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Synchronization induced by directed higher-order
interactions

Luca Gallo® "2310* Riccardo Muolo® 34>10, Lucia Valentina Gambuzza®, Vito Latora® 278,
Mattia Frasca®® & Timoteo Carletti® 34

Non-reciprocal interactions play a crucial role in many social and biological complex systems.
While directionality has been thoroughly accounted for in networks with pairwise interac-
tions, its effects in systems with higher-order interactions have not yet been explored as
deserved. Here, we introduce the concept of M-directed hypergraphs, a general class of
directed higher-order structures, which allows to investigate dynamical systems coupled
through directed group interactions. As an application we study the synchronization of
nonlinear oscillators on 1-directed hypergraphs, finding that directed higher-order interactions
can destroy synchronization, but also stabilize otherwise unstable synchronized states.
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eling natural and artificial systems with a discrete topol-

ogy. The study of dynamical systems on networks has
thus triggered the interest of scientists and has spread across dis-
ciplines, from physics and engineering, to social science and
ecology!=3. Network models rely on the hypothesis that the inter-
actions between the units of a system are pairwise*. However this is
only a first order approximation in many empirical systems, such
as protein interaction networks>®, brain networks’~10, social
systems! 112 and ecological networks!3-1, where group interac-
tions are widespread and important. Recent years have thus wit-
nessed an increasing research interest for more complex
mathematical structures, such as simplicial complexes and
hypergraphs®16-19, capable of encoding many-body interactions.
These systems have been used to investigate various dynamical
processes, such as epidemic and social contagion?0-22, random
walks?3-24, synchronization?>2%, consensus?’-?8 and Turing pattern
formation??, to name a few. However, the proposed formalism is
not general enough to describe systems where the group interac-
tions are intrinsically asymmetric. For instance, group pressure or
bullying in social systems have an asymmetric nature, due to the
fact that group interactions are addressed against one or more
individuals but (often) not reciprocated3. (Bio)chemical reactions
are another typical example of higher-order directed processes, as,
though some reactions can be reversible, there is often a privileged
direction due to thermodynamics>31. Further examples come from
the ecology of microbial communities, where a direct interaction
between two species can be mediated by a third one32-33,

Although including some form of directionality in higher-order
structures is not entirely new>34, the few existing attempts to
study the effects of directionality on dynamical processes all suffer
from a series of limitations. For example, in the case of oriented
hypergraphs, where the nodes of each hyperedge are partitioned
into an input and an output set (not necessarily disjoint), because
of the underlying assumptions, one ultimately gets symmetric
operators (e.g., the adjacency or the Laplacian matrix) despite one
would expect directed interactions to yield asymmetric ones>>-37.
Furthermore, in the case of simplicial complexes*$-4! an orien-
tation has been introduced with the purpose of defining (co-)
homology operators, but is not associated to directionality, i.e.,
the Laplacian matrix is once again symmetric.

Here we introduce the framework of M-directed hypergraphs,
which naturally leads to an asymmetric higher-order Laplacian and
allows to study the dynamics of systems (e.g., nonlinear oscillators)
with higher-order interactions, fully accounting for their directionality.
In this article, we focus, in particular, on synchronization, a phe-
nomenon of utmost importance in many natural and artificial net-
worked systems*2. In order to assess the stability of a synchronized
state, we determine conditions under which a Master Stability

N etwork science is a powerful and effective tool in mod-

Function (MSF) approach®3-#> can be generalized to such directed
higher-order structures. As we will show in the following, the complex
spectrum of the asymmetric Laplacian operator entering into the MSF
has a strong impact on the system behavior. Indeed, we can determine
cases where the presence of directionality in higher-order interactions
can destabilize the complete synchronized state of the system, other-
wise obtained with reciprocal, i.e., symmetric coupling. Analogously,
we also find cases where the opposite behavior is observed, i.e., higher-
order directionality is the main driver for the onset of synchronization.

Results

M-directed hypergraphs allow to model directionality in
higher-order interactions. To introduce the framework we start
by defining a I-directed d-hyperedge as a set of (d + 1) nodes, d
of which, the "source” nodes, "point” toward the remaining one.
Let us observe that we used the notation where a d-hyperedge
represents the interactions among d + 1 agents (this is similar to
the notation adopted for simplicial complexes, where a d-simplex
models the interactions of d + 1 agents, while, often, for hyper-
graphs a d-hyperedge accounts for the interactions among d
agents!8). In this way, an undirected d-hyperedge can be seen as
the union of (d + 1) directed ones (see Fig. 1). Notice that this is a
natural extension of the network framework, in which a pairwise
undirected interaction can be decomposed into two directed
interactions. A 1-directed d-hyperedge, where the source nodes jj,
J2s o5 jd &oint toward node i, can be represented by an adjacency

tensor A with the following property
@  _ (d) —
Ay == A =1 (1)

where 7(j; ...,j;) is any permutation of the indices ji,...,jq
(Fig. 1). Observe that a generic permutation involving also index i
does not necessarily imply a nonzero entry in the adjacency
tensor, i.e., A is in general asymmetric. Note however that the
(d — 1)-th rank tensors obtained by fixing the first index of A(4)
are symmetric. By I-directed D-hypergraph we define a hyper-
graph formed by 1-directed d-hyperedges of any size d smaller or
equal to D. Note that these definitions provide a formalization in
terms of tensors of the concepts of B-arc and B-hypergraph
introduced by Gallo et al.3%. Indeed, as it will be clear later on, our
results strongly rely on the properties of such tensors.

Following the same reasoning, we can define an m-directed d-
hyperedge, for some m <d, as a set of (d+ 1) nodes, a subset of
which (formed by s = d + 1 — m units) points toward the remaining
m ones. Resorting again to the adjacency tensor we can write

=1, (2)

where 7(i; ... i,,) is any permutation of the indices iy, ..., i, and
7'(j, ... j,) is any permutation of the indices jy, ..., j.. In analogy with

@
Ay i Gy )

: M

(2) _ (2) _ (2)
A =0 A =0 AN 0
(2) _ (2) _ jm(ik) (2) _ i (jk) (2) _ jm(ik)
Aﬂ'(ijk) =1 Aiw(jk) =1 A2 -0 AjTr(ik) =1 A2 —0 Ak-n—(ij) =1 42 —0
km(ij) km(ij) im(jk)

Fig. 1 Elementary decomposition of undirected hyperedges. An undirected 2-hyperedge can be seen as the composition of three directed hyperedges. In
each of the three directed 2-hyperedges, the nodes acting as source of the interaction are interchangeable, i.e., switching them does not alter the nature of
the interaction. Therefore, the adjacency tensors A2 is symmetric to a permutation of the indices corresponding to the source nodes.
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the former case, a permutation where one or more of the indices
i, ..., iy appear in a position other than the first 7, may result in a
zero entry of the adjacency tensor. By indicating with M the largest
value of m, and with D the largest value of d, we can then define an
M-directed D-hypergraph (or M-directed hypergraph of order D).
The framework above can be straightforwardly extended to the case
of weighted directed hypergraphs.

M-directed hypergraphs are applied to dynamical systems with
asymmetric higher-order interactions. Let us now consider the
dynamics of N identical units coupled through a 1-directed
hypergraph of order D, with D >2. The equations governing the
system can be written as

D
= £0x)+ 3 0
=1

SR

o A g XX, ()
where x;(t) € R™ is the state vector describing the dynamics of
unit i, 0, ..., op > 0 are the coupling strengths, f : R” — R™ is
a nonlinear function that describes the local dynamics, while
g9 R™ @D R™ with de€{l,...,D}, are nonlinear cou-
pling functions encoding the (d+ 1)-body interactions. Let us
now assume that the coupling functions at each order d are
diffusive-like

d d d
g )(xi7le, Xy ) = h' )(le, X)) — hx,, ... ,x), (4)
with @ : R™*4 — R™, to ensure the existence of a synchro-
nized (invariant) solution x°=x; = --- =Xy, i.e,, the synchroni-

zation manifold. Diffusive coupling is common in many
systems?®, being such assumption not particularly restrictive.
However, it can be further relaxed to the milder requirement that
the coupling functions are non-invasive, ie, g@(x,
X,...,X)=0,Vd, which still guarantees the existence of the
invariant solution®>. In addition, let us also assume that the
coupling functions h(@ satisfy the condition of natural
coupling*>#7, namely

hP(x, ... ,x) = = hP(x,x) = hV(x). 5)

This second assumption turns out to be crucial to derive a Master
Stability Equation (MSE) to characterize the synchronization (see
Methods) and disentangle the effect of the directionality of the
higher-order interactions on it.

For sake of definiteness, in the following we focus on the
synchronization of identical oscillators coupled via 1-directed
hypergraphs, whose adjacency tensors A@ respect the symmetry
property (1). Let us thus denote by x%(f) the synchronous state,
which is solution of the decoupled systems x; = f(x;). From
Eq. (4), it immediately follows that the former is also solution of
the coupled system. To characterize the synchronization of the
coupled system, a linear stability analysis can be performed. To
this aim, we linearize Eqgs. (3) around x%(t), by considering small
perturbations 6x; = x; — x%, and, since the time evolution of these
variables determines the stability of the synchronous solution, we
study their dynamics. In particular, it is convenient to introduce

the stack vector 6x = [/, ... ,0x}]", whose dynamical equa-
tion under the hypothesis of natural coupling can be derived with
a series of steps detailed in Methods, obtaining

8% = [Iy ® JF — M ® JH|6x (6)

where JF (resp. JH), is the Jacobian matrix associated to the
function f (resp. h())), evaluated on the synchronous state x°. Note
that, because of the natural coupling (5), the Jacobians of
h®),... )h(D) evaluated on x* are all equal, and this is key to write
Eq. (6). In (6), the matrix M is given by

M =0, LD 4+ 6,1? + ... 4 g, L. (7)

where L@ is the generalized Laplacian matrix for the interactions
of order d defined by

(d) d!kg?(i) i=j
Li" = @ . .. ®
_(d - 1)'kln (la]) 17&]7
with ki(f)(i) being the generalized d-in-degree of node i
@iy L s 4@
ki (1) = E},“_%zlAgl i ©)

namely the number of d-hyperedges pointing to node i, and
ki(:) (i,7) the generalized d-in-degree of a couple of nodes (i, )

4@
(d—1) kzkd Ak
The latter represents the number of d-hyperedges pointing to
node i and having node j as one of the source nodes. Let us stress
that, because the adjacency tensor A is asymmetric, the
Laplacian matrix L@ is asymmetric as well. This matrix
represents the generalization to the directed case of the Laplacian
matrix introduced for undirected higher-order interactions!74>,
As an equivalent formulation, we rewrite Eq. (6) as follows

ki, j) = (10)

0k = []IN®JF—01/\7 ®]H}6x (11)
with M given by
M=LO + 1?4 4+ LP (12)

and where r;=0;/0y, i=2, ..., D. Eq. (11) highlights the analogy
between synchronization in directed hypergraphs with natural
coupling functions and synchronization in networks. In facts,
once fixed the parameters r;, the equations governing the
dynamics of the perturbations in a directed hypergraph are
formally equivalent to those of a system with weighted, directed
pairwise interactions among the units, coupling coefficient equal

to 0y, and a Laplacian matrix given by M. As both formulations
(6) and (11) are equivalent, for convenience hereby we conclude
the discussion on the analysis of the linearized system referring
back to Eq. (6), while Eq. (11) will turn out useful in the
numerical investigation, where, by fixing r;, we can focus the
analysis on the behavior as a function of ;.

Assuming for simplicity that M is diagonalizable, we can
project Eq. (6) onto each of its eigenvectors, obtaining in this way
N decoupled m-dimensional linear equations, parametrized by
the corresponding eigenvalue, from which the following generic
MSE can be written

§ = [JF(xX) — (a + iB)JHX)S. (13)

Note that, since the generalized Laplacian matrices are asym-
metric, the effective matrix M will also be asymmetric, therefore
it will have in general complex eigenvalues, motivating thus the
use of the complex parameter a+if. From the MSE, the
maximum Lyapunov exponent A, can be calculated as a
function of the complex parameter « + if. Stability requires that
A (o +1B) <0 where a + i is any non-zero eigenvalue of M.
The same condition on stability can be also found when M is not
diagonalizable, provided to consider an approach analogous to
that introduced in Nishikawa et al.8 for networks of directed
pairwise interactions and based on Jordan block decomposition in
place of diagonalization. In such framework, the crucial step is to
identify the matrix, which in our case is M, that provides the
eigenvalues to consider in checking the condition
A (@ +1iB)<0.

The linear stability analysis that leads to Eq. (13) can be carried
out following steps similar to those performed in Gambuzza
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et al.¥> for undirected simplicial complexes. These steps can be
straightforwardly generalized to deal with undirected hyper-
graphs. Instead, for directed hypergraphs the asymmetry of the
adjacency tensors must be taken into account. In fact, in this case,
the adjacency tensors are not symmetric with respect to all their
indices. However, the property (1) still allows the derivation of
generalized Laplacian matrices, extending the formalism pre-
sented in Gambuzza et al.*>. The interested reader can find the
detailed calculations in Methods.

Despite the formal similarities of the equations for synchro-
nization in hypergraphs and in simplicial complexes, we
emphasize that in the two scenarios different dynamical behaviors
can be obtained. For instance, due to the requirement that, given
a simplex of order d, all the simplices of lower order included in it
are present, the regions of synchronization are not identical in the
two types of higher-order structures. An example of the different
dynamics in the case of undirected interactions is provided in
Supplementary Note 1, showing a larger region of synchroniza-
tion for the simplicial complex.

A further important analysis would be to compare the
dynamical behaviors of directed hypergraphs and simplicial
complexes. However, at variance with hypergraphs, the
introduction of directionality in simplicial complexes is
disputable. In particular, a crucial aspect to solve is how to
deal with the inclusion constraint, establishing whether and
how it can be extended to the case of directed interactions. An
attempt in this direction has been made for oriented simplicial
complexes?Y, where it is highlighted that a simplex and its
boundary can have either concordant or opposite orientation.
The definition and the study of directed simplicial complexes
are beyond the purpose of the present paper, and thus left as
future work.

Directed higher-order interactions can change stability beha-
vior. Using the above introduced approach, we now illustrate the
effect of higher-order directionality on synchronization by using a
paradigmatic example of chaotic oscillator, i.e., the Rossler
system®®. We consider a system of N coupled Réssler oscillators,
whose parameters have been set to a =b=0.2, and ¢ =9, so that
the dynamics of the isolated system is chaotic. For sake of clarity
we limited our analysis to 1-directed 2-hypergraphs, but of course
its applicability goes beyond the considered case. The system of
equations read

z; +012A(1)( :

. 2
k= —y,— x}) +02]Z Afjk)(x X —x7)
Vi =x+ay,
z;=b+z(x; — ¢,
(14)
with i€{l,...,N}. We remark that the coupling functions

appearing in Eq. (14) are nonlinear and satisfy the natural cou-
pling hypothesis.

We consider the system to be coupled through a directed
weighted 2-hypergraph, whose asymmetry varies with a para-
meter p € [0, 1], representing the relative weight of the directed
hyperedges. The topology of the directed weighted 2-hypergraph
is schematically illustrated in panel a of Fig. 2, for the case of a
system with N = 8. When p =0, a triplet of nodes interacts only
through a single 1-directed 2-hyperedge. As p increases, so does
the weight of the other two components (1-directed 2-
hyperedges), up to p=1, where an undirected hypergraph is
recovered (see Methods for further details).

To proceed with the analysis, first we calculate the MSF
associated to system (14), by evaluating the maximum

Lyapunov exponent, A, (« + i), as a function of & and f by
means of the Wolfs algorithm®?. For synchronization to be
achieved, it is required that A (&« + i) <0, where & + if3 is any
non-zero eigenvalue of the matrix M. Conversely, if there is at
least a non-zero eigenvalue of M such that A >0, then
synchronization is lost. To illustrate the effect of directionality
on synchronization, we consider a directed weighted
2-hypergraph with structure as in Fig. 2a but N =20 nodes,
calculate the eigenvalues of M as a function of the asymmetry
parameter p and the coupling strength oy, and check whether
the stability condition is satisfied or not, in this way
constructing a synchronization diagram in the plane (p, gy).
Figure 2b shows this diagram for r, = 0,/0; = 10. The white
area represents the values (p,o0;) for which the system
synchronizes, ie., A, <0 for every eigenvalue of M, while
the orange area depicts the region where the synchronous
state is unstable, i.e., A, >0 for at least one eigenvalue of M.
While there is a region where varying p at fixed values of o, has
no effect on synchronization, there are two other regions where
this leads to a transition. In more detail, two different
transitions can appear, an example of which is highlighted by
the two horizontal dashed lines. For o; =0.02 the system
synchronizes for small values of p, i.e, when the hypergraph is
strongly directed, and loses synchronization for larger values of
p, i.e., when the hypergraph becomes symmetric. Conversely,
for o7 = 0.007 we find the opposite behavior, as synchronization
is achieved by increasing p, while directed hyperedges hamper
synchronization. The locus of the eigenvalues of M as a
function of p and for two different values of ¢, corresponding
to the two types of transitions induced by directionality, is
shown in the panels c-f of Fig. 2. Here, panels ¢ and d refer to
01 = 0.02, while panels e and f to 0; = 0.007. Moreover, panels d
and f show a zoom of the area close to the origin in panels ¢ and
e, respectively. In all these panels, the gray area represents the
region where the MSF is positive, while the white area portrays
the region of stability. Finally, the black line denotes the
boundary value A, (@ + if) = 0. We remark that the region of
the complex plane for which A, ,, is negative is bounded, both
along the real component, &, and the imaginary one, . This
suggests that either a large value of a, or a large value of  can
lead to instability. In panels ¢ and d, obtained for o; = 0.02, we
note that for large enough p the eigenvalues cross the boundary,
thus leaving the stability region and inducing the desynchro-
nization of the system. On the other hand, in panels e and f,
which display the case 07 =0.007, the eigenvalues of M leave
the stability region for small values of p, namely in this case
synchronization is observed for symmetric hyperedges, while
directed hyperedges move the system in a region where the
synchronous state is unstable.

To numerically validate this analysis, we monitor a synchro-
nization error defined as follows:

Xi||2>
T

1
E= <\/N(N— 1),12_ Ihx =

where T is a sufficiently large window of time, after discarding the
initial transient. In agreement with the analysis of the eigenvalues,
for 01 = 0.02, E vanishes for p = 0, while for p =1 it diverges. On
the other hand, for g; = 0.007, the synchronization error goes to
zero for p =1, while for p =0 it again diverges after a transient.
Overall, these results suggest that directionality can change the
synchronization behavior of a system of coupled chaotic
oscillators, either inducing synchronization in the system or
desynchronizing it.

However, for a different choice of the coupling functions, a
diverse synchronization behavior in relation to the structure of

(15)
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Fig. 2 Directionality induced (de)synchronization. a The weighted hypergraph as a function of the parameter p, controlling the transition of the

hyperedges from directed to undirected (the structure is schematically represented for N =8 nodes). Each undirected 2-hyperedge can be seen as the
combination of three directed hyperedges, two of which have a weight p € [0, 1]. When p =0, a triplet of nodes interacts only through a single directed
hyperedge, whereas when p =1, the hypergraph is symmetric. b Synchronization diagram in the plane (p, ¢y) for a system of Réssler oscillators with x-x
cubic coupling, being oy the coupling strength of the pairwise interactions. The white area indicates the region of stability, while the orange one the region
where the synchronous solution is unstable. The horizontal dashed lines represent two values of oy for which the system transits from a synchronized to an
unsynchronized state as a function of p (green line), and the other way around (blue line). Panels c-f show the locus of eigenvalues of the effective
Laplacian matrix M as a function of p, for a weighted hypergraph with N =20 nodes at two different values of &, (color coding is such that the directed
case p =0 is represented in yellow, and the symmetric one p =1, in blue). In the background, the white area indicates the region identified by a negative
Master Stability Function (MSF), the black line the boundary of this region, and the gray area the region where the MSF is positive. Panels d and f represent
a zoom of the area close to the origin of panels ¢ and e, respectively. Panels ¢ and d show a setting where the symmetric topology drives the system
unstable, whereas with a directed hypergraph the synchronization manifold results stable. Panels e and f display a case for which the symmetric topology

admits a stable synchronization state, while the directed hypergraph triggers the instability. The coupling strength for panels ¢ and d is set to o7 =
0.007. In both cases we set the ratio r, = 62/67 =10, where o is the coupling strength of the three-body interactions.

while for panels e and f to ¢, =

interactions may be obtained. For instance, if the coupling
functions are h"(x;) = [0, »7,0] and W2 (x;,x) = [0, Yk 0],
then the resulting region of stability is unbounded, making
impossible to desynchronize the system by turning the three-body
interactions symmetric (Supplementary Note 2).

The results discussed so far refer to a specific example of
connectivity between the oscillators. Since, once the oscillator
dynamics and the coupling functions (hence the system MSF)
are fixed, the main determinant for synchronization is the
position of the eigenvalues of M with respect to the region
of negative values of the MSF, understanding the effect of
directionality in other structures requires the study of
the spectrum of M. As a systematic characterization of the
spectrum as a function of the topological features of the
structure is far from trivial, we limited our analysis to two
random hypergraph generative models, obtained as higher-
order generalization of random network models, namely the
well-known Newman-Watts (NW) model and the Erdés-Rényi
(ER) one. We have found that the impact of directionality on
the eigenvalue position (and so ultimately on synchronization)
strongly depends on the model adopted for generating the
hypergraph, with the NW-like model showing a larger impact of
directionality on the spreading of eigenvalues in the complex
plane, when compared to the ER-like model (see Supplementary
Note 3 for a detailed analysis of the two models).

0.02,

Controlling for confounding factors

In the previous section, we have shown how directionality can
induce either the synchronization of a system of coupled chaotic
oscillators or its desynchronization. However, there may be
confounding factors determining the change of the system
behavior. In fact, the way in which 1-directed hypergraphs are
made symmetric, namely by varying the parameter p, does not
conserve the total strength of the interactions.

To determine whether the observed effects are truly due to
directionality, we proceed with an alternative symmetrization
method that keeps constant the total coupling strength. Starting
from a 1-directed 2-hyperedge, we now add directed hyperedges
in the two remaining directions with a weight g € [0, 1/3], while
simultaneously decreasing the strength of the initial one, setting
the weight to 1 — 2. In this way, for g = 0 we have a 1-directed 2-
hyperedge with unitary weights, while for g=1/3 we get an
undirected 2-hyperedge with the same total weight, but having all
hyperedges with weight equal to 1/3 (see Methods for further
details). We notice that this symmetrization is analogous to that
introduced by Asllani et al.>! for networks, where, starting from a
directed link of weight 1, one obtains a symmetric link with the
same total weight, as it is formed by two directed links, each of
weight 1/2.

With this setup, we consider again a system of N =20 Rdssler
oscillators coupled through the directed weighted 2-hypergraph

COMMUNICATIONS PHYSICS| (2022)5:263 | https://doi.org/10.1038/s42005-022-01040-9 | www.nature.com/commsphys 5


www.nature.com/commsphys
www.nature.com/commsphys

ARTICLE

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-01040-9

b)

0.06
0.2
0.04
0.1
0.02
Q0 | | ) — oY 0
a) -0.1 -0.02
0.2 s -0.
0 0.04
P -0.06
0.15 0 0.2 0.4 0.0  0.02 003 004 0.05
o «
© 01
d) e)
0.05 1 0.01
=r 0.2
0 0.1 0.2 0.3 0.1 0.005
q
) 11> < Q. 0
-0.005
g R ; -0.01
0 0.2 0.4 0.6 0.8 1 5 4 6 8 10
o a %107

Fig. 3 Directionality induced (de)synchronization with an alternative symmetrization method. a Synchronization diagram in the plane (g, 6;) for a system
of Rossler oscillators with x-x cubic coupling. g is the symmetrization parameter, such that we have a directed hypergraph for g= 0, while we get an
undirected sturcture for g =1/3. oy is the coupling strength of the pairwise interactions. The white area indicates the region of stability, while the orange
one the region where synchronization is lost. The horizontal dashed lines represent two values of 6, for which the system transits from a synchronized to an
unsynchronized state as a function of g (green line), and the other way around (blue line). Panels b-e display the locus of eigenvalues of the effective
Laplacian matrix M as a function of g, for a hypergraph with N =20 nodes at two different values of ¢y (color coding is such that the directed case =0 is
represented in yellow, and the symmetric one g =1/3, in blue). In the background, the white area indicates the region where the Master Stability Function
(MSF) is negative, the black line the boundary of this region, and the gray area the region with positive MSF. Panels ¢ and e represent a zoom of the area
close to the origin of panels b and d, respectively. Panels b and ¢ display a setting where the symmetric topology drives the system unstable, starting from a
directed hypergraph for which the synchronization manifold is stable. Panels d and e show a case for which the symmetric topology admits a stable
synchronization state, while the directed hypergraph drives to instability. The coupling strength for panels b and ¢ is fixed to ; = 0.195, while for panels
d and e to 6, =0.03. In both cases we set the ratio r, = 6,/07y= 0.7, being o, the coupling strength of the three-body interactions.

discussed in the previous section. We then derive the synchro-
nization diagram in the plane (g, 07). The diagram obtained for
r, = 05/07 = 0.7 is displayed in panel a of Fig. 3. Similarly to what
observed with the previous symmetrization method, while there is
a region where, for fixed o;, varying q does not affect synchro-
nization, there are two areas where changing g leads to a tran-
sition in the synchronization behavior. For o7 =0.195,
highlighted in panel a of Fig. 3 as a green dashed line, the system
synchronizes for small values of g, i.e, for a strongly directed
hypergraph, whereas it desynchronizes for larger values of g, i.e.,
for a more symmetric structure. Inversely, for g; = 0.03, displayed
in panel a as a blue dashed line, we observe the opposite transi-
tion, as synchronization is achieved by increasing ¢, while
directionality prevents system synchronization. The locus of the
eigenvalues of M as a function of g and for the two different
values of 07 is shown in the panels b-e of Fig. 3. In particular,
panels b and ¢ refer to o; =0.195, while panels d and e to
o1 = 0.03. Panels c and e represent a zoom of the area close to the
origin in panels b and d, respectively. In panels b and ¢, we
observe that for large enough g the eigenvalues of M leave the
stability region, thus inducing the desynchronization of the sys-
tem. Conversely, in panels d and e, the eigenvalues leave the
stability region for small values of g, meaning that synchroniza-
tion is achieved for more symmetric hyperedges, while strongly
directed hyperedges make the synchronization manifold unstable.
In conclusion, these results confirm that directionality can change
the synchronization behavior of a system of chaotic oscillators

coupled through a 1-directed hypergraph, either inducing system
synchronization or its desynchronization. In particular, by using
the symmetrization method that preserves the total coupling
strength of the interactions, we find that these transitions are due
to directionality and not, or at least not only, to confounding
factors.

As discussed in the previous section, for a different choice of the
coupling functions, namely h") (x;) = [0,y7,0] and h? (%), %) =
[0, yjzyk, 0] the resulting region of stability is unbounded. In
agreement with the results obtained with the first symmetrization
method, turning symmetric the three-body interactions does not
desynchronize the system. In this setting, it is only possible to
induce desynchronization by making higher-order interactions
asymmetric. This further case study is discussed in Supplementary
Note 2.

Conclusion

In this paper we have introduced and described a tensor form-
alism to encode M-directed hypergraphs, which allows us to fully
account for directionality in higher-order structures. We have
then used such directed higher-order structure as substrate for
coupled dynamical systems, and studied the ensuing synchroni-
zation behavior. We have shown that the latter can be analyzed by
extending the Master Stability Function approach to the present
framework for the particular case of 1-directed hypergraphs. We
have numerically validated our theoretical results for a system of
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Fig. 4 From topology to dynamics: difference between the undirected and
directed 1-hyperedge. Panel a: the derivative of the state variables
associated to each node i, j, k receives a contribution from the higher-order
interaction. Panel b: only the derivative of x; receives a contribution from
the source nodes j and k, while the derivatives of the state variable of the
source nodes, x; and x,, do not.
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Rossler oscillators and observed that the stability of the syn-
chronized state can be lost or gained as the asymmetry varies. Our
results demonstrate that phenomena, previously observed in
structures with pairwise interactions?”->1-3, also appear when
directed higher-order interactions are considered.

For systems with pairwise interactions, there is a vast
literature®®-8, showing how synchronization is actually
enhanced in weighted graphs built using weighting procedures
that ultimately result in determining asymmetric interactions
in the network links. Few attempts have been already made to
extend this study to higher-order topologies, in particular
finding that structural symmetric hypergraphs can be opti-
mally synchronizable®®. Here, however, we did not aim at using
the directionality of the higher-order interactions to optimize
the synchronizability of the structure, but focused on intro-
ducing the formalism to deal with directionality in higher-
order interactions, in order to model systems where there is an
evidence of such asymmetric and higher-order coupling, and
analyze the effect of directionality on synchronization in these
systems.

Our setting differs from the one recently proposed by Aguiar
et al.%, In fact, the asymmetry of the higher-order structure is
here imposed only on the adjacency tensor, Eq. (1), and not
directly on the higher-order coupling function as done in Aguiar
et al.%0. Therefore, our formalism allows for a more general
approach, as it leaves more freedom in the choice of the coupling
functions. The framework and concepts here introduced pave the
way to further studies on the effects of directionality in systems
where empirical evidence of directed higher-order interactions
has been found but not yet systematically investigated, as the
proper mathematical setting for their description was lacking.

Methods

Linear stability analysis of 1-directed D-hypergraphs. Here we provide the full
derivation of the Master Stability Equation (MSE), which allows to study the
synchronization of a system of N identical oscillators coupled through a 1-directed
D-hypergraph. Let us first write the equation describing the dynamics of the sys-
tem, where, as we previously emphasized, the coupling term associated to the
hyperedge provides a contribution only to the dynamics of the state vector of node
i, i.e, x;. This is different from the case of an undirected d-hyperedge where the
higher-order coupling contributions appear in the derivatives of the state variables
of all nodes of the hyperdege (see Fig. 4).

Taking into account the contributions from all the 1-directed d-hyperedges,
d=1,...,D, we eventually obtain

Ja

Noo,@
J z; 71Aij1--~jdg )(X”xj;’ X)) (16)
=

D
X =f(x) + 2 oy
=1

where x,(t) € R™ is the state vector describing the dynamics of unit i, oy, ...,
op >0 are the coupling strengths, f : R™ — R™ describes the local dynamics,
while g@ : R™ @) R™, with d € {1, .., D} are coupling functions ruling the
(d + 1)-body interactions. Finally, Afjff)__
AW, with de {1, ..., D}.

Let us now consider diffusive-like coupling functions at each order d

d,
7de) —h )(Xiv s X)

j, are the entries of the adjacency tensors

d d

g( )(Xi‘rxh 1 Xjyeen ‘,de) =h )(X]‘]1

with
h: R™ ¢ — R™
Note that this hypothesis on the form of coupling guarantees the existence of the
synchronized solution x; = -+ = Xy = x*. We remark that, in order to deal with an
authentic multibody dynamics, we need to consider nonlinear coupling functions.
Indeed, in the case of linear interactions, the three-body dynamical system can be
reduced to a two-body dynamical system, by rescaling the adjacency matrix?’.
Equation (16) becomes then

D N
x; = f(x;) +dZI DY lAfjff)mjd(h(d)(le, X)) — W, ... ,x))  (17)
= N Ja=

Let us now perturb the synchronous state x® with a spatially inhomogeneous
perturbation, meaning thatVi € {1, ..., N} we have x; = x* + dx;. Substituting into
Eq. (17) and expanding up to the first order we obtain

of (x;
O0x; = oftx;) Ox;+
axi x*
b N 4 V0 x,)
-Xo, X Ty ! 4 5x.
d=1 =1 eda Dy 0x; sy
1 e (x5,... X°)
where
M) (1)
Ty, = ki) (00, — A3,
_ 5@ e
Ty, = 2k (05, = Ajj,
_ D) )
Tijyio = Dloin D35,y = A,y
being & ; . ; the generalized multi-indexes Kronecker-8, and the d-in-degree

kg:)(i) of node i is here defined as

@1 L@
o=y > AL,
which represents the number of hyperedges of order d pointing to node i.

Let us now consider the terms relative to the d-body interactions

N Bh"”(x X)) N N
Py Fr— Ox; X X Ty g+
=1 n . x) RS =t
N 5h@ N N
oh!' (x)l,... ,x,d)
Z_: ox; (5de Z_: Z:_ T’Jl Ja®
ja=1 d &, x) =L Jea=t
By defining
1 N, d
K= —— > A9
in )= T 5, e ke

which represents the number of hyperedges of order d pointing to node i and
having node j as one of the source nodes, and by observing that, given the property
of symmetry of 1-directed hypergraphs, we have

Tj,is = Tinty s (18)
for any permutation 7 of the indexes jj ...,j, We can write
N

d) oh@
S @
ji=1 N ox;)

N
— (d) [ an@ oh'®
*%Li]‘ (a et

Jd

N
(d) ahhi\
5le 4. +jd§1L_ oh

ijy axm ‘(X‘,..- x5

(s .ﬂ)axf "

where to lighten the notation we removed the explicit dependence of h(?) on
(x;, ... ,x;,), and we have defined the generalized Laplacian matrix for the

) 6de

(x5,... x5)

interaction of order d as

d) - . .
o _ [0 =7 (19)
! —(@d-DKPG)) iz
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It is worth noting that the generalized Laplacian matrices defined above may not be
symmetric, hence in general they have complex spectra.
Finally, by denoting

. T . -
and by defining the vector x =[x, ... ,x] , We can rewrite the linearized
dynamics in a more compact form, namely

D
k= |Iy®JF— Y g,L9 @ JH? | 6x (20)
d=1
We here assume the hypothesis of natural coupling
K9, ... ,x) = - = h®@(x,x) = hV(x),

which leads to

vx € R™

IH(D) - .= ]H(Z) — IH(I) =JH.
Under such hypothesis, we can define the matrix
M=0LY +0,L? +... +0,LD,
allowing us to write the following MSE describing the dynamics of the perturbation
8% = [Iy ® JF — M ® JH]éx @1
Assuming that matrix M is diagonalizable, we can construct a basis made by
the eigenvectors vy, ..., vy of this matrix, and then project Eq. (21) onto each
eigenvector, obtaining a system of N decoupled linear equations. In more detail, by

defining the new variable n = Ve I,,)8x, where V = [v,, ..., vn], we can
rewrite Eq. (21) as

it; = DE(x®) — A,JHE)]n; 22

with i € {1, ..., N} and where 1, A,, ..., Ay are the eigenvalues of the matrix M. The
equation for i =1 corresponds to A; = 0, representing the linearized motion along
the synchronous state x(t). The other equations describe instead the motion
transverse to x%(t). As these equations, except for the eigenvalue 1,, have the same
form, by considering the generic complex parameter « + i, we finally arrive to the
MSE in (13).

Construction of weighted 1-directed 2-hypergraphs. We describe here how to
construct the 1-directed hypergraph we have analyzed in Results and give further
details about its tensor representation and the resulting generalized Laplacian
matrices.

To construct the hypergraph, we start from an undirected ring network of N
nodes, where N is even. We consider a consecutive labeling, so that each node i is

1

p=0

p=1/2

/)
' /

p=1

k
k
k

k

sy
Y

connected to nodes i — 1 and i + 1. We then add N/2 2-hyperedges, namely
containing 3 nodes, connecting nodes (1,2, 3), (3,4,5), ..., (N— 1,N, 1). For the
first method of symmetrization, for each triple of nodes (i,i+ 1,i+ 2), we set
AD 4D 4D 4@ =pandA(2) = AP =p

i+2,i,i+1 2,4l = b Aiirie i,i42,i+1 12,0 i+liiv2 = P>
where p € [0, 1]. In this way we encode the information that nodes i and i + 1 point
toward node i + 2 with strength 1, and we allow a weaker directed interaction from
(i+1,i+2) toward i and from (i, i+ 2) toward i + 1. As p increases, so does the
weight of the other two directions, until we recover an undirected hypergraph for
p = 1. Observe that this symmetrization does not preserve the total coupling
strength of the hyperedges. A graphical representation of the symmetrization is
provided in Fig. 5.

For what concerns the second method of symmetrization, for each triple of
nodes (i,i+1,i+2), we set Ag-)z.i.i-v-l = AE-2¢—)2.i+l.i =1-2q, Ag,zi)+1,i+2 =
Aglzﬂl =g and Agl,wz,i = Aﬁ)“#z = g, where q € [0, 1/3]. As g increases, so
does the weight of the hyperedges in the other two directions, until we recover an
undirected hypergraph for q = 1/3. This second method of symmetrization
preserves the total coupling strength of the hyperedges, thus allowing to control for
confounding factors (see also Results). Figure 6 displays a graphical representation
of the second symmetrization considered.

Let us now explicitly characterize the hypergraph of 6 nodes displayed in Fig. 7
by writing its adjacency tensors and the corresponding Laplacians. First, the
adjacency matrix A(), which encodes the standard pairwise interactions, is
given by

010001
1 01 0 0 O
01 01 0O

AV = (23)
001010
00 0 1 01
10 0010

From A1), we can evaluate the Laplacian matrix for the two-body interactions,
namely

) (24)

(] ] 1 ] (] ]
7 e e o o’
-~ +
* o, T ®

1

J
-+

J
+ +

k k

Fig. 5 Symmetrization of a 1-directed 2-hyperedge via the increase of the weight p of the hyperdeges associated to the other directions. Starting
from a fully directed hyperedge (p = 0), the strength of the couplings in the other directions grows until all directions of interaction have the same

weight (p=1).
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Fig. 6 Symmetrization of a 1-directed 2-hyperedge while preserving the total coupling strength. Starting from a fully directed hyperedge, as the strength
of the couplings, g, in the other directions grows, the weight of the initial directed hyperedge decreases until all directions of interaction have the same

weight (g =1/3).

For the first method of symmetrization, the adjacency tensor A®)(p), which
instead describes the three-body interactions, is

APy = ({aR} - {4G)) =

0 p 0
0
0
ol
0
0
0
0
0
0
p
0

o O O o o o
o o o o ©
o o o oW ©
o © ©O o o ©
- o O O ©O O
oS = O O O O

0
0
p
0
0
0

S ©O © o O

S O © o O

S ©O O o o O
S O O o o O
o O O o = o
S O O o o =
oS O O o © ©
o ©o ©o o ©
o ow o o o©
S ©O O o o O

)

S ©O O © © ©
S © © © © ©
ow o ©o o ©
S ©O ©O © o o
o o ow o o©
oS O ©O o o o
T O © © o ©
o © O © © ©
o O = O O ©
S © O = o O
S © ©O © © ©
o OO © ©o o
o ©O ©O ©o o ©
o ©O O ©o o ©
o O ©O ©o © ©
o O © © o
S O ©O o © o

(25)

We remark that, while the adjacency matrix A(1) is symmetric, the adjacency tensor
A(z)(p) is not, as, for example, A;,3 # A3, for p # 1. However, one can see that the

tensor becomes symmetric (Agjzk) =1= Aff()ijk) =1, with 7 a generic permutation
of indices) when p = 1. Furthermore, we note that the matrices resulting from
fixing the first index of the tensor, given the property in Eq. (1), are symmetric for
any value of p.

Given A@)(p), it is possible to calculate the generalized in-degrees of the nodes
(see Eq. (9) for the definition) and the generalized in-degrees of the node couples
(Eq. (10)). Hence, we can evaluate the generalized Laplacian matrix for the three-
body interactions (Eq. (8)). We have

20+p) -p —p 0 -1 -1
—p 2p —p 0 0 0

-1 -1 2(1+p) - -

L9(p) = 0 0 _pp 2;; _ﬁ (26)
—p 0 -1 -1 2(1+p) -p
—p 0 0 0 -p 2

Since the adjacency tensor A@)(p) is asymmetric, consequently L@)(p) is also
asymmetric. Consistently, when p = 1, which corresponds to the case of an
undirected hypergraph, the Laplacian matrix becomes symmetric.

For the second method of symmetrization for three-body interactions, the
adjacency tensor A)(q) is given by

AP = ({AR}, .. {AR}) =

0000 © 0 00 g 000
00 g0 0 0 000000
0 g 00 0 0 g 00000
0000 0 0 |'fo oo o0 o0 0]
0000 0 1-—2gq 000000
0000 1-2g 0 00000 O
0 1-29 0 0 0 0 000000
1-2¢ 0 0 0 0 0 000000
0 0 0000 00000 (27)
0 0 00 gqgo0]’JOO0OO0OO0OTO0OTO]
0 0 0 q 00 00 qo0O00
0 0 0000 000000
00 0 0 0 g 00000
00 0 0 00 000000
00 0 1-2g 00 000000
00 1-2¢ 0 0 o0 o0 o0oO00O0O0O]]
00 0 0 00 g 00000
g 0 0 0 00 000000

which, similarly to A@)(p) is in general asymmetric. From A()(q) we can evaluate
the generalized Laplacian L()(g), which has the following expression

21-q) —4q —q 0 —(1-29) —(1-29
—q 2q —q 0 0 0
19(g) = -(1-29 -(1-29 2(0-gq) —-q -4 0
0 0 —q 2q —-q 0
—q 0 -(1-29) —(1-29 21-gq -4
—q 0 0 0 —-q 2q

As the adjacency tensor A2)(g) is asymmetric, so the generalized Laplacian matrix
L®)(q) is asymmetric. Nonetheless, when g = 1/3, corresponding to the case of an
undirected hypergraph, L(?)(q) becomes symmetric.
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3 4

6

Fig. 7 An example of a weighted 1-directed hypegraph with N = 6 nodes.
The arrow indicates the node to which the 1-directed hyperedge points
when the symmetrization parameter p (or q) is equal to zero. The different
colors of the hyperedges are used to distinguish them.
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