unf12mf2u,const, ~1!

wheren and m are some integers that describe the locki
ratio, f1,2 are the phases of the oscillators, andwn,m is the
generalized phase difference, or relative phase@37#. Note
that the phasesf1,2 are not cyclic on the interval@0,2p#, but
are defined on the whole real line. For periodic oscillators

d

FIG. 3. Nonstationarity of the data~subject D! is demonstrated
by strong variability of the R-R~interbeat! intervals~a! and of the
instantaneous frequencyf (t) of respiration~b!. f (t) is calculated by
means of two methods. The solid line shows the frequency
corresponds to the maximum of the power spectrum computed
running window via autoregressive technique~Burg method@29#!;
window length is 30 s. The dashed line represents the instantan
frequency obtained with the help of the analytical signal appro
~see Appendix A!.

FIG. 4. An example of pronounced respiratory sinus arrhythm
~subject G!: heart rate~a! is modulated by a respiratory relate
rhythm. Respiratory signal~arbitrary units! is shown in~b!.
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860 PRE 60SCHÄFER, ROSENBLUM, ABEL, AND KURTHS
condition of phase-locking~1! is equivalent to the condition
of frequency locking nV15mV2 where V1,25^ḟ1,2& and
brackets mean time averaging. The locking region appe
then as a plateau in the plot ofDV5nV12mV2 versus the
differenceDv of the parameters that govern the detuning
uncoupled systems~Fig. 5!. In other words, if the frequency
of one oscillator varies, the second one follows this variati
This adjustment of oscillator frequencies takes place i
certain range ofDv. From the family of curvesDV
5 f «(Dv) for different strength« of coupling between oscil-
lators, one can determine the synchronization regions, or
nold tongues, in the plane~Dv,«!.

If we encounter more complicated cases than the inte
tion of two periodic oscillators, e.g., consider synchroniz
tion in the presence of noise, synchronization of chaotic s
tems, or synchronization of an oscillator with modulat
natural frequency, the notion of synchronization becomes
sentially less trivial. Moreover, the notions of phase and f
quency locking may not be equivalent any more. In the f
lowing we illustrate this with several numerical examples

A. Synchronization as phase locking

First we discuss synchronization innoisyperiodic oscilla-
tors, see, e.g.,@2,38,39#. If noise is weak, then in the syn
chronous state, i.e., in the vicinity of the center of the s
chronization region, the generalized phase differencewn,m
fluctuates in a random way around some constant value
the noise is weak andbounded, then there exists a range o
mismatchDv, where the condition of frequency locking
fulfilled on average, i.e.,n^V1&5m^V2&. Near the bound-
aries of the Arnold tongue, noise can causephase slips, i.e.,
an ‘‘additional’’ or ‘‘missing’’ cycle of an oscillator result-
ing in a rapid upward or downward jump ofwn,m by 2p. As
a result, the frequency-locking condition is violated, and
transition out of the synchronous regime is now smea
~Fig. 5!. If the noise is unbounded, e.g., Gaussian, the pr
ability of a slip to occur is nonzero forDvÞ0, so that
strictly speaking the synchronization region shrinks to

FIG. 5. Qualitative dependence of the frequency differenceDV
of two coupled periodic oscillators on the parameter mismatchDv.
Curve 1 sketches the noise-free case where the synchronizatio
gion can be clearly determined. With an increasing level of no
~curves 2 and 3! the border of synchronization region becom
smeared and then shrinks to a point~curve 4!.
rs

f

.
a

r-

c-
-
s-

s-
-
-

-

If

e
d
-

a

point. As this probability is~exponentially! small for weak
noise, the synchronization region practically appears as
interval of Dv, where n^V1&'m^V2&. Strong noise can
quite often cause phase slips, so that the dependence o
frequency differenceDV on the mismatchDv is now com-
pletely smeared~Fig. 5, curve 4!, and, hence, synchroniza
tion appears only as a tendency.

Due to phase slips, the question ‘‘synchronous or nons
chronous’’ cannot be answered unambiguously, but o
treated in a statistical sense. Following the basic work
Stratonovich@2#, we understand phase locking in noisy sy
tems as the appearance of a peak in thedistribution of the
cyclic relative phase

Cn,m5wn,m mod 2p. ~2!

One can interpret this in the following way: There exists
preferred stable valuew0 of the phase difference between th
two oscillators. Under the influence of noisy perturbatio
this difference either fluctuates aroundw0 or jumps to a
physically equivalent stable statew062p• i , where i is an
integer, and fluctuates around this new stable value, until
next jump occurs. Although due to these noise-induc
jumps the phase difference performs a~biased or unbiased!
random-walk-like motion; the analysis of the distribution
this cyclic relative phase reveals the existence of a cer
preferred value. We can then use the test for deviation of
distribution from the uniform one to quantify synchroniz
tion ~see@40#!.

Before proceeding with numerical illustrations, we me
tion that our recent studies@15–19# of synchronization of
chaotic oscillators have shown that the notion of phase
be introduced for this case as well@41#, and effects of phase
and frequency locking can be observed, while the amplitu
remain chaotic and, in general, uncorrelated. In particula
was shown that phase dynamics of chaotic oscillators
qualitatively similar to that of noisy periodic oscillators wit
chaotic amplitudes playing the role of a noisy perturbation
phases@16#. Depending on the phase-coherence propertie
a strange attractor, i.e., on the certain characteristics of
intrinsic ‘‘noise’’ in the system, the synchronization prope
ties of a chaotic oscillator are similar to that of a period
oscillator with a different level of noise. For example, for th
Rössler system, the dependence ofDV5^ḟ1&2^ḟ2& looks
like the bold curve in Fig. 5, while for the Lorenz system
is like the dotted one@16#. As a consequence of this simila
ity in the phase dynamics, we can consider synchroniza
of noisy periodic and chaotic systems from a common vie
point.

To illustrate the statistical understanding of phase locki
we consider a periodically driven van der Pol oscillator
the presence of noise,

ẍ2m~12x2!ẋ1v0
2x5« sin~nt !1j, ~3!

wherem51, the natural frequencyv051, andj is Gaussian
delta-correlated noise,̂ j(t)j(t8)&52Dd(t2t8), D50.1.
By varying the frequencyn and amplitude« of the external
force, we look for synchronization of the oscillator by exte
nal force. Having in mind the physiological system we a
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e



c
as

om

oc
s
s
e
e

e
it

ti

i-

os
th

iv
-
s

om

th
o

e

an

ge,
de-
or-

-

c-

ha
of
f s
iv

in
he
ems
vely.
f the
ro-

nic

rce

PRE 60 861SYNCHRONIZATION IN THE HUMAN . . .
going to investigate, we have chosen an example of 3:1 lo
ing @42#. To detect synchronization, we compute the ph
differencew3,153nt2fvdP , wherefvdP is the phase of the
oscillator.

First we demonstrate the case of unbiased rand
walklike motion of the relative phase@Fig. 6~a!, curve 1#; the
parameters of the external forcing aren50.287 and «
50.8. The phase difference is bounded, so that phase l
ing in the sense of Eq.~1!, as well as frequency locking take
place; the distribution of the cyclic relative phase show
clear maximum@Fig. 6~b!#. For comparison we show th
phase difference of the autonomous oscillator and the p
odic force having the same average frequency@Fig. 6~a!,
curve 2#; the parameters aren50.3118 and«50. In this way
we imitate the occasional coincidence of frequencies. Inde
the frequency locking seems to be present, although
destroyed even by the slightest detuning, e.g., ifn changes in
the fourth digit. Nevertheless, this case can be easily dis
guished from synchronization~curve 1! by means of the dis-
tribution of the cyclic relative phase, which is almost un
form @Fig. 6~c!#.

Now we examine synchronization of the van der Pol
cillator near the border of the synchronization region;
parameters of forcing aren50.292 and«50.8. In this case
we observe biased random-walk-like motion of the relat
phase @Fig. 7~a!, curve 1#. The phase difference is un
bounded, i.e., there is no frequency locking. Neverthele
statistically understood phase locking is clearly seen fr
the distribution of the cyclic relative phase@Fig. 7~b!#.
Again, we show for comparison the phase difference in
case of ‘‘occasional’’ coincidence of frequencies of auton
mous oscillator and external force@n50.3145 and«50, Fig.
7~a!, curve 2#; the distribution of the cyclic relative phas
clearly shows the absence of synchronization@Fig. 7~c!#.
Similar results for mutually coupled noisy chaotic~Rössler!
oscillators are presented in@40,43#.

FIG. 6. Phase locking in a noisy oscillator.~a! The phase is
locked to that of external force but fluctuates due to noise~curve 1!.
The distribution of the cyclic relative phase~b! has a pronounced
maximum that means existence of a preferred value of the p
difference. Curve 2 in~a! shows an example of coincidence
average frequencies of two uncoupled systems; the absence o
chronization can be seen from the distribution of the cyclic relat
phase that is practically uniform~c!.
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B. Synchronization as frequency locking

In this section we analyze synchronization of a noisy v
der Pol oscillator with modulated natural frequency

ẍ2m~12x2!ẋ1~v01F!2x5j, ~4!

where F is the modulating term;m51,v051,D50.05.
Synchronization by parametric action has, to our knowled
not been studied in the literature. We do not perform a
tailed study of this case here, but only report several imp
tant properties.

First we considerperiodic modulationof the natural fre-
quency,F5« sinnt, and compute the dependence of theav-

eragedfrequency of the van der Pol oscillatorV5^ḟvdP& on
the modulating frequencyn; this frequency locking is dem
onstrated in Fig. 8, curve 1, for«50.6. In contrast to the
case of synchronization by additive forcing, this locking o

se

yn-
e

FIG. 7. Statistical phase locking without frequency locking
noisy oscillator.~a! Curves 1 and 2 show the relative phase for t
synchronized oscillator and for the case of two uncoupled syst
having the same difference of average frequencies, respecti
These cases can be easily distinguished from the distribution o
cyclic relative phase, which is unimodal in the presence of synch
nization ~b! and fairly uniform otherwise~c!.

FIG. 8. Synchronization of a van der Pol oscillator via harmo
modulation of its natural frequency~curve 1!. The borders of the
synchronization region are smeared in the presence of noise~curve
2!, or noise and second, low-amplitude, harmonic modulating fo
~curve 3!.
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862 PRE 60SCHÄFER, ROSENBLUM, ABEL, AND KURTHS
curs only if the amplitude of the modulation« exceeds some
threshold value~or at least the width of the synchronizatio
region below this threshold is vanishingly small!. The pres-
ence of noise smears the plateau in theDV vs n plot, as
expected~Fig. 8, curve 2!.

Now we add a second,subthreshold, modulating force so
that F50.6 sinnt10.2 sin 0.307t; the V5^ḟvdP& vs n plot
still shows frequency locking~Fig. 8, curve 3!. This quasi-
periodic modulationwas chosen here in order to simulate
a rough approximation the influence of two respirato
related rhythms on the heart rate~see Sec. II!. By this modu-
lation the phase difference remains practically bounded@Fig.
9~a!#. Nevertheless, from Fig. 9~b! we see that within the
synchronization region («50.6 andn50.309) the distribu-
tion of the cyclic relative phase is no longer unimodal; infl
ence of noise makes this distribution practically unifo
@Fig. 9~c!#. So, the quasiperiodic modulation shows an e
ample offrequency locking without phase locking. ~Another
example is given in@44#.!

It is important to underline the difference between sy
chronization and modulation. Due to modulation, the f
quency V of an oscillator is not constant anymore, b
changes from one cycle to another. If the modulation is, e
periodic with the frequencyn, then V also varies periodi-
cally, V(t)5V01Ṽ(nt), where Ṽ is a periodic function
with the period 2p/n. Exactly such a variation of the hea
rate due to modulation by a respiratory-related rhythm
called RSA in the context of cardiorespiratory interactio
This variation may or may not be accompanied by the f
quency locking,n^V&5mn, one of the effects that are stud
ied in the present paper. Hence, RSA and cardiorespira
synchronization are different, although definitely related p
nomena. To speak of synchronization of the variation of
heart rhythm~variation of R-R intervals, or RSA! and respi-
ration, as is done sometimes~cf. @45#!, is not correct: the
term modulation is more appropriate here.

To summarize the results of this section, the notion
synchronization in noisy systems is not unambiguous.

FIG. 9. Example of frequency locking without phase locking.
the case of modulation, the average frequency of the van der
oscillator is practically locked to that of the modulating force~a!,
but due to the presence of a second, subthreshold modulating
the distribution of the cyclic relative phase is no longer unimo
~b!. Noise makes this distribution practically uniform~c!.
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pending on the type of interaction, e.g., external forcing
modulation, one can observe either phase locking in
sense of Eq.~1! and locking of averaged frequencies,
phase locking in a statistical sense, i.e., existence of a
ferred value of the cyclic relative phaseC @Eq. ~2!# without
frequency locking, or, finally, frequency locking and pha
locking in the sense of Eq.~1!, but without statistical prefer-
ence of a certain value ofC.

IV. SYNCHRONIZATION APPROACH TO THE
ANALYSIS OF BIVARIATE DATA

Now we discuss how the idea of synchronization can
used to study the underlying dynamics of possibly intera
ing complex systems from experimental data. A typical pro
lem in time series analysis is to reveal the presence of
interdependence between two~or more! systems from the
signals measured at their outputs. The analysis of these
variate data is traditionally done by means of cro
correlation~cross-spectrum! technique@46# or nonlinear sta-
tistical measures like mutual information, maxim
correlation, or bispectral analysis@47#.

Recently, Schiffet al. @48# applied the mutual prediction
technique to verify the assumption that measured bivar
data originate from two synchronized systems, where s
chronization was understood as the existence of a functio
relationship between the states of two systems, called ge
alized synchronization.

In our approach we assume that the measured biva
data originate from two interacting self-oscillatory system
which may either be phase synchronized or oscillate in
pendently@18,40,43#. This means that we cannot consid
the system under study as a ‘‘black box,’’ but need so
additional knowledge to support this assumption in ev
particular case. For the study of cardiorespiratory interact
this assumption is quite reasonable; indeed, the cardiova
lar and respiratory systems are individual oscillators hav
their own rhythms, but they are known to be coupled~see
Sect. II!. An advantage of our approach is that it allows us
address even weaker interaction between two oscillatory
tems than that of Schiffet al. @48#. Indeed, the notion of
phase synchronization implies only the existence of so
relationship between phases, whereas the irregular am
tudes may remain uncorrelated. The irregularity of amp
tudes can mask the phase locking so that traditional te
niques treating not the phases but the signals themselve
less sensitive in the detection of systems’ interrelat
@18,49#. Moreover, the state of phase synchronization occ
for lower values of coupling than the state of generaliz
synchronization@17#; therefore, we expect it to be typical i
natural systems, for instance, in cardiorespiratory interact
Certainly, the relation between phases should be unders
in a statistical sense@27,40,43#.

Below we present several data-analysis techniques
reveal phase synchronization. Obviously, the first step in
analysis is the computation of the phases themselves.
instantaneous phasesof an arbitrary signal can be obtaine
by means of the analytical-signal approach based on the
bert transform~see Appendix A!. A very important property
of this technique is that it does not require stationarity of
data. Sometimes, the signal can be reduced to a serie
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PRE 60 863SYNCHRONIZATION IN THE HUMAN . . .
events, i.e., to a point process. This is exactly the case in
analysis of cardiac activity, where the electrocardiogram
often reduced to the sequence ofR peaks appearing at time
t i . Computation of the phase and frequency of such a p
cess is described in Appendix B.

A. Analysis of phase difference

A straightforward approach to the analysis of synchro
zation is to plot the generalized phase differencewn,m @see
Eq. ~1!# versus time and look for horizontal plateaus in th
presentation; there exist no regular methods to pick up
integersn andm, so that they are usually found by trial an
error. This simple method proved to be efficient in the inv
tigation of model systems@15# as well as in some experimen
tal data @18,49#. By means ofwn,m(t) plots one can trace
transitions between synchronous and nonsynchronous s
that are due to nonstationarity in interacting systems an
coupling. A disadvantage of the method is that synchron
regimes that correspond to neighboring Arnold tongues, e
synchronization of ordersn:(m11), appear in this presen
tation as nonsynchronous epochs. Respectively, in orde
reveal all the regimes, one has to analyze a number of p
Another drawback of this technique is that if noise is re
tively strong, this method becomes ineffective and may
even misleading. Indeed, frequent phase slips mask the p
ence of plateaus~cf. Fig. 7! and synchronization can be re
vealed only by statistical approach, i.e., by analysis of
distribution of the cyclic relative phaseCn,m .

For nonstationary data, such an analysis should be don
a running window; this approach turned out to be efficie
for the analysis of synchronization between the activity
different brain areas as well as between brain and mu
activity from magnetoencephalography data@40#.

B. Instantaneous frequency ratio

Another technique for the detection of synchronization
based on the analysis of the ratio of instantaneous freq
cies of two signals~computation of these frequencies is d
scribed in the Appendices!. For stationary data this ratio
would be constant and would correspond to the winding~ro-
tation! number.

As the precision of computation of frequencies for no
data is rather poor, this method can be used only in addi
to the analysis of phase differences. Its advantage is
there is no need to search for appropriate values ofn andm;
moreover, an approximately constant value of the ratio
be used for estimation of these integers. Besides, by ana
of instantaneous frequencies in nonstationary signals one
approach the question whether we indeed observe sync
nization and not occasional coincidence of frequencies~see
below!.

C. Phase stroboscope: a synchrogram

The method presented here is closely related to the c
struction of a Poincare´ section for a dynamical system. Fo
example, a common way to study the dynamics of a perio
cally driven oscillator is to observe it stroboscopically wi
the period of the external force. Here we use a ‘‘phase s
boscope,’’ i.e., we observe the phase of one oscillator
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periodically in time, but at timestk when the cyclic phase o
another one attains a certain fixed valueu, f1(tk)mod 2p
5u, and construct asynchrogramby plotting c(tk) vs tk ,
where

c~ tk!5
1

2p
@f2~ tk!mod 2p#. ~5!

In the noise-free case ofn:1 synchronization, the phase o
the first oscillator attains the fixed valueu for n distinct
values of c, so that this plot exhibitsn horizontal lines.
Noise smears out these lines, and some bands are expec
be observed instead.

It is important that this technique can be generalized
the case ofn:m synchronization by consideration ofm adja-
cent oscillations of the second oscillator as one cycle~the
phase within these cycles grows from 0 to 2pm):

cm~ tk!5
1

2p
@f2~ tk!mod 2pm#, ~6!

see Fig. 10. An important feature of this graphic tool is th
in contrast to phase difference plots, only one integer par
eterm has to be chosen by trial. Moreover, several synch

FIG. 10. Principle of the phase stroboscope, or synchrogr
Here a slow signal~a! is observed in accordance with a fast sign
~e!. Namely, it is observed when the cyclic phase~d! of the signal
shown in ~e! attains a certain fixed valueu ~dashed line!; these
instants are marked by peaks shown in~c!. Measured at these in
stants, the phase of the slow signal wrapped modulo 2pm, ~i.e., m
adjacent cycles are taken as a one longer cycle! is plotted in ~f!;
herem52. In this presentationn:m phase synchronization show
up asn horizontal lines. We note that if one signal, e.g., heartbe
can be reduced to a point process, then the plot~c! is obtained in an
obvious way.
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nous regimes can be revealed within one plot, and the t
sitions between them can be traced. Indeed, if due
nonstationarity the coupled systems exhibit a transition fro
e.g., 3:1 to 5:2 locking, then this is reflected in the propo
presentation withm52 as a transition from a 6- to a 5-lin
structure; an example for our experimental data is prese
in Sec. V A.

We stress two essential differences of this tool from th
used in@21,24–26#.

~i! For the construction of the plots we use for they axis
instantaneous phases instead of the time interval since
previous inspiration. This allows us~a! to address phase re
lations and to reveal phase-locking phenomena, i.e., to sp
of synchronization in strict physical terms and~b! to deal
with nonstationary data and neglect the variation of the r
piratory period.

~ii ! Wrapping the instantaneous phase that is defined
the whole real line into@0,2pm# interval allows us to look
for synchronous epochs of arbitrary ordern:m and not only
n:1.

We note that if one of the signals, e.g., heartbeat, can
considered as a point process, then the natural way to ch
the instants of the stroboscopic observationtk is to take them
as the instants of occurrence of characteristic events, e.gR
peaks in an ECG. In the context of the analysis of cardior
piratory interaction, we call such plots cardiorespiratory s
chrograms~CRS’s! @27#.

A very important property of the synchrogram is that it
equally effective in case of synchronization either by ext
nal or parametric forcing. On the contrary, the straightf
ward approach, i.e., the analysis of phase differences, is
sentially less efficient in the case of parametric forcing, i
modulation. To illustrate this, we analyze a model examp
Suppose the first signal is a pure sine wave, as an analog
respiration, and the second one is a point process that
tates heartbeat. Let also 3 ‘‘heartbeats’’ occur within ea
‘‘respiratory’’ cycle, i.e., 3:1 synchronization takes plac
First we consider the case without modulation. Let t
‘‘heartbeats’’ occur at the following values of the ‘‘respira
tory’’ phase:f r(tk)5f012p/3•k, wheref0 is some con-
stant andk50,1,2, . . . . Therelative phasew3,1 at the times
tk when the ‘‘heartbeats’’ occur is, respectively,w3,1(tk)
53f r2fh53(f012p/3•k)22p•k53f0 and in the dis-
tribution of the cyclic relative phaseC3,15w3,1mod 2p one
observes ad peak; in the presence of noise this peak
smeared. Now suppose that modulation takes place,
‘‘heartbeats’’ appear within each ‘‘respiratory’’ cycle with
nonuniform step:

f r~ tk!5H f02D12p/3•k, k50,3,6,...

f012p/3•k, k51,4,7,...

f01D12p/3•k, k52,5,8,...

Then, the relative phase attains three different values,

w3,1~ tk!5H 3~f02D!,
3f0 ,
3~f01D!,
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and the distribution of the cyclic relative phase has th
peaks. Noise blurs these peaks so that they may ove
nevertheless, the resulting distribution is rather broad if co
pared with the case without modulation. Hence, in this ca
the analysis of the distribution is not reliable for the dete
tion of synchronization. The synchrogram, on the contra
demonstrates in both cases three bands and is, there
equally effective. The only difference is that these bands
either equally or nonequally spaced~Fig. 11!.

V. DETECTING SYNCHRONIZATION BETWEEN HEART
RATE AND RESPIRATION

In this section we describe the application of the abo
presented methods to experimental data. We recall that
piratory signals are narrow-banded@cf. Fig. 1~b!#, and, there-
fore, their phase and frequency can be computed by mean
the Hilbert transform~see Appendix A!; electrocardiograms
@cf. Fig. 1~a!# can be reduced to point processes~sequences
of R peaks! and treated as described in Appendix B. W
present the details of our analysis for two subjects, and t
summarize the results.

FIG. 11. Different efficiency of straightforward analysis of th
relative phase and synchrogram technique in the case of synch
zation via external forcing@~a!, ~b!, and ~c!# and modulation@~d!,
~e!, and ~f!#; 3:1 locking is taken here as an example. In the fi
case point events~‘‘heartbeats’’! occur at three equally spaced va
ues of the ‘‘respiratory’’ phase~see text!. These values are show
by black points on circle~a! and the corresponding radii. The nois
smears these values; this is illustrated by the gray band around
radii. In this case, the distribution of the cyclic relative phase sho
a single maximum~b!. In the case of modulation, the events are n
equally distributed on circle~d! and the respective distribution~e!
has three maxima and is essentially broader than the one show
~b!. As a result, the synchronization seems to be not well expres
Nevertheless, synchrograms~c! and~f! efficiently reveal synchroni-
zation in both cases. The difference between synchronization
external forcing or modulation shows up by different distances
tween the horizontal bands in these plots.
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A. Example of phase locking

The sequence of R-R intervals and frequency of resp
tion for subject A~Fig. 12! clearly demonstrate the nonst
tionarity of the data. First, we analyze the generalized ph
differencewn,m for different valuesn and m and instanta-
neous frequency ratio~Fig. 13!. The latter is an indication o
the possibility of 5:2 locking within the first'300 s and of
3:1 locking appearing after'750 s. Nevertheless, from th
analysis of relative phase only, we cannot reliably confi
the occurrence of synchronized epochs. Indeed,w3,1 exhibits
some plateaus interrupted by phase slips only for the last
s ~see inlet in Fig. 13!; w5,2, as well as the values of relativ
phase for other locking ratios, displays no plateaus in
presentation.

The presence of 3:1 locking becomes more evident if
consider the distribution of the cyclic relative phaseC3,1 @cf.
Eq. ~2!#. As the data are nonstationary, we compute this d

FIG. 12. The data for subject A: time course of R-R~interbeat!
intervals~a! and of the instantaneous frequencyf (t) of respiration
~b! clearly demonstrate the nonstationarity of the time series.

FIG. 13. Generalized phase difference and frequency ratio
subject A. Relative phasew3,1 ~a! shows some indication of 3:1
phase locking. For a comparatively short period of time one can
plateaus in the plot ofw3,1 vs time, interrupted by phase slips~see
inlet!. The time dependence ofw5,2 ~b! remains approximately con
stant during the first 300 s but displays no distinct plateaus, as
be seen from the zoomed plot~inlet!. The instantaneous frequenc
ratio is shown in~c!.
a-

se

00
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tribution in a running window~Fig. 14!; the preference of a
certain value ofC3,1 within the last'900 s is clearly seen.

The next step is to perform the stroboscopic analysis
the respiratory phases as described in Section IV C. The C
clearly exhibits six horizontal lines within the last'1000 s
~Fig. 15!; this is confirmed by the respective distributio
~phase-density histogram! showing six well-expressed peak
This presentation makes the presence of 3:1 phase lockin
the data quite evident.

B. Example of frequency locking

Within the first'300 s the CRS for subject A~Fig. 15!
has a clear 5-band structure. These bands are not horizo

r

ee

an

FIG. 14. Distribution of the cyclic relative phaseC3,1/2p cal-
culated in a running window~400 heartbeats! and coded by gray
scales also gives some indication of synchronization in the t
interval 600–1400 s. Black color corresponds to the maximal v
ues.

FIG. 15. ~a! CRS of subject A, showing the transition from
5-band structure~5:2 locking! to a 6-band structure~3:1 locking!.
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hence, the distribution ofc2 is practically uniform, so that
we cannot speak of phase locking. Nevertheless, the oc
rence of these bands shows that, on average, two adja
respiratory cycles contain 5 heartbeats, so that this epoch
be considered as an example of frequency locking.

Another illustrative example can be found in the data
subject D; these data were already introduced in Fig. 3.
analysis of relative phase and instantaneous frequency
~Fig. 16! indicates epochs of 3:1 and 5:2 synchronizatio
The CRS plot confirms that we encounter statistical
phase locking within the time interval'400– 1200 s~Fig.
17!. The interval 1200–1800 s represents frequency lock
the relative phasew5,2 fluctuates around a constant value,
that, on average, the frequency ratiof h / f r55:2. Although
we can find some short epochs with 5 distinct bands~e.g.,
aroundt51400 s), and the distribution ofc2 is not uniform,
we cannot with confidence speak of phase locking in t
case. From the other side, long-lasting coincidence of
quencies by pure chance seems to be very unlikely~compare
with the model example in Sect. III A!.

C. Summary of experimental results

The experimental results are summarized in Table II. T
subjects are listed there in the order of ascending intensit
respiratory sinus arrhythmia. The latter is characterized
the following way. First we compute the RSA amplitude f
every respiratory cycle as the difference between the lon
and the shortest R-R interval within this cycle; if an R
interval spans two neighboring cycles, it is considered
belong to that one, which contains more than 50% of
interval. Next, we calculate the median of the distribution
the RSA amplitude for all respiratory cycles; this quantity
taken as a measure of the RSA intensity.

FIG. 16. Subject D. Relative phasesw3,1 ~a! andw5,2 ~b! show
some indication of 3:1 and 5:2 synchronization, respectively. T
is consistent with the values of instantaneous frequency ratio~c!.
Although the plateaus in the time course of the relative phase
not very distinct@see inlets in~a! and ~b!#, statistically understood
3:1 phase locking can be confirmed by means of CRS~see Fig. 17!.
Note that within the last 600 s the generalized phase differe
fluctuates around a constant level, indicating frequency locking
average.
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We observe that cardiorespiratory synchronization te
to become weaker with increasing RSA. Thus, these
effects might be the consequence of two competing ph
ological mechanisms. Another observation is that synchro
zation seems to be more pronounced in male subjects@50#.

VI. DISCUSSION AND OUTLOOK

Concerning the interpretation of observed phase struct
we have to be aware of an important issue: how can we
sure that these patterns of the relative phase indeed ind
synchronization, and, respectively, underlying nonlinear
namics? How reliable is this indication? There is no strai
way to answer these questions so far. Actually, as sync
nization is not a state, but a processof adjustment of
rhythms due to interaction, we cannot prove its existenc
we do not have access to the system parameters and ca
check experimentally that the synchronous state is stable
wards variation of the parameter mismatch within a cert
range. As we are not able to do such experiments on hum
the only way to get some confirmation~but certainly not a
proof! of our conclusions is to make use of the fact that t
data are nonstationary. Indeed, we can trace the variatio
the instantaneous frequencies of both signals and their r
tion. If we find some epochs, as in the case of our da
where both frequencies vary, but their relation remains sta

is

re

e
n

FIG. 17. ~a! CRS of subject D demonstrates 6-band structure
the range 400–1200 s confirming 3:1 phase locking. Note that th
is no phase locking in the statistical sense in those intervals w
the generalized phase difference@Fig. 16~b!# indicates phase lock-
ing.
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TABLE II. Summary of the results: the subjects are listed in the order of ascending amplitude of
ratory sinus arrhythmia; the amplitude of RSA is characterized by median and the interquartile range
distribution of the RSA amplitude within every cycle~see text!. The results show that synchronization an
RSA seem to be competing phenomena. Note the indication of more pronounced synchronization
subjects@50#.

Code Sex

RSA ~s!

SynchronizationMedian IQR

A m 0.015 0.040 3:1~1000 s!, 5:2 ~300 s!, 8:3 ~20 s!
B m 0.031 0.038 3:1~several spells of 40 s!
C m 0.046 0.057 3:1~20 s!, 7:2 ~20 s!, 4:1 ~20 s!
D f 0.056 0.057 5:2 and 3:1~several spells of 30 s!
E m 0.067 0.047 7:2~60 s!, 3:1 and 4:1~20 s!
F f 0.074 0.075 11:4~20 s!
G f 0.083 0.070 No synchronization detectable
H f 0.264 0.296 No synchronization detectable
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~Fig. 18!, this can be considered as a strong indication
favor of our conclusion.

Another indication that also can be obtained using the
of nonstationarity of the data is the presence of several
ferentn:m epochs within one record. Indeed, one can arg
that observed phase or frequency locking of, e.g., order
could be due to the coincidence of frequencies of the
coupled systems. Nevertheless, occasional coincidenc
frequencies having the ratios exactly corresponding to ne
boring Arnold tongues~3:1, 8:3, and 5:2 in case of subject A
cf. Fig. 19! seems to be very unlikely.

If the data are rather stationary and we are not able to
such epochs, the situation is more difficult. From the fi
sight, a natural way to address this problem is to use here

FIG. 18. A transient epoch within the data of subject A confir
the existence of synchronization. The periods of cardiac~R-R! and
respiratory cycles (T) are shown in~a! and ~b!, respectively. After
a short epoch of nonsynchronous behavior~1150–1200 s! the fre-
quencies of heart rate and respiration change, probably due to
influence of a certain control mechanism, and become locked,
f r / f h'1/3. In the next 50 s we observe that, although both frequ
cies decrease, this ratio remains almost constant~c!. This means
that one of the systems follows the other one, i.e., synchroniza
takes place. 3:1 phase locking is also clearly seen from CRS~d!.
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surrogate data techniques@51,25,40#. However, we see som
serious problems in this approach. The usual formulation
the null hypothesis that is used for nonlinearity tests is
consider a Gaussian linear process@52# with a power spec-
trum that is identical to that of the tested signal; more
phisticated methods@53# imply also preservation of the prob
ability distribution. Modification of this null hypothesis fo
the tests for synchronization—consideration of two surrog
signals that preserve the linear cross correlation between
original data—seems to be insufficient. Indeed, due to
definition of synchronization, we are interested in the re
tion between instantaneous phases, whereas the variatio
amplitudes and their interrelation is of no importance. T
usual way to construct surrogates~randomization of Fourier
phases! used in@51# mixes the phase and amplitude prope
ties transforming the variation of instantaneous phase

the
.,
-

n

FIG. 19. Another transient epoch within the data of subject
The periods of cardiac~R-R! and respiratory cycles (T) are shown
in ~a! and ~b!. The ratio of instantaneous frequencies~c! jumps
between the values 1/3, 3/8, 2/5, and 3/7 corresponding to
neighboring synchronization regions; these values are shown
horizontal lines. Very short epochs of synchronization can be s
from the CRS~d! as several repeating patterns. So, e.g., the 8-p
patterns mean 8:3 synchronization~8 different values of relative
phase repeat themselves within 3 respiratory cycles!.
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the variation of instantaneous amplitude and vice versa.
sides, the signals generated by self-sustained oscillators
sess certain properties of the distribution of instantane
amplitudes~see@54# and references therein!, and this distri-
bution is destroyed by the Fourier phase randomization.

As a separate related problem, we mention quantifica
of synchronization strength. Two measures have been
posed to quantify statistical phase locking from the distrib
tion of the relative phase@40#; the quantification of synchro
grams remains an open question.

To conclude, although the general problem of reliabil
of estimates for the considered inverse problem requires
ther investigation, in the case of our experiments we
claim with high confidence that we have shown synchro
zation between the cardiovascular and the respiratory sys
in humans. In the present paper we have confirmed our
lier communication@27# that phases of both rhythms can b
locked with different ratiosn:m, and not only withn:1 as
was shown in previous works. Our finding demonstrates
the cardiorespiratory interaction cannot be described in te
of ‘‘triggering’’ of one oscillator by another one@23#.

From our time-series analysis we cannot directly draw
conclusion on the origin of coupling that is responsible
the effect we observe. Nevertheless, we can make the fol
ing remarks:~a! From the analysis of a transient epoch~Fig.
18! we see that first the heart rate remains practically c
stant while the frequency of respiration decreases. Du
this epoch the systems are not synchronized. Then,
rhythms accelerate abruptly, and synchronization sets
This sudden change might be caused by the chemorece
signaling that the concentration of CO2 in the blood in-
creased due to slow breathing. Note that the onset of s
chronization is accompanied by the appearance of RSA,
by increased activity of some parts of the autonomous n
vous system~ANS!. Hence, in this particular case cardiore
piratory synchronization may be related to central neu
regulation.~b! Preliminary results of the work in progres
@55# show that synchronization can be also observed in h
transplant subjects. These subjects have no direct ne
regulation of the heart rate by ANS; therefore, in this ca
some other mechanisms are responsible for the locking
nomenon.
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APPENDIX A: INSTANTANEOUS PHASE AND
FREQUENCY OF A CONTINUOUS SIGNAL

A consistent way to define the phase of anarbitrary sig-
nal is known in signal processing as the analytic signal c
cept@56,46,57#. This general approach, based on the Hilb
transform~HT! and originally introduced by Gabor in 194
@58,56#, unambiguously gives theinstantaneous phase an
amplitudefor a signals(t) via construction of theanalytic
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signal z(t), which is a complex function of time defined a

z~ t !5s~ t !1ı s̃~ t !5A~ t !eıf(t), ~A1!

where the functions̃(t) is the HT ofs(t),

s̃~ t !5p21PE
2`

` s~t!

t2t
dt ~A2!

and P means that the integral is taken in the sense of
Cauchy principal value. The instantaneous amplitudeA(t)
and the instantaneous phasef(t) of the signals(t) are thus
uniquely defined from Eq.~A1!.

As one can see from Eq.~A2!, the HT can be considere
as the convolution of the functionss(t) and 1/pt. Due to the
properties of convolution, the Fourier transformS̃(v) of s̃(t)
is the product of the Fourier transforms ofs(t) and 1/pt. For
physically relevant frequenciesv.0,S̃(v)52ıS(v). This
means that the Hilbert transform can be realized by an id
filter whose amplitude response is unity, and phase respo
is a constantp/2 lag at all frequencies@56#.

An important advantage of the analytic signal approach
that the phase can be easily obtained from experiment
measured scalar time series. Numerically, this can be d
via convolution of the experimental data with a precompu
characteristic of the filter~Hilbert transformer! @46,57,59#.
Although HT requires computation on the infinite time sca
i.e., the Hilbert transformer is an infinite impulse respon
filter, the acceptable precision of about 1% can be obtai
with the 256-point filter characteristic. The sampling ra
must be chosen in order to have at least 20 points per ave
period of oscillation. In the process of computation of t
convolutionL/2 points are lost at both ends of the time s
ries, whereL is the length of the transformer. Alternatively
HT can be obtained by performing fast Fourier transfo
~FFT! of the original signal, shifting the phase of every fr
quency component by2p/2, and applying inverse FFT.

Although formallyA(t) andf(t) can be obtained for an
arbitrarys(t), they have clear physical meaning only ifs(t)
is a narrow-band signal, see the detailed discussion in@60#.
In this case the amplitudeA(t) coincides with the envelope
of s(t), and theinstantaneous frequencycorresponds to the
frequency of the maximum in the instantaneous spectrum

Estimation of instantaneous frequencyf (t) of a signal is
more cumbersome. Direct approach, i.e., numerical differ
tiation of f(t), naturally results in very large fluctuations i
the estimate off (t). Moreover, one may encounter th
f (t),0. This happens not only due to the influence of noi
but can result from a complicated form of the signal. F
example, some characteristic patterns in the ECG~e.g., theT
wave! result in negative values of instantaneous frequen
From a physical point of view, we expect that the instan
neous frequency is a slowly~with respect to the characteris
tic period of oscillations! varying positive function of time
and has a meaning of a number of oscillations per time u
This is especially important for the problem of synchroniz
tion where we are not interested in the behavior of the ph
on a time scale smaller than the characteristic oscillation
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riod @16#. There exist several methods to obtain the estima
of f (t) in accordance to this viewpoint; for a discussion a
comparison, see@60#.

Here we use the technique that is called in@60# a ‘‘maxi-
mum likelihood frequency estimator.’’ Suppose the instan
neous phasef(t) is unwrapped into the infinite interval, s
that this function is growing, although not necessarily mon
tonic. Then we perform for each instant of time a local po
nomial fit on an interval essentially larger than the charac
istic period of oscillations. The~analytically obtained!
derivative of that polynomial function in this instant gives
estimate of the frequency that is always positive. Practica
we perform it by means of a Savitzky-Golay filter; a 4t
order polynomial and the interval of approximation equ
approximately 10 characteristic periods seems to be a rea
able parameter choice. The instantaneous frequency c
puted in this way practically coincides with the maximum
running autoregression spectrum obtained, e.g., by mean
the Burg technique@29#, cf. Fig. 3.
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APPENDIX B: PHASE AND FREQUENCY OF A POINT
PROCESS

The series ofR peaks can be considered as a sequenc
point events taking place at timestk . Phase and slowly vary
ing frequency of such a process can be easily obtained
deed, the time interval between twoR peaks corresponds t
one complete cycle of the oscillatory process; therefore,
phase increase during this time interval is exactly 2p. Hence,
we can assign to the timestk the values of phasefk

5f(tk)52pk. It is difficult to deal with this time series
because it is not equidistantly spaced. Nevertheless, we
make use of the fact that it is a monotonically increas
function of time, and invert it. The resulting processt(fk) is
equidistant, as the phase step is 2p. Now we can apply the
polynomial fitting technique described in Appendix A to o
tain the instantaneous periodTk5T(fk). Inverting the series
once again we obtain the frequencyf k5 f (tk)51/Tk .
tics
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