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We study the stability of the synchronized state in time-varying complex networks using the concept of basin

stability, which is a nonlocal and nonlinear measure of stability that can be easily applied to high-dimensional

systems [P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Phys. 9, 89 (2013)]. The time-varying

character is included by stochastically rewiring each link with the average frequency f . We find that the time

taken to reach synchronization is lowered and the stability range of the synchronized state increases considerably

in dynamic networks. Further we uncover that small-world networks are much more sensitive to link changes than

random ones, with the time-varying character of the network having a significant effect at much lower rewiring

frequencies. At very high rewiring frequencies, random networks perform better than small-world networks and

the synchronized state is stable over a much wider window of coupling strengths. Lastly we show that the stability

range of the synchronized state may be quite different for small and large perturbations, and so the linear stability

analysis and the basin stability criterion provide complementary indicators of stability.
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I. INTRODUCTION

Complex networks have been extensively studied over the

last few decades as they provide us a framework for modeling

many physical, biological, social, and engineering systems

[1–4]. Collective phenomena emerging on a network are

primarily determined by the dynamics of the nodes and

the interactions among them. Synchronization of dynamical

units at nodes has particularly attracted researchers from

diverse fields such as biology, ecology, sociology, power grids,

climatology, etc. [5–9]. Initially many of them assumed the

interactions among the nodes to be invariant over time, though

lately there have been efforts to incorporate a time-varying

nature of the interactions leading to evolving networks. In one

way such time variations represent the evolution of interactions

over time. In another way they can be helpful in representing

discontinuities in interactions, i.e., when the nodes interact

only for limited time. Such time-varying interactions are com-

monly found in social networks, communication, biological

systems, spread of epidemics, computer networks, world wide

web, etc., and have been shown to result in significantly

different emergent phenomena [10–27].

Major advances have been made in the analysis of such

time-varying networks and it has been shown that if connec-

tions change quite rapidly, then the network can be essentially

modeled as the aggregate of the interactions over time [10,28].

It was also shown that if the Laplacian matrices at different

times do not commute, the spread of transverse Lyapunov

exponents decreases and for coupled Rössler oscillators the

stability range of the time-varying case was found to be larger

than that of the time-averaged case [11]. When the time period

of variation of links is close to the time period of nodal

dynamics, then new stable synchronized states may appear

*Corresponding author: vivek.kohar@gmail.com

[17]. Very recently, similar results have been found in temporal

networks, i.e., where only a single edge exists at one particular

instant of time [29]. Long lasting interactions slowed down

diffusion in such networks and the slow eigenmodes of the

effective Laplacian matrix were shown to be affected more as

compared to fast eigenmodes [25].

Many earlier approaches have studied the stability of the

synchronized state by linearizing the dynamical equations

[30,31]. Such approaches have enabled the analysis of stability

of large class of synchronized oscillators. However, there

have been studies [32] where local stability predictions do

not corroborate with the actual dynamical response of the

system. Jost et al. [33] have proved that linear stability provides

conditions for stability of a synchronized solution that are

necessary but not sufficient. Detailed studies of these cases

reveal that local stability results can only be valid for small

perturbations, and here small could actually be infinitesimal in

some cases. Thus to correctly predict the dynamical response

to any kind of perturbation, one should have a clear idea about

the complete landscape of the coupled system. By complete

landscape we mean that one should know the size of basin of

attraction [34,35] for all local minimas present in the system.

In this regard, Menck et al. [36,37] propounded the concept of

basin stability (BS) based on the volume of basin of attraction

and showed that linear stability and BS may be quite different

and both approaches should be considered to evaluate the

stability of the synchronized state.
In this work, we study the stability of the synchronized state

when the underlying connection network evolves in time. The
BS paradigm is particularly useful in case of time-varying
networks as it can be applied to a very large class of systems,
whereas the linear stability analysis can be done exactly only
in some specific cases. For this reason, most of the previous
studies have considered some special switching schemes
such as very fast rewiring [10,28], on-off coupling [17,24],
temporal networks [29], or a particular class of local dynamics
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[15]. Furthermore, linear stability and basin stability can be
different in case of time-varying networks. Here, we consider
Watts-Strogatz (WS) networks and vary the fraction of random
links p to cover a broad range of networks varying from a
regular ring topology for p = 0 to random networks for p = 1.
For intermediate values of p, such networks are characterized
by small path length and high clustering coefficient, typically
referred to as small-world networks (SW). The time-varying
character is considered by assuming that each link rewires
with a rewiring frequency f . We discuss our model in the next
section and present BS results in Sec. III. The linear stability
analysis for fast rewiring case is shown in Sec. IV. In Sec. V, we
study stability of the synchronized state in the on-off coupling
model and show how results from linear stability analysis
and BS may differ when the system is subjected to large
perturbations. We present our conclusions in the last section.

II. MODEL

We begin by describing our link rewiring method. In our
model each link in the network rewires stochastically and
independently of the other links with an average frequency f .
Specifically we consider ensembles of WS networks consisting
of N -coupled Rössler oscillators, in which the dynamics at a
node i is given by:

ẋi = −yi − zi − c

N
∑

j=1

Lijxj

ẏi = xi + a1yi (1)

żi = a2 + zi(xi − a3),

where c is a coupling constant, L the Laplacian matrix, and the
parameters a1 = b1 = 0.2, and a3 = 7.0. The Laplacian matrix
is obtained from the adjacency matrix A whose elements
Aij = 1 if nodes i and j are connected and 0 otherwise.
The diagonal elements of Laplacian matrix are sum of the
corresponding rows of the adjacency matrix, i.e., if i = j ,

Lij =
∑N

j=1 Aij . For i �= j , Lij = −Aij and hence Lij is zero
row sum matrix. For the given set of parameter values, each
uncoupled Rössler oscillator has a chaotic trajectory and the
synchronous state corresponds to the case when all oscillators
follow the same trajectory. To construct a WS network, we
start with a regular ring in which each node is connected to its
2k nearest neighbors, k on either side. Then we rewire each
link with probability p by cutting it from any one side and
joining to some randomly selected distant node. Next at any
time t , the link is rewired with probability f dt where dt is
the integration time step. If the edge is between two distant
neighbors, it is rewired to a nearest neighbor of one of the nodes
with a probability 1 − p. Similarly if the edge is between
two nearest neighbors, then with probability p, it is broken
from one of the nodes and connected to a random distant
node, and not rewired otherwise. Thus on average, pkN links
couple distant neighbors and (1 − p)kN links couple nearest
neighbors and the rewiring represents the rate at which nearest
neighbor links become random or vice versa. Whenever an
edge is selected for rewiring, the node from which it will
be cut is chosen at random. The nodes are initialized with
random values, x ∈ [−15 : 15],y ∈ [−15 : 15],z ∈ [−5 : 35].
These values roughly correspond to the size of the chaotic

attractor. We simulate the system for 106 time steps with an
integration time step of 0.01, i.e., for a total time of 10 000
and check the final state of the system. We have checked
the results for consistency for integration time steps up to
10−5. There are three possibilities: (i) the system synchronizes,
(ii) it does not synchronize, and (iii) it diverges. To determine
whether a system is synchronized or not, we consider the
differences xi − xj , yi − yj , zi − zj for all pairs i,j ∈ [1 : N ],
(i �= j ) and call the final state as synchronized if each of
these quantities is less than some threshold (taken to be
0.0001 in our representative results). If at some instant, any
of |x|, |y|, or |z| exceeds 1000, the system is assumed to be
diverging. In all other cases, if till the end of 106 time steps, the
system neither diverges nor synchronizes, then it is taken to be
unsynchronized. BS is given as the average of the number of
synchronized initial conditions for various values of coupling
strengths chosen from a sufficiently large interval.

III. RESULTS

We simulate the above system for various fractions of

random links p and coupling strengths c and further average

out the results over a number of initial conditions. For every set

of parameter values, we simulate our system for 500 different

initial conditions. A new network is generated for every initial

condition and the nodes are initialized with random values

in the interval x ∈ [−15 : 15],y ∈ [−15 : 15],z ∈ [−5 : 35].

We vary the rewiring frequency f from low to high and

calculate the percentage of initial conditions that arrive at the

synchronized state. Here large f means that the edges are

rewiring very quickly whereas a low value of f implies that

the network is almost static.

Figure 1 shows the fraction of initial conditions arriving

at the synchronous state for different f,c,p, and k. It can

be seen that the range of coupling strength over which the

synchronous state is stable increases considerably as the

rewiring frequency f increases. Also, it is easily inferred

that when the network approaches the global limit (k → N ),

the change in connections will not affect the dynamics, while
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FIG. 1. (Color online) Color (grayscale) indicates the fraction

of initial conditions arriving at the synchronized state for various

rewiring frequencies f and coupling strengths c. Fraction of random

links p is 0.2 (left) and 0.8 (right) and number of nearest neighbors

on each side k is 2 (top) and 4 (bottom).
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FIG. 2. (Color online) The fraction of initial conditions which

arrive at the synchronized state for different rewiring frequencies

averaged over different coupling strengths (0 < c < 0.6 for k = 4).

The corresponding values of BS for the averaged networks are 0.24,

0.28, 0.31, 0.34, 0.37 for p = 0.2,0.35,0.5,0.65,0.8, respectively.

the effects of time-varying links will be most pronounced in

networks with lower number of neighbors k.

Further, notice that while the range of synchronization is

largest when the fraction of random links p is high, the time-

varying nature of the links starts to affect networks with low

p at lower rewiring frequencies. In this sense networks with

low p are more sensitive to dynamic connections. To further

illustrate this point, we calculate the BS of the network for

fixed p and f (see Fig. 2) [38]. When the rewiring frequency is

close to 0, i.e., the network is almost static, BS is higher for low

values of p as reported in Ref. [36]. As the rewiring frequency

increases, BS for low p values rises rapidly, whereas the rise

in BS for high p values is slower, indicating that BS for SW

networks (low p) approaches to that of fast rewiring networks

even for slowly rewiring networks, whereas a much higher

rewiring frequency is needed for random (high p) networks to

reach the level of fast rewiring networks. Notice also that at

very fast rewiring times the basin stability is larger for networks

with more spatial randomness, i.e., high p. So for networks

where the connections change infrequently SW networks are

more significantly affected than completely random networks,

while for networks that change rapidly, random networks yield

larger synchronization regions than SW networks.

The time taken to reach the synchronized state is plotted in

Fig. 3 and it can be seen that more randomness (i.e., higher p)

and higher rewiring frequency result in lower synchronization

times. In Fig. 1 we observe that the fraction of initial conditions

arriving at the synchronized state decreases for intermediate

values of rewiring frequencies in the k = 2 case. This is so

because in this range of rewiring frequencies, the time taken

to arrive at the synchronized state increases (see Fig. 4) and

many initial conditions neither synchronize nor go to infinity,

but continue to stay in the unsynchronized state for long times.

These time scales correspond to the transition from static to

dynamic behavior. For frequencies lower than these, the time-

varying character of the networks is lost and the dynamics
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FIG. 3. (Color online) Time taken to reach the synchronized state

for various coupling strengths, and rewiring frequencies at p = 0.2

(top) and p = 0.8 (bottom) for k = 4. It can be seen that fast rewiring

networks take much lower time to reach the synchronized state.

is essentially that of static networks. Note that in the on-off

coupling model discussed in Ref. [17], the dynamics can be

determined by Lyapunov exponents for similar time scales

(relating f ∼ 1/T ).

In Fig. 4 we also notice that the synchronous state in fast

rewiring networks is stable for coupling strengths larger than

the averaged case. This is more pronounced for large p (0.8

here). When a network rewires with a large f , the Laplacian

matrix changes rapidly and many of these Laplacian matrices

do not commute and hence the stability range is larger than

the averaged case [11]. Further note that as the number of

neighbors increases, this effect is reduced and the averaged

case and fast rewiring case converge. This can be explained on

the grounds that the Laplacian matrix is sparse in case of very

few neighbors and so chances of consecutive matrices being

noncommutative are higher.

To get further insights, we plot the fraction of initial

conditions that synchronize as a function of the coupling

strength and rewiring frequency in Fig. 5. We see that this

fraction primarily depends on the coupling strength, with

randomness p or rewiring frequency having little effect.
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FIG. 4. (Color online) Time taken to reach the synchronized

state for various coupling strengths, and rewiring frequencies at

p = 0.2 (top) and p = 0.8 (bottom) for k = 2. It can be seen that

synchronization time increases for intermediate values of rewiring

frequencies f ∼ 0.1 for p = 0.8.

IV. LINEAR STABILITY ANALYSIS

It was reported in Refs. [10,17,28] that a time-varying

network can be approximated by the time-averaged network

for sufficiently fast rewirings. In our case, for the time-

averaged network the entries in the Laplacian matrix will be

−(1 − p) for nearest neighbors and −2kp/(N − 2k − 1) for

distant nodes. Now we follow the master stability function

(MSF) approach [30,31] and find the coupling range for which

the synchronous state is locally stable. Our system can be

written as:

Ẋi = F (Xi) + c

N
∑

j=1

Aij [H (Xj ) − H (Xi)] (2)

= F (Xi) − c

N
∑

j=1

LijH (Xj ), (3)

where X i = (xi ,yi ,zi) is the three-dimensional state vector of

dynamical variables of the ith node. F (X) is the functional

form describing the dynamics of an isolated node. c is the
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FIG. 5. (Color online) Fraction of initial conditions arriving at

the synchronized state for k = 2 (top) and k = 4 (bottom) at various

rewiring frequencies and p = 0.2 (left) and p = 0.8 (right). One

can see that while the percentage of initial conditions arriving at

synchronized state for a fixed coupling strength is larger for averaged

network, the fast rewiring networks are stable for a larger range of

coupling strengths.

coupling strength and A is the adjacency matrix such that

Aij = 1 if nodes i and j are connected and 0 otherwise.

H defines the functional form of coupling. In our case, the

oscillators are linearly coupled through their x component,

so H is simply a 3 × 3 matrix with H11 = x and Hij = 0

otherwise. Lij is the Laplacian matrix. The synchronization

manifold is defined by N − 1 constraints X1 = X2 = · · · =

XN . The variational equation of this system is given by

ξ̇ = [1N ⊗ DF + cL ⊗ DH]ξ, (4)

where ξ = (ξ1,ξ2 . . . ξN ) with ξi being the perturbation of the

i-th node and DF and DH are the Jacobian functions. Upon

block diagonalization this equation reduces to

ξ̇k = [DF + cγkDH]ξk, (5)

where γk are the eigenvalues of L. k = 0 gives the variational

equation of the synchronization manifold. For the synchronous

state to be stable, perturbations along all the transverse modes

must die out or the Lyapunov exponents of Eq. (5) must
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FIG. 6. (Color online) The region between solid red (dotted blue)

corresponds to the range of coupling strengths for which the

synchronized state is stable in the static (averaged) network for that

particular value of SW rewiring probability p calculated by following

the MSF approach for k = 2 (left) and k = 4 (right). For the static

case, the values have been obtained by averaging over 10 000 different

networks.

be negative for k > 0. In our example this is true if α1 <

cγk < α2 where α1 = 0.1232 and α2 = 4.663. In other words,

the synchronous state is stable against local perturbations

if the coupling strength is chosen from the interval c ∈

(α1/γmin,α2/γmax) where γmin and γmax are the minimum and

maximum non-zero eigenvalues of the Laplacian matrix.

In Fig. 6, we plot the range of the coupling strength

for which the synchronized state is stable according to the

MSF approach. We see that the coupling range for which

the synchronous state is stable widens considerably for the

averaged network as compared to the static one. Further, the

difference between static and averaged cases is maximum

when the number of neighbors is smallest. All these results

are consistent with those obtained using BS (see Fig. 1).

To understand how the transition from the static case to

time-averaged case depends on the rewiring frequency, we

define an order parameter Z as,

Z =
(

cmax
tv − cmax

s

)/(

cmax − cmax
s

)

, (6)

where cmax
tv is the maximum coupling strength for which even

a single initial condition settles at the synchronized state for

that particular rewiring frequency f and cmax
s is the coupling

strength for which the synchronized state is stable in case

of a static network. cmax is the maximum value of cmax
tv . For

static networks, its value is 0 and for fast varying networks

it is close to 1. The variation of this order parameter with the

rewiring frequency shows that the transition from static case to

time-averaged case is approximately linear with the log of the

rewiring frequency (Fig. 7). Further, as the SW parameter p

increases, the critical value of the rewiring frequency at which

Z starts increasing, also increases. Note that the maximum

value of the coupling strength for which the synchronized state

is stable is α2/λmin from the MSF approach. So the maximum

coupling strength up to which the synchronous state is stable
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FIG. 7. (Color online) Order parameter Z as a function of

rewiring frequency f . One can see that order parameter for low

p values increases at lower values of rewiring frequencies.

is directly related to the largest nonzero eigenvalue of the

effective Laplacian matrix. Recently it was shown that in case

of temporal networks [25], the effect of time scale of interac-

tions is least on fast eigenmodes. In this case, as the maximum

eigenvalue of the time-averaged SW networks is more than the

maximum eigenvalue of time-averaged random networks, we

can say that the eigenmodes of the time-averaged SW networks

are faster as compared to eigenmodes of the time-averaged

random networks. So the effect of rewiring is less on eigen-

modes of time averaged SW networks as compared to those

of random networks. Thus the time-averaged character can be

retained even at slower rewirings for the case of SW networks.

V. STABILITY IN THE ON-OFF MODEL

In this section we investigate another model of time-varying

networks in which time-varying character is implemented by

switching the interactions on or off. Specifically, we study

the on-off coupling model [17], in order to gain further

insights into the power of the basin stability approach in

time-varying networks. In this model, the network is switched

on if nT < t < (n + θ )T and off if (n + θ )T < t < (n + 1)T

for n = 0,1,2, . . . and 0 � θ � 1. θ = 0 implies that the

network is always off and all nodes are isolated, whereas if

θ = 1, the nodes are always connected. For other values of

θ the connections become on and off with time period T . It

was shown in Ref. [17] that the time scale T is of critical

importance for the network dynamics. If T is very small, the

stability of the synchronized state can be predicted by a static

time-averaged coupling. For very large T , stability can be

explained by Lyapunov exponents. When T is of the order

of the time scale of nodal dynamics, not only the region of

stability increases but the time taken to reach the synchronized

state also decreases. It was shown that for intermediate values

of T , the traditional bound for synchronization due to short-

wavelength bifurcations (SWBs) disappears and more stable

regions emerge. This analysis, based on linear stability of the

synchronous state is valid only for small perturbations. To

understand whether the linear stability analysis can accurately

predict the stability for large perturbations also, we calculate

the BS (calculated as the number of initial conditions that
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FIG. 8. (Color online) Maximum Lyapunov exponent (left) for

the on-off coupling model obtained from linear stability analysis for

T = 0.1 (top), T = 3 (middle), and T = 6 (bottom). Colored regions

correspond to cases when maximum Lyapunov exponent is negative,

i.e. the synchronized state is stable. The panels on right show the BS

of WS networks for p = 0.2 and k = 4 for the same values of T as

in the left panels. The results are qualitatively same for other values

of p also.

arrive at the synchronous state) for an on-off coupling model

by taking Rössler oscillators on WS networks. The results are

shown in Fig. 8. As can be seen in the left panels, the linear

stability indicated by largest Lyapunov exponent rises and falls

gradually with increasing coupling strength, whereas the BS

(right panels) rises smoothly for low values of coupling and

then drops sharply. Further, in the bottom panel we see that

whereas linear stability analysis predicts that the upper bound

for synchronous state disappears, from the BS we find that

it disappears only for the synchronous state corresponding to

low θ values. For the synchronous state corresponding to high

θ values, the BS approaches zero for high coupling strengths.

Furthermore, the BS is much higher for intermediate time

scales. These results indicate that for time-varying networks

linear stability analysis alone is not sufficient and we need to

calculate the BS also to accurately predict the stability of the

synchronized state.

VI. CONCLUSION

We have studied the stability of a synchronous state in

dynamic WS networks. In line with previous results [10,28],

we have found that for sufficiently fast rewirings, time-

varying networks can be approximated by static time-averaged

networks. To the best of our knowledge, till now there is no

method of finding out how fast the rewiring should be in order

to consider it sufficiently fast. Using the BS framework, we

have been able to estimate the rewiring frequency at which

the network can be approximated by the static time average.

Further we have gotten insights into how the transition from a

static to a time-averaged case takes place. We have shown how

the stability range changes at different rewiring time scales.

Our central result from the extensive numerical simulations is

that in case of SW networks the transition to the time-averaged

case occurs at a much slower link rewiring frequency compared

to random networks. We have found that not only the BS of

SW networks is highest in static cases as reported earlier, but

they approach the time-averaged coupling case fastest. That

is, their BS approaches that of the time-averaged case even

for very slow rewiring time periods. It has been observed

that if the links are rewiring rapidly, random networks yield

larger synchronization regions than SW networks. Further, we

have found that the impact of rewiring is maximum when the

number of neighbors is less. Lastly, faster rewiring networks

have been uncovered to synchronize quickly.

ACKNOWLEDGMENTS

V.K. acknowledges support from research scholarships

from the German Academic Exchange Service (DAAD) and

Council of Scientific & Industrial Research (CSIR), India. P.J.

acknowledges support from the China Scholarship Council

(CSC) scholarship. J.K. acknowledges IRTG 1740 (DFG and

FAPESP) for the sponsorship provided.

[1] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

[2] M. E. Newman, SIAM Rev. 45, 167 (2003).

[3] S. H. Strogatz, Nature (London) 410, 268 (2001).

[4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.

Hwang, Phys. Rep. 424, 175 (2006).

[5] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A

Universal Concept in Nonlinear Sciences, Vol. 12 (Cambridge

University Press, Cambridge, 2003).

[6] G. V. Osipov, J. Kurths, and C. Zhou, Synchronization in

Oscillatory Networks (Springer, Berlin, 2007).

[7] A. T. Winfree, J. Theor. Biol. 16, 15 (1967).

[8] A. Arenas, A. Daz-Guilera, J. Kurths, Y. Moreno, and C. Zhou,

Phys. Rep. 469, 93 (2008).

[9] T. Nishikawa and A. E. Motter, Proc. Natl. Acad. Sci. USA 107,

10342 (2010).

[10] I. V. Belykh, V. N. Belykh, and M. Hasler, Phys. D 195, 188

(2004).

[11] R. E. Amritkar and C.-K. Hu, Chaos 16, 015117 (2006).

[12] J. Lu and G. Chen, Automatic Control, IEEE Trans. Autom.

Control 50, 841 (2005).

[13] D. J. Stilwell, E. M. Bollt, and D. G. Roberson, SIAM J. Appl.

Dynamic. Sys. 5, 140 (2006).

[14] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora,

Phys. Rev. E 81, 055101 (2010).

[15] M. Chen, Phys. Rev. E 76, 016104 (2007).

[16] W. Lu, F. M. Atay, and J. Jost, Eur. Phys. J. B 63, 399 (2008).

[17] L. Chen, C. Qiu, and H. B. Huang, Phys. Rev. E 79, 045101

(2009).

[18] A. Gautreau, A. Barrat, and M. Barthlemy, Proc. Natl. Acad.

Sci. USA 106, 8847 (2009).

022812-6

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1073/pnas.0912444107
http://dx.doi.org/10.1073/pnas.0912444107
http://dx.doi.org/10.1073/pnas.0912444107
http://dx.doi.org/10.1073/pnas.0912444107
http://dx.doi.org/10.1016/j.physd.2004.03.013
http://dx.doi.org/10.1016/j.physd.2004.03.013
http://dx.doi.org/10.1016/j.physd.2004.03.013
http://dx.doi.org/10.1016/j.physd.2004.03.013
http://dx.doi.org/10.1063/1.2168395
http://dx.doi.org/10.1063/1.2168395
http://dx.doi.org/10.1063/1.2168395
http://dx.doi.org/10.1063/1.2168395
http://dx.doi.org/10.1109/TAC.2005.849233
http://dx.doi.org/10.1109/TAC.2005.849233
http://dx.doi.org/10.1109/TAC.2005.849233
http://dx.doi.org/10.1109/TAC.2005.849233
http://dx.doi.org/10.1137/050625229
http://dx.doi.org/10.1137/050625229
http://dx.doi.org/10.1137/050625229
http://dx.doi.org/10.1137/050625229
http://dx.doi.org/10.1103/PhysRevE.81.055101
http://dx.doi.org/10.1103/PhysRevE.81.055101
http://dx.doi.org/10.1103/PhysRevE.81.055101
http://dx.doi.org/10.1103/PhysRevE.81.055101
http://dx.doi.org/10.1103/PhysRevE.76.016104
http://dx.doi.org/10.1103/PhysRevE.76.016104
http://dx.doi.org/10.1103/PhysRevE.76.016104
http://dx.doi.org/10.1103/PhysRevE.76.016104
http://dx.doi.org/10.1140/epjb/e2008-00023-3
http://dx.doi.org/10.1140/epjb/e2008-00023-3
http://dx.doi.org/10.1140/epjb/e2008-00023-3
http://dx.doi.org/10.1140/epjb/e2008-00023-3
http://dx.doi.org/10.1103/PhysRevE.79.045101
http://dx.doi.org/10.1103/PhysRevE.79.045101
http://dx.doi.org/10.1103/PhysRevE.79.045101
http://dx.doi.org/10.1103/PhysRevE.79.045101
http://dx.doi.org/10.1073/pnas.0811113106
http://dx.doi.org/10.1073/pnas.0811113106
http://dx.doi.org/10.1073/pnas.0811113106
http://dx.doi.org/10.1073/pnas.0811113106


SYNCHRONIZATION IN TIME-VARYING NETWORKS PHYSICAL REVIEW E 90, 022812 (2014)
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