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Abstract—In this paper, the synchronization problem is stud-
ied for an array of N identical delayed neutral-type neural
networks with Markovian jumping parameters. The coupled
networks involve both the mode-dependent discrete time-delays
and the mode-dependent unbounded distributed time-delays. All
the network parameters including the coupling matrix are also
dependent on the Markovian jumping mode. By introducing
novel Lyapunov-Krasovskii functionals and using some analytical
techniques, sufficient conditions are derived to guaranteethat
the coupled networks are asymptotically synchronized in mean
square. The derived sufficient conditions are closely related
with the discrete time-delays, distributed time-delays, mode
transition probability and coupling structure of the networks.
The obtained criteria are given in terms of matrix inequalities
that can be solved efficiently by employing the semi-definite
programme method. Numerical simulations are presented to
further demonstrate the effectiveness of the proposed approach.

Index Terms—Synchronization; neutral-type neural networks;
Markovian jumping systems; discrete time-delay; unbounded
distributed time-delay; Kronecker product.

I. I NTRODUCTION

I N the last decade, recurrent neural networks (RNNs) have
drawn noticeable attention from many researchers working

in a variety of areas such as signal and image processing, as-
sociative memories, combinatorial optimization and automatic
control [1], [12], [18], [24], [30]. While traditional neural
networks have been successfully applied in static data-based
classification and prediction problems for various engineering
systems, the dynamical behaviors of the RNNs have recently
gained a lot of research interests due to their capabilities
of using dynamical temporal behavior to process arbitrary
sequences of inputs. Motivated from both the basic science
and the technological practice, the study of synchronization
problems among an array of neural networks has been an
active topic of research in the past few years, see [13], [15],
[20], [22], [23] for some recent publications. Note that the
original notion of synchronization dates back to the 1980s
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after the theory of deterministic chaos has been developed.
Since then, the synchronization research has been extended
to the case of more complex systems, for example, the large-
scale and complex networks of chaotic oscillators [14], [34],
the coupled systems exhibiting spatio-temporal chaos and
autowaves [28], [41], and the array of coupled neural networks
with or without delays [7], [27], [37].

In practice, due to the finite speeds of the switching and
transmitting signals, time delays exist in various RNNs [1],
[16], [17]. It is well known that time delays may result in os-
cillatory behaviors or network instability (periodic oscillation
and chaos). So far, most of the existing results related to the
synchronization analysis for RNNs have been concerned with
the discrete delay (point delay) case. Recently, the distributed
delay has received an increasing research interest due to the
presence of an amount of parallel pathways with a variety
of axon sizes and lengths. Furthermore, as a combination of
both discrete and distributed delays, the so-called mixed time-
delays have gained much research attention and many relevant
results have been reported in the literature, see e.g. [35],[38],
[39] and the references therein. It should be pointed out that,
rather than occurring in the system states (or outputs), time-
delays can also appear in the derivatives of system states [4],
[25], [26], [40]. This kind of time-delays is referred to as
the neutral time-delays that can find a variety of applications
in practice such as chemical reactors, transmission lines,
partial element equivalent circuits in VLSI systems, and Lotka-
Volterra systems [8]. Because of possible presence of neutral
delays in implementing RNNs in VLSI circuits, the RNNs
with neutral terms have stirred some attention in the past few
years, see e.g. [8], [9], [19].

During the course of implementation, the RNNs often
encounter the information latching problems [5], that is, the
network states have finite representations (also called clusters,
patterns, or modes) where the switching among the finite states
is sometimes governed by aMarkovian chain. Such kind of
random mode switches may result from abrupt phenomena
such as stochastic failures and repairs of the network com-
ponents, changes in the interconnections of network nodes,
or sudden environment switching. As such, the so-called
Markovian jumping recurrent neural networks (MJRNNs) have
attracted a great deal of research interest [31], [36], [42]
in the past decade. For example, in [36], the exponential
stability problem has been first addressed for a class of
delayed recurrent neural networks with Markovian jumping
parameters. In [42], the problem of exponential stability has



FINAL VERSION OF SMCB-E-2011-12-1142.R1 2

been investigated for a class of stochastic neural networkswith
both Markovian jump parameters and mixed time delays. In
[31], a noise-induced stabilization method has been proposed
for RNNs with mixed time-varying delays and Markovian
switching parameters. In [38], the passivity analysis has been
conducted for discrete-time stochastic neural networks with
both Markovian jumping parameters and mixed time delays.

Summarizing the discussion made so far, the RNNs of-
ten exhibit the phenomena of signal transmission delays
and possess Markovian mode jumping behavior, where the
delays could be of discrete, distributed and neutral types.
As such, it should be of both theoretical and practical sig-
nificance to consider the synchronization problem of such
RNNs. Unfortunately, the synchronization issue forMarkovian
jumping neutral-type neural networks with mode-dependent
mixed time-delayshas received very little research effort due
primarily to the mathematical complexity. It is, therefore, the
motivation of our current investigation to shorten such a gap
by launching a study on the synchronization problem for
Markovian jumping neural networks of neutral type whereall
discrete, distributed and neutral delays are mode-dependent
and the distributed delays are allowed to be unbounded. It is
noticeable that, in two recent papers [2], [3], the passivity and
stability analysis problems have been addressed for neuralnet-
works of neutral type with Markovian jumping parameters and
time delays, where the time-delays are not mode-dependant.

In this paper, we are concerned with the synchronization
problem for a new class of continuous-time neural networks
of neutral-type with Markovian jumping parameters as well
as mode-dependent mixed time-delays. Note that the mixed
time-delays comprise both the discrete and distributed delays
that are all dependent on the Markovian jumping mode.
The main contributions of this paper can be highlighted as
follows: 1) some novel analysis techniques are developed to
tackle the mathematical difficulty resulting from the presence
of the mode-dependent neutral delays; 2) a new Lyapunov
functional is proposed to reflect the Markovian jumps of the
delay bounds; and 3) a unified framework is established to
handle the Markovian jumping parameters, neutral terms and
mixed time-delays. We derive sufficient conditions to guarantee
that the coupled networks are asymptotically synchronizedin
mean square. Note that the derived sufficient conditions are
expressed by means of the system parameters, discrete time-
delays, distributed time-delays, mode transition probability and
coupling structure of the array of neural networks. Such condi-
tions are in the form of LMIs, which could be easily checked
by utilizing the recently developed interior-point methods
available in Matlab toolbox, and no turning of parameters
will be needed. Numerical simulations are presented to further
demonstrate the effectiveness of the proposed approach.

Notations: The notations are quite standard. Through-
out this paper,Rn and R

n×m denote, respectively, then-
dimensional Euclidean space and the set of alln × m real
matrices. The superscript “T ” denotes matrix transposition
and the notationX ≥ Y (respectively,X > Y ) where
X and Y are symmetric matrices, means thatX − Y is
positive semidefinite (respectively, positive definite).In is the
n × n identity matrix. | · | is the Euclidean norm inRn.

If A is a matrix, denote by‖A‖ its operator norm, i.e.,
‖A‖ = sup{|Ax| : |x| = 1} =

√

λmax(ATA) where
λmax(·) (respectively,λmin(·)) means the largest (respectively,
smallest) eigenvalue ofA. The Kronecker product of ann×m

matrixX and ap×q matrixY is defined by annp×mq matrix
X ⊗ Y as follows

X ⊗ Y =







x11Y · · · x1mY
...

...
xn1Y · · · xnmY






.

The asterisk∗ in a matrix is used to denote term that is
induced by symmetry.E[x] andE[x|y] will, respectively, mean
the expectation ofx and the expectation ofx conditional on
y. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

II. PROBLEM FORMULATION

Let r(t) (t ≥ 0) be a right-continuous Markov chain on a
probability space taking values in a finite state spaceN =
{1, 2, ..., n0} with generatorΠ = {πij} given by

P{r(t+∆) = j | r(t) = i} =

{

πij∆+ o(∆), if i 6= j,

1 + πij∆+ o(∆), if i = j.

Here∆ > 0, andπij ≥ 0 is the transition rate fromi to j if
j 6= i while

πii = −
∑

j 6=i

πij .

For a given array ofN identical neutral-type neural net-
works, we assume that each single neural network consists of
n neurons and the dynamics ofkth neutral-type neural network
is governed by

ẋk(t) = E(r(t))ẋk(t− τ1,r(t))−A(r(t))xk(t)

+B(r(t))f(xk(t)) + C(r(t))g(xk(t− τ2,r(t)))

+D(r(t))

∫ t−τ3,r(t)

−∞

ϕ(t− s)h(xk(s))ds + u(t), (1)

where xk(t) = [xk1(t), xk2(t), · · · , xkn(t)]
T is the state

vector of the kth delayed neural network;A(r(t)) =
diag{a1(r(t)), a2(r(t)), ..., an(r(t))} > 0 is a diagonal ma-
trix with aj representing the rate with which thejth neu-
ron will reset its potential to the resting state in isola-
tion; B(r(t)) = (bij(r(t)))n×n, C(r(t)) = (cij(r(t)))n×n,
D(r(t)) = (dij(r(t)))n×n and E(r(t)) = (eij(r(t)))n×n

denote connection weight matrices of the neurons;u(t) =
[u1(t), ..., un(t)]

T is the input vector function; andf(·) =
(f1(·), f2(·), ..., fn(·))T , g(·) = (g1(·), g2(·), ..., gn(·))T ,
h(·) = (h1(·), h2(·), ..., hn(·))T denote the activation function
vectors;τ1,r(t) andτ2,r(t) denote the mode-dependent discrete
time delays whileτ3,r(t) characterizes the mode-dependent
upper bound of the distributed time-delay.

Consider the following linearly coupled dynamical system
comprising the aboveN identical neutral-type neural net-
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works:

ẋk(t) = ẋk(t− τ1,r(t))−A(r(t))xk(t) +B(r(t))f(xk(t))

+ C(r(t))g(xk(t− τ2,r(t)))

+D(r(t))

∫ t−τ3,r(t)

−∞

ϕ(t− s)h(xk(s))ds+ u(t)

+

N
∑

j=1

wkj(r(t))Γ(r(t))xj (t), k = 1, 2, ..., N, (2)

whereΓ(r(t)) = diag(γ1(r(t)), γ2(r(t)), ..., γn(r(t))) ≥ 0 is
a diagonal matrix linking thejth state variable of each neural
network if γj(r(t)) 6= 0; W = (wij(r(t))) ∈ R

N×N is the
coupling configuration matrix of the system withwij(r(t)) ≥
0 (i 6= j) but not all zero.

Remark 1: In the array of coupled neural networks (2), the
distributed delay

∫ t−τ3,r(t)
−∞

ϕ(t−s)h(xk(s))ds is included with
the upper bound dependent on the Markov chain. Note that the
time-delays can vary from−∞ to t− τ3,r(t) in a distributed
way. As such, the unboundedness and the mode-dependence
of such a distributed time-delay would have a great impact on
the stability analysis on the overall coupled system. For the
practical applications of such unbounded distributed delays,
we refer the authors to [10], [11], [21]. It is worth mentioning
that the finite distributed delays, which are another type of
distributed delays whose lower and upper bounds are both
limited, have been intensively investigated in [35], [38],[39].

Throughout this paper, we make the following assumptions.
Assumption 1:The coupling configuration matrix

W (r(t)) = (wij(r(t))) is symmetric (i.e.,W (r(t)) =
WT (r(t))) and satisfies

N
∑

j=1

wij =

N
∑

j=1

wji = 0, i = 1, 2, ..., N. (3)

Assumption 2:As in [21], for j ∈ {1, 2, ..., n}, ∀s1, s2 ∈
R, s1 6= s2, the neuron activation functions satisfy

l−j ≤ fj(s1)− fj(s2)

s1 − s2
≤ l+j , (4)

σ−
j ≤ gj(s1)− gj(s2)

s1 − s2
≤ σ+

j , (5)

υ−
j ≤ hj(s1)− hj(s2)

s1 − s2
≤ υ+

j , (6)

wherel−j , l+j , σ−
j , σ+

j , υ−
j , υ+

j are some constants.
Remark 2:As discussed in [21], the constantsl−j , l+j , σ−

j ,
σ+
j , υ−

j , υ+
j in Assumption 2 are allowed to be positive,

negative or zero. Hence, the resulting activation functions
could be non-monotonic, and more general than the usual
sigmoid functions. In addition, when using Lyapunov stability
theory to analyze the stability, such a description is particularly
suitable since it quantifies the lower and upper bounds of the
activation functions that offer the possibility of reducing the
induced conservatism.

Assumption 3:The delay kernelϕ(·) : [0,+∞) → [0,+∞)
is continuous and integrable, and also satisfies

∫ +∞

0

ϕ(s)ds < +∞,

∫ +∞

0

sϕ(s)ds < +∞. (7)

Let

x(t) = (xT
1 (t), x

T
2 (t), ..., x

T
N (t))T ,

f(x(t)) = (fT (x1(t)), f
T (x2(t)), ..., f

T (xN (t)))T ,

g(x(t)) = (gT (x1(t)), g
T (x2(t)), ..., g

T (xN (t)))T ,

h(x(t)) = (hT (x1(t)), h
T (x2(t)), ..., h

T (xN (t)))T ,

u(t) = (uT (t), uT (t), ..., uT (t))T .

With the above symbols and the Kronecker product of matri-
ces, we rewrite the system (2) in the following compact form:

ẋ(t) = (IN ⊗ E(r(t)))ẋ(t− τ1,r(t))− (IN ⊗ A(r(t)))x(t)

+ (IN ⊗B(r(t)))f(x(t)) + (IN ⊗ C(r(t)))

× g(x(t− τ2,i)) + (IN ⊗D(r(t)))

∫ t−τ3,r(t)

−∞

ϕ(t− s)h(x(s))ds

+ u(t) +W (r(t))⊗ Γ(r(t))x(t). (8)

Definition 1: The coupled system (2) or (8) is said to be
globally asymptotically synchronized in mean square if

lim
t→∞

E|xk(t)− xl(t)|2 = 0

holds for anyk, l ∈ {1, 2, ..., N}.
In this paper, we aim to deal with the synchronization

problem of the system (8) coupled by an array ofN identical
delayed neutral-type neural networks with Markovian jump-
ing parameters. The coupled networks involve both mode-
dependent discrete time-delays and distributed time-delays
with the mode-dependent upper bound. The coupled matrices
are allowed to be mode-dependent as well. By constructing
novel Lyapunov-Krasovskii functionals and using some analyt-
ical techniques, we shall derive easy-to-verify sufficientcon-
ditions to guarantee the coupled system to be asymptotically
synchronized in mean square. The obtained criteria are given
in terms of matrix inequalities that can be solved efficiently
by employing the semi-definite programme method.

III. M AIN RESULTS AND PROOFS

Before stating our main results, we introduce the following
lemmas.

Lemma 1 ( [20]): Let U = (αij)N×N , P ∈ R
n×n, x =

(xT
1 , x

T
2 , ..., x

T
N )T , and y = (yT1 , y

T
2 , ..., y

T
N)T with xi, yi ∈

R
n. If U = UT and each row sum ofU is zero, then

xT (U ⊗ P )y = −
∑

1≤i<j≤N

αij(xi − xj)P (yi − yj).

Lemma 2 ( [20]): Suppose thatB = diag{β1, β2, ..., βn}
is a positive semi-definite diagonal matrix. Lety =
(y1, y2, ..., yn)

T ∈ R
n, and H(y) = (~1(y1), ~2(y2), ...,

~n(yn))
T be a continuous nonlinear function satisfying

l−i ≤ ~i(s)

s
≤ l+i , s 6= 0, s ∈ R, i = 1, 2, ..., n (9)

with l−i and l+i being constant scalars. Then

yTBL1y − 2yTBL2H(y) +HT (y)BH(y) ≤ 0

where L1 = diag{l+1 l−1 , l+2 l−2 , ..., l+n l−n } and L2 =

diag{ l
+
1 +l

−

1

2 ,
l
+
2 +l

−

2

2 , ...,
l+n+l−n

2 }.
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Φkl(i) =

























Ξ11(i) Ξ12(i) ΘiΣ2 Ξ14(i) ΩiΥ2 Ξ16(i) Ξ17 −√
κ1A(i)Q

∗ −Λi 0 0 0 0 0
√
κ1B

T (i)Q
∗ ∗ Ξ33(i) 0 0 0 0 0
∗ ∗ ∗ −R 0 0 0

√
κ1C

T (i)Q
∗ ∗ ∗ ∗ Ξ55(i) 0 0 0
∗ ∗ ∗ ∗ ∗ − 1

αi
S 0

√
κ1D

T (i)Q

∗ ∗ ∗ ∗ ∗ ∗ −Q
√
κ1E

T (i)Q
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q

























< 0, (11)

Lemma 3 ( [22]): Let M be a positive semi-definite ma-
trix, α(·) : (−∞, a] → [0,+∞) be a scalar function and
F(·) : (−∞, a] → R

n be a vector function. If the integrations
concerned are well defined, the following inequality holds:

(∫ a

−∞

α(s)F(s)ds

)T

M

(∫ a

−∞

α(s)F(s)ds

)

≤
∫ a

−∞

α(s)ds

(∫ a

−∞

α(s)FT (s)MF(s)ds

)

. (10)

Lemma 4 (Schur Complement [6]):Given constant matri-
cesΩ1,Ω2,Ω3 whereΩ1 = ΩT

1 andΩ2 > 0, then

Ω1 +ΩT
3 Ω

−1
2 Ω3 < 0

if and only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0.

Lemma 5 (Barbalat’s Lemma [32]):Let f be a nonnega-
tive function defined on[0,+∞). If f is Lebesgue integrable
on [0,+∞) and is uniformly continuous on[0,+∞), then
lim

t→+∞
f(t) = 0.

For presentation convenience, in the following, we denote

L1 =diag{l+1 l−1 , ..., l+n l−n },

L2 =diag

{

l+1 + l−1
2

, ...,
l+n + l−n

2

}

,

Σ1 =diag{σ+
1 σ

−
1 , ..., σ

+
n σ

−
n },

Σ2 =diag

{

σ+
1 + σ−

1

2
, ...,

σ+
n + σ−

n

2

}

,

Υ1 =diag{υ+
1 υ

−
1 , ..., υ

+
n υ

−
n },

Υ2 =diag

{

υ+
1 + υ−

1

2
, ...,

υ+
n + υ−

n

2

}

,

τ1 = max
1≤j≤n0

{τ1,j}, τ2= max
1≤j≤n0

{τ2,j}, τ3= max
1≤j≤n0

{τ3,j},

τ1 = min
1≤j≤n0

{τ1,j}, τ2= min
1≤j≤n0

{τ2,j}, τ3= min
1≤j≤n0

{τ3,j},

π̄ = max
1≤i≤n0

{|πii|}.

The main results of this paper are given in the following
theorem.

Theorem 1:Under Assumptions 1-3, the system (8) is glob-
ally asymptotically synchronized in mean square if there exist
six positive definite matricesP1, P2, P3, Q, R and S, and
three sets of positive definite diagonal matricesΛi,Θi and
Ωi(1 ≤ i ≤ n0) such that the following LMIs (11) shown at

the top of the page hold for1 ≤ k < l ≤ N, 1 ≤ i ≤ n0,

where

ϕ̄ = π̄ sup
τ3≤s≤τ3

ϕ(s), αi =

∫ +∞

τ3,i

ϕ(s)ds, (12)

α̂i = αi +
1

2
ϕ̄(τ23 − τ23), κ1 = π̄(τ1 − τ1) + 1, (13)

Ξ11(i) = −PiA(i)−A(i)Pi + P i −Nwkl(i)
(

PiΓ(i)

+ Γ(i)Pi

)

−
(

ΛiL1 +ΘiΣ1 +ΩiΥ1

)

+ κ1Nwkl(i)
(

Γ(i)QA(i) +A(i)QΓ(i)
)

− κ1Nw
(2)
kl (i)Γ(i)QΓ(i), (14)

Ξ12(i) = PiB(i) + ΛiL2 − κ1Nwkl(i)Γ(i)QB(i), (15)

Ξ33(i) = [π̄(τ2 − τ2) + 1]R−Θi, (16)

Ξ14(i) = PiC(i)− κ1Nwkl(i)Γ(i)QC(i), (17)

Ξ55(i) = α̂iS − Ωi, (18)

Ξ16(i) = PiD(i)− κ1Nwkl(i)Γ(i)QD(i), (19)

Ξ17(i) = PiE(i)− κ1Nwkl(i)Γ(i)QE(i), (20)

andw(2)
kl (i) is the (k, l)-th entry of matrix[W (i)]2.

Proof: Definext(·) by xt(s) = x(t+ s) (−∞ < s ≤ 0)
and denote

U =









N − 1 −1 · · · −1
−1 N − 1 · · · −1
· · · · · · · · · · · ·
−1 −1 · · · N − 1









N×N

.

In order to tackle the synchronization problem of (8), we intro-
duce the following Lyapunov-Krasovskii functional candidate:

V (xt, t, r(t)) :=

6
∑

k=1

Vk(xt, t, r(t)) (21)

where

V1(xt, t, r(t)) = xT (t)(U ⊗ Pr(t))x(t),

V2(xt, t, r(t)) =

∫ t

t−τ1,r(t)

ẋT (s)(U ⊗Q)ẋ(s)ds,

V3(xt, t, r(t)) =

∫ t

t−τ2,r(t)

gT (x(s))(U ⊗R)g(x(s))ds,

V4(xt, t, r(t)) = π̄

∫ τ1

τ1

∫ t

t−s

ẋT (θ)(U ⊗Q)ẋ(θ)dθds

+ π̄

∫ τ2

τ2

∫ t

t−s

gT (x(θ))(U ⊗R)g(x(θ))dθds,
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V5(xt, t, r(t)) =

∫ +∞

τ3,r(t)

ϕ(s)

∫ t

t−s

hT (x(η))

× (U ⊗ S)h(x(η))dηds,

V6(xt, t, r(t)) = ϕ̄

∫ τ3

τ3

∫ u

0

∫ t

t−s

hT (x(η))

× (U ⊗ S)h(x(η))dηdsdu

with ϕ̄ defined in (12).
Let L be the weak infinitesimal generator of the random

process{(xt, r(t)), t ≥ 0} along the network(8) defined by

L V (xt, t, i) = lim
∆→0+

1

∆

[

E
[

V
(

xt+∆, t+∆, r(t +∆)
)

∣

∣

∣ xt,

r(t) = i
]

− V (xt, t, i)
]

.

Then, we have

L V (xt, t, i) =

6
∑

k=1

L Vk(xt, t, i) (22)

where L Vk(xt, t, i) (k = 1, 2, · · · , 6) are calculated as
follows.

First of all, it follows that

L V1(xt, t, i)

= 2xT (t)(U ⊗ Pi)
[

(IN ⊗ E(i))ẋ(t− τ1,r(t))

− (IN ⊗A(i))x(t) + (IN ⊗B(i))f(x(t))

+ (IN ⊗ C(i))g(x(t− τ2,i)) + (IN ⊗D(i))

×
∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds + u(t)

+W (i)⊗ Γ(i)x(t)
]

+

n0
∑

j=1

πijx
T (t)(U ⊗ Pj)x(t)

= 2xT (t)
[

(U ⊗ (PiE(i)))ẋ(t− τ1,r(t))

− (U ⊗ (PiA(i)))x(t) + (U ⊗ (PiB(i)))f(x(t))

+ (U ⊗ (PiC(i)))g(x(t − τ2,i)) + (U ⊗ (PiD(i)))
∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds +NW (i)⊗ (PiΓ(i))x(t)
]

+ xT (t)(U ⊗ P i)x(t), (23)

where we have used the facts thatUW (i) = NW (i) and
U ⊗ u(t) = 0, which are not difficult to verify.

Next, it can be obtained that

L V2(xt, t, i)

= ẋT (t)(U ⊗Q)ẋ(t)− ẋT (t− τ1,i)(U ⊗Q)ẋ(t− τ1,i)

+

n0
∑

j=1

πij

∫ t

t−τ1,j

ẋT (s)(U ⊗Q)ẋ(s)ds

= ẋT (t)(U ⊗Q)ẋ(t)− ẋT (t− τ1,i)(U ⊗Q)ẋ(t− τ1,i)

+

n0
∑

j 6=i

πij

[

∫ t

t−τ1,i

+

∫ t−τ1,i

t−τ1,j

]

ẋT (s)(U ⊗Q)ẋ(s)ds

+ πii

∫ t

t−τ1,i

ẋT (s)(U ⊗Q)ẋ(s)ds

≤ ẋT (t)(U ⊗Q)ẋ(t)− ẋT (t− τ1,i)(U ⊗Q)ẋ(t− τ1,i)

+ π̄

∫ t−τ1

t−τ1

ẋT (s)(U ⊗Q)ẋ(s)ds. (24)

Similar to (24), it follows that

L V3(xt, t, i) ≤ gT (x(t))(U ⊗R)g(x(t))

− gT (x(t− τ2,i))(U ⊗R)g(x(t − τ2,i))

+ π̄

∫ t−τ2

t−τ2

gT (x(s))(U ⊗R)g(x(s))ds. (25)

It is easy to see

L V4(xt, t, i) = π̄(τ1 − τ1)ẋ
T (t)(U ⊗Q)ẋ(t)

− π̄

∫ t−τ1

t−τ1

ẋT (s)(U ⊗Q)ẋ(s)ds

+ π̄(τ2 − τ2)g
T (x(t))(U ⊗R)g(x(t))

− π̄

∫ t−τ2

t−τ2

gT (x(s))(U ⊗R)g(x(s))ds. (26)

Then, it follows

L V5(xt, t, i)

=

∫ +∞

τ3,i

ϕ(s)dshT (x(t))(U ⊗ S)h(x(t))

−
∫ +∞

τ3,i

ϕ(s)hT (x(t − s))(U ⊗ S)h(x(t− s))ds

+

n0
∑

j=1

πij

∫ +∞

τ3,j

ϕ(s)

∫ t

t−s

hT (x(η))(U ⊗ S)h(x(η))dηds

= αihT (x(t))(U ⊗ S)h(x(t))

−
∫ t−τ3,i

−∞

ϕ(t− s)hT (x(s))(U ⊗ S)h(x(s))ds

+
∑

j 6=i

πij

∫ +∞

τ3,j

ϕ(s)

∫ t

t−s

hT (x(η))(U ⊗ S)h(x(η))dηds

+ πii

∫ +∞

τ3,i

ϕ(s)

∫ t

t−s

hT (x(η))(U ⊗ S)h(x(η))dηds

= αih
T (x(t))(U ⊗ S)h(x(t))

−
∫ t−τ3,i

−∞

ϕ(t− s)hT (x(s))(U ⊗ S)h(x(s))ds

+
∑

j 6=i

πij

∫ τ3,i

τ3,j

ϕ(s)

∫ t

t−s

hT (x(η))(U ⊗ S)h(x(η))dηds

≤ αihT (x(t))(U ⊗ S)h(x(t))

−
∫ t−τ3,i

−∞

ϕ(t− s)hT (x(s))(U ⊗ S)h(x(s))ds

+ π̄ max
τ3≤s≤τ3

ϕ(s)

∫ τ3

τ3

∫ t

t−s

hT (x(η))(U ⊗ S)h(x(η))dηds

= αihT (x(t))(U ⊗ S)h(x(t))

−
∫ t−τ3,i

−∞

ϕ(t− s)hT (x(s))(U ⊗ S)h(x(s))ds

+ ϕ̄

∫ τ3

τ3

∫ t

t−s

hT (x(η))(U ⊗ S)h(x(η))dηds, (27)

whereαi is defined in (12).
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Finally, we have

L V6(xt, t, i)

= ϕ̄

∫ τ3

τ3

∫ u

0

hT (x(t))(U ⊗ S)h(x(t))dηdsdu

− ϕ̄

∫ τ3

τ3

∫ u

0

hT (x(t− s))(U ⊗ S)h(x(t − s))dsdu

=
1

2
ϕ̄(τ23 − τ23)h

T (x(t))(U ⊗ S)h(x(t))

− ϕ̄

∫ τ3

τ3

∫ t

t−s

hT (x(η))(U ⊗ S)h(x(η))dηds. (28)

Substituting (23)-(28) into (22) yields that

L V (xt, t, i)

≤ 2xT (t)
[

(U ⊗ (PiE(i)))ẋ(t− τ1,r(t))

− (U ⊗ (PiA(i)))x(t) + (U ⊗ (PiB(i)))f(x(t))

+ (U ⊗ (PiC(i)))g(x(t − τ2,i)) + (U ⊗ (PiD(i)))

×
∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds +NW (i)⊗ (PiΓ(i))x(t)
]

+ xT (t)(U ⊗ P i)x(t) + [π̄(τ1 − τ1) + 1]ẋT (t)

× (U ⊗Q)ẋ(t)− ẋT (t− τ1,i)(U ⊗Q)ẋ(t− τ1,i)

+ [π̄(τ2 − τ2) + 1]gT (x(t))(U ⊗R)g(x(t))

− gT (x(t− τ2,i))(U ⊗R)g(x(t− τ2,i))

+ α̂ih
T (x(t))(U ⊗ S)h(x(t))

−
∫ t−τ3,i

−∞

ϕ(t− s)hT (x(s))(U ⊗ S)h(x(s))ds, (29)

whereα̂i is defined in (13).
For the sake of the presentation simplicity, we also denote

xkl(t) = xk(t)− xl(t), f̄kl(t) = f(xk(t))− f(xl(t)),

ḡkl(t) = g(xk(t))− g(xl(t)), h̄kl(t) = h(xk(t)) − h(xl(t)).

By applying Lemma 1 to (29), we have

L V (xt, t, i)

=
∑

1≤k<l≤N

2xTkl(t)
[

PiE(i)ẋkl(t− τ1,i)− PiA(i)xkl(t)

+ PiB(i)̄fkl(t) + PiC(i)ḡkl(t− τ2,i) + PiD(i)

×
∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds−Nwkl(i)PiΓ(i)xkl(t)
]

+
∑

1≤k<l≤N

[

xTkl(t)P ixkl(t)− ẋTkl(t− τ1,i)Qẋkl(t− τ1,i)

+ [π̄(τ2 − τ2) + 1]ḡTkl(t)Rḡkl(t)

− ḡTkl(t− τ2,i)Rḡkl(t− τ2,i) + α̂ih̄
T

kl(t)Sh̄kl(t)

−
∫ t−τ3,i

−∞

ϕ(t− s)h̄T

kl(s)Sh̄kl(s)ds
]

+ [π̄(τ1 − τ1) + 1]ẋT (t)(U ⊗Q)ẋ(t). (30)

From Assumption 2 and Lemma 2, we can deduce that

xTkl(t)ΛiL1xkl(t)− 2xTkl(t)ΛiL2f̄kl(t)

+ f̄
T

kl(t)Λi f̄kl(t) ≤ 0, (31)

xTkl(t)ΘiΣ1xkl(t)− 2xTkl(t)ΘiΣ2ḡkl(t)

+ ḡTkl(t)Θiḡkl(t) ≤ 0, (32)

xTkl(t)ΩiΥ1xkl(t)− 2xTkl(t)ΩiΥ2h̄kl(t)

+ h̄T

kl(t)Ωih̄kl(t) ≤ 0. (33)

Also, in terms of Lemma 3, it is easy to see that

∫ t−τ3,i

−∞

ϕ(t− s)h̄T

kl(s)Sh̄kl(s)ds

≥ 1
∫ t−τ3,i

−∞
ϕ(t− s)ds

∫ t−τ3,i

−∞

ϕ(t− s)h̄T

kl(s)dsS

×
∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds

=
1

αi

∫ t−τ3,i

−∞

ϕ(t− s)h̄T

kl(s)dsS

∫ t−τ3,i

−∞

ϕ(t − s)h̄kl(s)ds.(34)

From (30)-(34), it follows that

L V (xt, t, i)

≤
∑

1≤k<l≤N

2xTkl(t)
[

PiE(i)ẋkl(t− τ1,i)− PiA(i)xkl(t)

+ PiB(i)̄fkl(t) + PiC(i)ḡkl(t− τ2,i) + PiD(i)

×
∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds−Nwkl(i)PiΓ(i)xkl(t)
]

+
∑

1≤k<l≤N

[

xTkl(t)P ixkl(t)− ẋTkl(t− τ1,i)Qẋkl(t− τ1,i)

+ [π̄(τ2 − τ2) + 1]ḡTkl(t)Rḡkl(t)− ḡTkl(t− τ2,i)R

× ḡkl(t− τ2,i) + α̂ih̄
T

kl(t)Sh̄kl(t)

− 1

αi

∫ t−τ3,i

−∞

ϕ(t− s)h̄T

kl(s)dsS

∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds
]

−
∑

1≤k<l≤N

[

xTkl(t)
(

ΛiL1 +ΘiΣ1 +ΩiΥ1

)

xkl(t)

− 2xTkl(t)ΛiL2 f̄kl(t) + f̄
T

kl(t)Λi f̄kl(t)− 2xTkl(t)ΘiΣ2ḡkl(t)

+ ḡTkl(t)Θiḡkl(t)− 2xTkl(t)ΩiΥ2h̄kl(t) + h̄T

kl(t)Ωih̄kl(t)
]

+ [π̄(τ1 − τ1) + 1]ẋT (t)(U ⊗Q)ẋ(t), (35)

whereκ1 is defined in (13).
For the last term in the above inequality, we have

ẋT (t)(U ⊗Q)ẋ(t)

=
[

(IN ⊗ E(i))ẋ(t− τ1,i)− (IN ⊗A(i))x(t)

+ (IN ⊗B(i))f(x(t)) + (IN ⊗ C(i))g(x(t− τ2,i))

+ (IN ⊗D(i))

∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds + u(t)

+W (i)⊗ Γ(i)x(t)
]T

(U ⊗Q)
[

(IN ⊗ E(i))

× ẋ(t− τ1,i)− (IN ⊗A(i))x(t)
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+ (IN ⊗B(i))f(x(t)) + (IN ⊗ C(i))g(x(t− τ2,i))

+ (IN ⊗D(i))

∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds + u(t)

+W (i)⊗ Γ(i)x(t)
]

=
[

(IN ⊗ E(i))ẋ(t− τ1,i)− (IN ⊗A(i))x(t)

+ (IN ⊗B(i))f(x(t)) + (IN ⊗ C(i))g(x(t− τ2,i))

+ (IN ⊗D(i))

∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds
]T

× (U ⊗Q)
[

(IN ⊗ E(i))ẋ(t− τ1,i)

− (IN ⊗A(i))x(t) + (IN ⊗B(i))f(x(t))

+ (IN ⊗ C(i))g(x(t − τ2,i)) + (IN ⊗D(i))

×
∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds
]

+ 2xT (t)

×
(

W (i)⊗ Γ(i)
)

(U ⊗Q)
[

(IN ⊗ E(i))ẋ(t− τ1,i)

− (IN ⊗A(i))x(t) + (IN ⊗B(i))f(x(t))

+ (IN ⊗ C(i))g(x(t − τ2,i)) + (IN ⊗D(i))

×
∫ t−τ3,i

−∞

ϕ(t− s)h(x(s))ds
]

+ xT (t)
(

W (i)⊗ Γ(i)
)

× (U ⊗Q)
(

W (i)⊗ Γ(i)
)

x(t). (36)

Noticing the relationships

(

W (i)⊗ Γ(i)
)

(U ⊗Q) = N
(

W (i)⊗ (Γ(i)Q),
(

W (i)⊗ Γ(i)
)

(U ⊗Q)
(

W (i)⊗ Γ(i)
)

= N [W (i)]2 ⊗
(

Γ(i)QΓ(i)
)

,

we can infer from Lemma 1 that

ẋT (t)(U ⊗Q)ẋ(t)

=
∑

1≤k<l≤N

[

E(i)ẋkl(t− τ1,i)−A(i)xkl(t)

+B(i)̄fkl(x(t)) + C(i)ḡkl(t− τ2,i)

+D(i)

∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds
]T

Q
[

E(i)ẋkl(t− τ1,i)

−A(i)xkl(t) +B(i)̄fkl(x(t)) + C(i)ḡkl(t− τ2,i)

+D(i)

∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds
]

− 2N
∑

1≤k<l≤N

xTkl(t)

× wkl(i)Γ(i)Q
[

E(i)ẋkl(t− τ1,i)−A(i)xkl(t)

+B(i)̄fkl(x(t)) + C(i)ḡkl(t− τ2,i)

+D(i)

∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds
]

−N
∑

1≤k<l≤N

xTkl(t)w
(2)
kl (i)Γ(i)QΓ(i)xkl(t). (37)

Substituting (37) into (35) leads to

L V (xt, t, i)=
∑

1≤k<l≤N

χT
kl(t, i)

[

Ψkl(i)

+ AT (i)κ1QA(i)
]

χkl(t, i), (38)

whereΨkl(i) is defined as




















Ξ11(i) Ξ12(i) ΘiΣ2 Ξ14(i) ΩiΥ2 Ξ16(i) Xi17
∗ −Λi 0 0 0 0 0
∗ ∗ Ξ33(i) 0 0 0 0
∗ ∗ ∗ −R 0 0 0
∗ ∗ ∗ ∗ Ξ55(i) 0 0
∗ ∗ ∗ ∗ ∗ − 1

αi
S 0

∗ ∗ ∗ ∗ ∗ ∗ −Q





















,

and

A(i) =
[

−A(i) B(i) 0 C(i) 0 D(i) E(i)
]

,

χkl(t, i) =
[

xTkl(t) f̄
T

kl(s) ḡTkl(t) ḡTkl(t− τ2,i) h̄T

kl(t)
∫ t−τ3,i

−∞

ϕ(t− s)h̄kl(s)ds ẋkl(t− τ1,i)
]T

.

In terms of Lemma 4, (11) is equivalent to

Ψkl(i) +AT (i)κ1QA(i) < 0, (39)

(1 ≤ k < l ≤ N, 1 ≤ i ≤ n0).

Let ρ0 = max
{

λmax

(

Ψkl(i) +AT (i)κ1QA(i)
)

∣

∣

∣ 1 ≤ k <

l ≤ N, 1 ≤ i ≤ n0

}

. Obviously,ρ0 < 0 and it then follows
from (38) that

L V (xt, t, i) ≤ ρ0
∑

1≤k<l≤N

χT
kl(t, i)χkl(t, i)

≤ ρ0
∑

1≤k<l≤N

|xkl(t)|2. (40)

Therefore, we have

EV (x(t), t, r(t))

=EV (x(0), 0, r(0)) + E

∫ t

0

LV (x(s), s, r(s))ds

≤EV (x(0), 0, r(0)) + ρ0
∑

1≤k<l≤N

∫ t

0

E|xkl(s)|2ds. (41)

Sinceρ0 < 0 andV (x(t), t, r(t)) > 0, it follows readily from
(41) that

∑

1≤k<l≤N

∫ t

0

E|xkl(s)|2ds ≤ 1

|ρ|EV (x(0), 0, r(0)), (42)

which implies that the integral
∑

1≤k<l≤N

∫ +∞

0 E|xkl(s)|2ds <
+∞.

By Lemma 5, we have

lim
t→+∞

∑

1≤k<l≤N

E|xkl(t)|2 = 0,

or lim
t→+∞

E|xk(t) − xl(t)|2 = 0 for 1 ≤ k < l ≤ N. In other

words, the system (8) is globally asymptotically synchronized
in mean square. This completes the proof of the theorem.

The system (8) is rather general. In what follows, we
consider two special cases. In Case 1, we show that our
main results can be specialized to the synchronization problem
for coupled system without involving the derivatives of the
past history (i.e.,E(r(t)) = 0), which reduces to a retarded
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Φ̂kl(i) =

















Ξ̂11(i) PB(i) + ΛiL2 ΘiΣ2 PC(i) ΩiΥ2 PD(i)
∗ −Λi 0 0 0 0
∗ ∗ Ξ33(i) 0 0 0
∗ ∗ ∗ −R 0 0
∗ ∗ ∗ ∗ Ξ55(i) 0
∗ ∗ ∗ ∗ ∗ − 1

αi
S

















< 0, (44)

Φ̃(i) =

























Ξ̃11(i) PiB(i) + ΛiL2 ΘiΣ2 PiC(i) ΩiΥ2 PiD(i) PiE(i) −√
κ1A(i)Q

∗ −Λi 0 0 0 0 0
√
κ1B

T (i)Q
∗ ∗ Ξ33(i) 0 0 0 0 0
∗ ∗ ∗ −R 0 0 0

√
κ1C

T (i)Q
∗ ∗ ∗ ∗ Ξ55(i) 0 0 0
∗ ∗ ∗ ∗ ∗ − 1

αi
S 0

√
κ1D

T (i)Q

∗ ∗ ∗ ∗ ∗ ∗ −Q
√
κ1E

T (i)Q
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q

























< 0, (46)

functional differential equation. In Case 2, we consider the
same array of neural networks with discrete time-delay only.

Case 1.In the case ofE(r(t)) = 0, the system (8) reduces
to

ẋ(t) = −(IN ⊗A(r(t)))x(t) + (IN ⊗B(r(t)))f(x(t))

+ (IN ⊗ C(r(t)))g(x(t− τ2,i))

+ (IN ⊗D(r(t)))

∫ t−τ3,r(t)

−∞

ϕ(t− s)h(x(s))ds

+ u(t) +W (r(t)) ⊗ Γ(r(t))x(t). (43)

For the system (43), the following result can be derived based
on Theorem 1.

Corollary 1: Under Assumptions 1-3, the system (43) is
globally asymptotically synchronized in mean square if there
exist five positive definite matricesP1, P2, P3, R andS, and
three sets of positive definite diagonal matricesΛi,Θi and
Ωi(1 ≤ i ≤ n0) such that the following LMIs (44) shown at
the top of the page hold for1 ≤ k < l ≤ N, 1 ≤ i ≤ n0,

where each symbol has its previous meaning exceptΞ̂11(i) =
−PiA(i)−A(i)Pi+P i−Nwkl(i)

(

PiΓ(i)+Γ(i)Pi

)

−
(

ΛiL1+
ΘiΣ1 +ΩiΥ1

)

.

Case 2.In this case, withD(r(t)) = 0, the system (8) is
simplified as

ẋ(t) = (IN ⊗ E(r(t)))ẋ(t− τ1,r(t))− (IN ⊗A(r(t)))x(t)

+ (IN ⊗B(r(t)))f(x(t)) + (IN ⊗ C(r(t)))

× g(x(t− τ2,i)) + u(t)

+W (r(t)) ⊗ Γ(r(t))x(t). (45)

For the system (45), the following result is readily available.
Corollary 2: Under Assumptions 1-3, the system (45) is

globally asymptotically synchronized in mean square if there
exist five positive definite matricesP1, P2, P3, Q, R andR,
and two sets of positive definite diagonal matricesΛi and
Θi(1 ≤ i ≤ n0) such that the following LMIs

Φ̄kl(i) < 0

hold for 1 ≤ k < l ≤ N, 1 ≤ i ≤ n0, where Φ̄kl(i) is

defined as
















Ξ̄11(i) Ξ12(i) ΘiΣ2 Ξ14(i) Ξ17 −√
κ1A(i)Q

∗ −Λi 0 0 0
√
κ1B

T (i)Q
∗ ∗ Ξ33(i) 0 0 0
∗ ∗ ∗ −R 0

√
κ1C

T (i)Q
∗ ∗ ∗ ∗ −Q

√
κ1E

T (i)Q
∗ ∗ ∗ ∗ ∗ −Q

















,

and each symbol has its previous meaning exceptΞ̄11(i) =
−PiA(i)−A(i)Pi+P i−Nwkl(i)

(

PiΓ(i)+Γ(i)Pi

)

−
(

ΛiL1+
ΘiΣ1

)

.

Remark 3:Notice that in the case ofW (i) = 0 or Γ(i) = 0
for all i, the system (8) is uncoupled, and the dynamics
of each single neutral-type network is independent of the
other networks. Hence, by means of Theorem 1, a sufficient
condition can be obtained to guarantee the global asymptotic
stability in mean square for each single neutral-type neural
network.

Corollary 3: Under Assumptions 1-3, the neutral-type neu-
ral network (1) is globally asymptotically stable in mean
square if there exist six positive definite matricesP1, P2,
P3, Q, R andS, and three sets of positive definite diagonal
matricesΛi,Θi andΩi(1 ≤ i ≤ n0) such that the following
LMIs (46) shown at the top of the page hold for1 ≤ i ≤ n0,

where each symbol has its previous meaning exceptΞ̃11(i) =
−PiA(i)−A(i)Pi + P i −

(

ΛiL1 +ΘiΣ1 +ΩiΥ1

)

.

Remark 4: In this paper, the synchronization problem is
dealt with for a new class of continuous-time neural networks
of neutral-type with Markovian jumping parameters as well
as mode-dependent mixed time-delays. Note that the mixed
time-delays comprise both the discrete and distributed delays
that are all dependent on the Markovian jumping mode.
The novelty of the main results is fourfold: 1) due to the
consideration of the mode-dependent neutral delays, some
novel analysis techniques are developed to tackle the resulting
mathematical difficulty; 2) a new Lyapunov functional is pro-
posed to account for the Markovian jumps of the delay bounds;
3) a unified framework is established to handle the Markovian
jumping parameters, neutral terms and mixed time-delays;
and 4) the main results established in Theorem 1 contain all
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the information of the considered coupling neural networks
including physical parameters, Markovian jumping rate, the
discrete time-delay as well as bounds on the distributed time-
delays. In the next section, a simulation example is provided
to show the usefulness of the proposed stability conditions.

IV. A N UMERICAL EXAMPLE

In this section, we present a simulation example so as to
illustrate the usefulness of our main results. Our aim is to
examine the global asymptotic synchronization of the system
(8) in mean square.

Consider a system coupled by four identical second-order
neutral-type neural networks with network parameters given
as follows:

Π =





−5 2 3
4 −5 1
2 4 −6



 , A(1) =

[

1 0
0 −0.3

]

,

B(1) =

[

0.3 0.2
0.2 −0.1

]

, C(1) =

[

0.3 −0.1
−0.4 0.1

]

,

D(1) =

[

0.3 −0.2
0.2 0.2

]

, E(1) =

[

0.1 0.1
0.1 0

]

,

A(2) =

[

1 0
0 −0.4

]

, B(2) =

[

0.4 0.2
0.2 −0.2

]

,

C(2) =

[

0.2 −0.4
0.2 0.2

]

, D(2) =

[

0.2 −0.4
0 0.2

]

,

E(2) =

[

0.1 0.1
0.1 0.1

]

, A(3) =

[

1 0
0 −0.5

]

,

B(3) =

[

0.2 0
0.2 −0.2

]

, C(3) =

[

0.2 0.3
−0.3 0

]

,

D(3) =

[

0.1 −0.2
0.1 0.2

]

, E(3) =

[

0.1 0.1
0 0.1

]

,

W (1) =









−7 3 2 2
3 −8 2 3
2 2 −6 2
2 3 2 −7









,

W (2) =









−7 2 3 2
2 −6 2 2
3 2 −7 2
2 2 2 −6









,

W (3) =









−8 3 3 2
3 −7 2 2
3 2 −7 2
2 2 2 −6









,

Γ(1) = diag{4, 3}, Γ(2) = diag{3, 3},
Γ(3) = diag{4, 4}, τ1,1 = 2, τ2,1 = 7,

τ3,1 = 1.2, τ1,2 = 1, τ2,2 = 6, τ3,2 = 1,

τ1,3 = 3, τ2,3 = 6.5, τ3,3 = 0.8.

The activation functions are taken as follows

f1(s) = g1(s) = h1(s) = tanh(−0.6s),

f2(s) = g2(s) = h2(s) = 0.4 tanh(s),

and the delayed kernel function is given byϕ(s) = e−3s. It
is not difficult to verify that

L1 = Σ1 = Υ1 = diag{0, 0},
L2 = Σ2 = Υ2 = diag{−0.3, 0.2}.

With the parameters given above and by using the Matlab
LMI toolbox, we solve the LMI (11) and obtain the following
feasible solutions:

P1 =

[

0.7524 −0.0691
−0.0691 1.0418

]

, P2 =

[

1.3868 −0.1239
−0.1239 1.3968

]

,

P3 =

[

0.7541 −0.0940
−0.0940 1.2698

]

, Q =

[

0.0020 −0.0004
−0.0004 0.0037

]

,

R =

[

2.1168 0.0213
0.0213 1.5872

]

, S =

[

0.1123 −0.0000
−0.0000 0.1123

]

,

Λ1 = diag{6.4715, 5.9952}, Θ1 = diag{21.9896, 18.3192},

Ω1 = diag{7.0265, 6.7963}, Λ2 = diag{7.4679, 7.5336},

Θ2 = diag{22.4617, 18.5736}, Ω2 = diag{6.8619, 6.5830},

Λ3 = diag{7.0148, 6.7889}, Θ3 = diag{21.9830, 18.3069},

Ω3 = diag{7.0304, 6.8070}.

Therefore, it follows from Theorem 1 that the system (8)
with given parameters is globally asymptotically synchronized
in mean square. The numerical simulation further confirms
the theoretical results. Fig. 1 and Fig. 2 display the evolution
of the states of the first neutral-type neural network without
coupling and with coupling, respectively. Fig. 3 shows thatthe
synchronization errorerr(t) approaches zero ast → ∞.

Remark 5: It is worth to pointing out that the example given
above is non-trivial. Note that the system matrixA(r(t)) of
the single network is unstable, which results in the instability
of either single network or coupled system. This can also be
observed from Fig. 1 and Fig. 2. Nevertheless, as shown in
Fig. 3, the coupled system is synchronized. The numerical
simulation is in complete accord with the theoretical results.
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Fig. 1. State Evolution of Single Network Without Coupling.
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Fig. 2. State Evolution of Single Network in Coupled System.
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Fig. 3. State Trajectory of the Synchronization Error.

V. CONCLUSIONS

In this paper, we have investigated the synchronization
problem for an array of linearly coupled neutral-type neural
networks with Markovian jumping parameters and mixed time
delays. The discrete time delays are mode-dependent, and dis-
tributed time delay is unbounded with mode-dependent upper
bound. By utilizing a novel Lyapunov-Krasovskii functional
and the Kronecker product, we have shown that the addressed
synchronization problem is solvable if several linear matrix
inequalities (LMIs) are feasible. A unified LMI approach
has been developed to establish sufficient conditions for the
coupled neural networks to be globally synchronized in mean
square. A numerical example has been provided to show the
usefulness of the proposed global synchronization condition.
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