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Using amplitude equations, we show that groups of identical nanomechanical resonators, interacting with a

common mode of a cavity microwave field, synchronize to form a single mechanical mode which couples to

the cavity with a strength dependent on the squared sum of the individual mechanical-microwave couplings.

Classically this system is dominated by periodic behavior which, when analyzed using amplitude equations, can

be shown to exhibit multistability. In contrast, groups of sufficiently dissimilar nanomechanical oscillators may

lose synchronization and oscillate out of phase at significantly higher amplitudes. Further, the method by which

synchronization is lost resembles that for large amplitude forcing which is not of the Kuramoto form.

DOI: 10.1103/PhysRevE.85.066203 PACS number(s): 05.45.Xt, 85.85.+j

I. INTRODUCTION

Synchronization of coupled oscillators arises in many

different contexts in biology, chemistry, and engineering [1,2].

Such systems show surprising emergent behavior and can

be used to encode and process information [3]. In this

paper we show how synchronization can arise in arrays of

nanomechanical resonators interacting via a common elec-

tromagnetic field mode. Recent progress in optomechanical

and nanomechanical systems now enables very high frequency

mechanical resonators to be coupled strongly to one or more

modes of the electromagnetic field in a resonant cavity [4,5].

This is largely driven by a desire to explore the deep quantum

domain in which the mechanical resonator is prepared at or

near its vibrational ground state [6,7]. As the coupling is

essentially nonlinear, the resulting classical dynamics can be

complex and must be thoroughly understood if one is to make

sense of the quantum phenomenon.

The common feature in these systems is the so-called

radiation-pressure coupling, whereby the displacement of each

mechanical resonator independently changes the resonance

frequency of a common electromagnetic cavity field by an

amount proportional to the displacement of each mechanical

resonator. This means that there is an effective conservative

force acting on each mechanical resonator proportional to the

circulating power in the electromagnetic cavity. If the cavity is

externally driven, this interaction mediates an indirect all-to-all

coupling between each of the mechanical resonators that is

highly nonlinear.

If the oscillators are identical, a collective variable can

be used to understand the dynamics. In this paper each

of the oscillators is a bulk flexural vibrational mode of

a mechanical resonator. The resulting set of equations is

similar to that considered by Marquardt et al. [8], who found

that multistability was an important feature of the dynamics

for small mechanical damping. Here we are able to derive

amplitude equations for the collective variables and use these

to map out regions of multistable behavior in the system.

For nonidentical phase oscillators Kuramoto [9] used a

collective variable (Kuramoto’s order parameter) to char-

acterize the synchronization between the oscillators. More

recently the collective dynamics of optomechanical arrays

has been described by Heinrich et al. [10], who give some

results on synchronization based on a phase model related to

Kuramoto’s model. Like our model, Ref. [10] is based on the

radiation-pressure coupling between the field and mechanical

elements. Unlike our model, the mechanical resonators in

Ref. [10] interact with a local electromagnetic field mode

and are directly coupled by elastic forces. The more complex

coupling in our model results in a different mechanism for

the loss of synchronization which typically occurs for large

amplitude forcing, not small amplitude forcing as occurs in

the model of Heinrich et al. [10]. Nevertheless, we are able

to give specific results on synchronization for two and three

mechanical resonators interacting via a common cavity mode

and relate these to the behavior of a collective variable, which

is related to the cavity field amplitude.

Much of the previous work on synchronized nonlinear

oscillators is based on a direct, usually nearest-neighbor,

interaction between the individual oscillators, and amplitude

equations have been used successfully to analyze the dynamics

of such models [11]. We show that amplitude equation

methods can also be applied to understand the dynamics of

the more complex all-to-all coupling that occurs in our model.

Synchronization in coupled microelectromechanical systems

has been described [12] and observed [13].

There are at least four kinds of physical implementation of

the system discussed here. First, in circuit QED, a coplanar

microwave cavity contains the electric field which forms the

common field mode. Nanomechanical resonators can then be

placed so as to form one plate of a capacitor with the central

conductor of the microwave cavity thereby modulating the

microwave cavity frequency [14]. Second, at optical rather

than microwave frequencies, an optomechanical system can

be formed by placing micromechanical dielectric membranes

inside the optical cavity [15]. Third, a toroidal optical whisper-

ing gallery mode (WGM) cavity is manufactured on a tapered

platform raised off a substrate [16]. The mechanical vibrations

of the toroid modulate the frequency of the WGM. Finally,

optomechanical phononic crystals can be fabricated which are

simultaneously photonic crystal lattices to produce localized

optical and mechanical modes [17,18].

In the bulk of this paper we will consider a nanome-

chanical system where a single mode of a superconducting

microwave resonator is coupled to the displacements of N
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FIG. 1. A schematic of the nanoelectromechanical system under

consideration. A superconducting microwave cavity of frequency

ωc mediates a coupling between N nanomechanical resonators

capacitively coupled to it. The ith nanomechanical resonator has

resonant frequency ωi and microwave-mechanical coupling strength

gi . The microwave cavity is driven by a linear drive of amplitude ǫ at

a detuning from the cavity of δ.

nanomechanical resonators. However, the dynamical model

we derive in this section is applicable to other physical

implementations in different experimental contexts. In general

our model applies to a system of N + 1 oscillators: N single

flexural modes of independent mechanical resonators whose

displacements are coupled to a common single electromag-

netic field mode, also modeled as a single simple harmonic

oscillator. The coupling between each mechanical resonator

and the microwave field in the cavity is capacitive and

results in a frequency shift of the cavity resonance frequency

that, to lowest order, is proportional to the displacement of

the mechanical resonator. This results in a force on each

mechanical resonator that is proportional to the intensity

of the microwave field in the cavity. This is often called

radiation-pressure coupling [19]. A schematic of this system

is given in Fig. 1.

We model the dynamics of the microwave field in the co

planar transmission line by a lumped circuit LC electrical

resonator, and the dynamics of each mechanical resonator

is modeled as a single simple harmonic oscillator. The

Hamiltonian for a single nanomechanical resonator interacting

with the microwave field is

H =
Φ2

2L
+

Q2

2C(q)
+ v(t)Q +

p2

2m
+

mω2

2
q2, (1)

where the first term is the inductive energy with the Φ the

flux through the equivalent inductor with inductance L. The

second term is the charging energy with Q the charge on

the equivalent capacitor with capacitance C(q), which varies

with the displacement of the mechanical element. The third

term represents the potential energy due to an external ac bias

voltage of the equivalent circuit resonator. The fourth term

is the kinetic energy of the mechanical resonator of effective

mass m, and the last term is the elastic potential energy of a

single flexural mode of the mechanical resonator with ω. As

the displacement is small compared to the equilibrium distance

between the mechanical resonator and the central conductor

of the microwave cavity, we can expand C(q) to linear order

in q around the equilibrium displacement q0 to get an effective

Hamiltonian

H =
Φ2

2L
+

Q2

2C0

+
p2

2m
+ mω2q2 + AQ2q + v(t)Q, (2)

where C0 = C(q0) and A = − 1
2

dC(q)

dq
|q=q0

. The classical

Hamilton equations are

dΦ

dt
=

Q

C0

+ 2AQq + v(t),

dQ

dt
= −

�

L
,

dq

dt
=

p

m
, (3)

dp

dt
= −mω2q − AQ2.

When A = 0, the circuit equations of motion describe simple

harmonic oscillation at the frequency

ωc =
1

√
LC0

. (4)

It is convenient at this point to define dimensionless canonical

variables. We do this by first fixing two energy scales,

one for the circuit degrees of freedom Ec and one for

the mechanical degrees of freedom Em. The dimensionless

canonical variables, (xc,yc) for the circuit and (x,y) for the

mechanics, are then defined by

xc =
�

√
2EcL

, yc =
Q

√
2EcC0

,

(5)

x =
q

√

2Em

mω2

, y =
p

√
2mEm

.

We now anticipate an eventual quantum mechanical treatment

and set Ec = h̄ωc, Em = h̄ω. The appearance of h̄ at this stage

does not signify anything more than a convenient conversion

factor between energy and frequency. We also define a complex

amplitude for the circuit degrees of freedom as

α = xc + iyc, (6)

in terms of which we can write the Hamilton equations of

motion as

dα

dt
= −iωcα − ig(α − α∗)x + E(t),

dx

dt
= ωy, (7)

dy

dt
= −ωx − gy2

c ,

where

g =
√

2 AC0Ec√
mEm

, E(t) =
v(t)

√
2EcL

. (8)

We now assume that the circuit is harmonically driven and set

E(t) = E0 sin ωDt (9)

and define the rotating variable ᾱ = αe iωD t (equivalent to

going to the interaction picture in the quantum description). If

we then drop rapidly rotating terms (compared to the time scale

of observations), the equations of motion may be approximated

by

d ᾱ

dt
= −iδᾱ − igᾱx − iǫ,

dx

dt
= ωy, (10)

dy

dt
= −ωx −

g

2
|ᾱ|2 ,
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where ǫ = − E0

2
, and the detuning δ = ωc − ωD . Noting the

time averaged energy of the energy in an LC circuit is

proportional to |α|2, we see that the effective coupling

between the microwave field and the mechanical resonators

is described by the effective Hamiltonian g|α|2x. This form of

coupling is often termed radiation-pressure coupling [19]; it is

proportional to the circulating power in the cavity field.

We include dissipation of both the microwave field mode

and the nanomechanical resonators using the quantum me-

chanical master equation to incorporate fluctuations correctly.

We derive this in Sec. III. There we show that in the classical

description the systematic effect of damping (i.e., ignoring

fluctuations) change the Hamilton equations to

dα

dt
= −iδα − igαx − iǫ − κα,

dx

dt
= ωy − γ x, (11)

dy

dt
= −ωx −

g

2
|α|2 − γy,

where κ and γ are the energy decay rates for the electrical

and mechanical energy, respectively, and we have dropped the

overbar as from this point on we simply take it for granted that

we are working with the rotating variables for the cavity field.

In this paper we are interested in the dynamics of N

mechanical resonators interacting with a single mode of the

microwave field in the circuit. Assuming a coupling of the

form
∑

i gixi |α|2, we see that the equations of motion may be

expressed in terms of collective variables:

dα

dt
= −iδα − iǫ − iα

M
∑

i=1

NiXi − κα,

dXi

dt
= ωiYi − γiXi, (12)

dYi

dt
= −ωiXi −

Gi

2
|α|2 − γiYi,

where Xi , Yi , and Gi are the M collective combinations

Xi =
1

Ni

∑

j∈Si

gjxj , Yi =
1

Ni

∑

j∈Si

gjyj ,

Gi =
1

Ni

∑

j∈Si

g2
j , (13)

and Si are collections of Ni identical nanomechanical os-

cillators with individual classical positions and momenta xj

and yj , respectively. We note that the other experimental

contexts mentioned in this Introduction can also be described

by the same differential equations (12). For example, multiple

optomechanical membranes in an optical cavity are described

by these equations with different resonant frequencies and

coupling strengths [15]. We give a list of the achievable

experimental values for various experiments in Table I in the

Appendix.

In the following section, we present a detailed analysis of

the steady state structure of the nonlinear semiclassical system,

including local and global bifurcations. Since the behavior

is dominated by oscillatory motion, amplitude equations are

derived from which we can obtain specific results about

the existence and stability of periodic orbits. It is then a

simple step to derive coupled amplitude equations for the case

where the mechanical oscillators are not identical, and we

analyze two and three coupled oscillator systems. In Sec. III

we give a quantum description of the many-body system,

and calculate the steady state quantum noise spectra as the

first stable limit cycle is approached. Finally, in Sec. IV we

summarize our results and suggest new directions for further

work.

II. DYNAMICS OF THE CLASSICAL MODEL

Although there are regions of the parameter space where

stable critical points exist, periodic motion plays a major

role in the dynamics for the cases of both the identical and

the nonidentical resonators. If the mechanical resonators are

TABLE I. Raw experimental coupling values for various systems. The “Type” column indicates the experimental context: “S” indicates a

superconducting microwave coplanar waveguide resonator (â ) coupled to a nanomechanical resonator (b̂i); “M” indicates an optical cavity (â )

coupled to a micromechanical membrane (b̂i); “T” indicates a toroidal microresonator (â ) coupled to a nanomechanical string resonator (b̂i);

and “C” indicates an optomechanical crystal array where an optical mode of a cell (â ) is coupled to a mechanical mode of a cell (b̂i).

Experiment Mode â Mode b̂i Coupling

Ref. Type ωc

2π
(Hz) 2 κ

2π
(Hz) |ǫ|

2π
(Hz)

ωi

2π
(Hz) 2

γi

2π
(Hz)

gi

2π
(Hz)

[31] S 7.49 × 109 <2.88 × 106 1.04 × 106 0.67 866.7 × 10−3

[22] S 5.22 × 109 230 × 103 �2.145 × 109 1.53 × 106 <5.08 190.7 × 10−3

[14] S 4 × 109 400 × 103 0.1 × 106 < 1

→ 10 × 109 → 1 × 106 → 6 × 106 →<6

[14] S 7.55 × 109 302 × 103 1.41 × 106 <371.1

[32] S ∼5 × 109 490 × 103 2.3 × 106 19.2 49.55 × 10−3

[23] S 7.64 × 109 382 × 103 �2.434 × 109 67 × 106 248.1 25.03

[15] M 282 × 1012 4.07 × 106 134 × 103 0.122 27.8

[16] T >4.9 × 106 6.5 × 106 65

→ 16 × 106 → 1600

[16] T 50 × 106 10.74 × 106 202.64 147.3

[16] T 50 × 106 8 × 106 200 55.6
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identical, even if their couplings are nonidentical, they will

synchronize, in phase, to form a single mechanical mode. How-

ever the synchronized motion exhibits multi stable behavior.

The first two sections, below, discuss the synchronized motion

of identical mechanical resonators (14), largely via amplitude

equations. If, on the other hand, the mechanical resonators

naturally oscillate at different frequencies, desynchronization

can occur. To analyze this we consider the synchronization

between different frequency groups. The resonators can then

be attracted to out-of-phase solutions that oscillate at much

greater amplitudes. In the final section we obtain specific

results, via coupled amplitude equations, for synchronization

between two and three frequency groups.

For all of the bifurcations that occur a scaled version of

the cavity forcing ǫ, which is tunable in an experiment, can

be thought of as the bifurcation parameter. There are two

time scales in the system; the amplitude decay rate κ of the

common cavity mode and the decay rate of the resonators,

which is an order of magnitude smaller and will be important

for the derivation of the amplitude equations. The amplitude

decay rate κ of the common cavity mode provides a natural

time scale and we introduce a new time parameter t ′ = κt ;

rescaled nanomechanical variables X′
i = Xi

κ
and Y ′

i = Yi

κ
; and

dimensionless coupling constants δ′ = δ
κ

, ǫ′ = ǫ
κ

, ω′
i = ωi

κ
,

γ ′
i = γi

κ
, G′

i = Gi

κ2 , and ω̄i
′ =

√

ω′
i
2 + γ ′

i
2
. This gives

dα

dt ′
= −(1 + iδ′)α − iα

M
∑

i=1

NiX
′
i − iǫ′,

(14)
d2X′

i

dt ′2
= −ω̄i

′2X′
i −

G′
iω

′
i

2
|α|2 − 2γ ′

i

dX′
i

dt ′
.

If the uncoupled mechanical resonators are identical (ω′
1 = ω′,

γ ′
1 = γ ′ ⇒ ω̄1

′ = ω̄′), then the oscillators synchronize. This

is a natural consequence of linear damping and the fact that

each oscillator experiences the same forcing. Consider u =
X′

i − X′
j ; then u = 0 is a stable solution of its equation of

motion:

d2u

dt ′2
= −ω̄′2u − 2γ ′ du

dt ′
, (15)

provided γ ′ > 0.

The synchronized motion can then be represented in

collective variables (14) which, suppressing the use of primes,

gives the following:

dα

dt
= − (1 + iδ) α − iαNX − iǫ,

(16)
d2X

dt2
= −ω̄2X −

Gω

2
|α|2 − 2γ

dX

dt
.

For the remainder of this paper we suppress the uses of primes

in the notation, and remind the reader that all couplings are

now dimensionless with the cavity decay rate determining the

natural time scale of the system.

From a dynamical point of view ǫ
√

NG acts as one

parameter, and in fact both N and G could be removed by

scaling

X̄ = NX, ᾱ = α
√

NG, ǭ = ǫ
√

NG. (17)

So if the number of resonators is increased, smaller values of

the driving are necessary to achieve the same effect.

A. Critical points, bifurcations, and stability

Without forcing, ǫ = 0, the origin is a stable critical point.

As the ǫ is increased from zero the critical point moves away

from the origin, its position given by the single real root of the

cubic

2ω̄2X0[1 + (δ + NX0)2] + Gωǫ2 = 0, (18)

where α0 = − iǫ
1+i(δ+NX0)

. However, it loses stability on a

Hopf bifurcation, creating a periodic orbit, for both δ > 0

(red detuning) and δ < 0 (blue detuning), provided γ > 0 and

small. The dynamics of this periodic motion is the subject of

the next section.

For δ > 0 (red detuning) the Hopf curve is a perturbation

of that from the γ = 0 case where
√

NGǫ =
√

2δω̄. To first

order in γ it is given by

ǫ = ǫH (ω,δ,γ,NG) =

√

2ω

NG

(

δ + γ
(1 + ω2)2

2δω2

)

. (19)

For δ < 0 (blue detuning) ǫ is of order
√

γ :

ǫ = ǫH (ω,δ,γ,NG) =

√

γ (1 + δ2)[(δ2 − ω2 + 1)2 + 4ω2]

−δNGω
.

(20)

The Hopf bifurcation is subcritical for δ < −
√

8ω2+3
5

(blue detuning), where periodic orbits can exist for ǫ <

ǫH (ω,δ,γ,NG). In fact many stable limit cycles can exist

for some parameter values because of the presence of saddle

node bifurcations of limit cycles each creating a stable and

unstable pair of limit cycles. This leads to multistable behavior

that has been noticed elsewhere [8,20] for similar systems.

These bifurcations are shown in Fig. 2 for ω = 2 and γ =
0.001. The limit cycle bifurcations were produced using the

amplitude equations described in the next section; however,

similar results can be produced by following the limit cycles

numerically using the package MATCONT [21]. For δ < 0 (blue

detuning) eight of the saddle node bifurcations of limit cycles

are shown, indicating regions where there are 1–8 pairs of

stable and unstable periodic orbits. See the caption for specific

details. MATCONT indicates that the situation is dynamically

more complicated for δ > 0 (red detuning), involving period

doubling and regions of chaos.

Although most of this paper is devoted to the case of blue

detuning, where δ < 0, it is worth mentioning that for δ >
√

3

there is a region where three critical points exist given by

the roots of the cubic given above. This triangular shaped

region

2ω̄(2δ +
√

δ2 − 3)

3
√

NGω
√

δ +
√

δ2 − 3

= ǫsn+ < ǫ < ǫsn− =
2ω̄(2δ −

√
δ2 − 3)

3
√

NGω
√

δ −
√

δ2 − 3
(21)
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FIG. 2. (Color online) The bifurcation diagram for ω = 2 and

γ = 0.001. In the shaded region there are no periodic orbits and there

is one stable critical point. The Hopf bifurcation curve, which is in red,

provides a partial boundary of this region. At the generalized Hopf

GH (which is at δ =
√

7 for ω = 2) the Hopf bifurcation changes from

super- to subcritical. For δ <
√

7 the Hopf bifurcation is subcritical

and periodic orbits exist to the left of the Hopf curve. Also for 0 <

δ <
√

3 there are regions where periodic orbits exist to the left of

the Hopf curve. The blue curves A-GH, BGK, CFK, DEK, KHCusp,

KMcusp, etc., are saddle node bifurcations of periodic orbits creating

a stable and an unstable periodic orbit existing to their right. (Only the

first eight are shown.) The lozengelike dashed curves are also saddle

node bifurcations of periodic orbits, this time destroying a stable and

an unstable periodic orbit. (Once again only a sample are shown.) In

the regions ABG(GH) and HMCusp there is one stable critical point

and a pair of periodic orbits with opposite stability. In the region

G(GH)HK there is one unstable critical point and one stable periodic

orbit. In the region BCFG and the region to the left of MCusp there is

one stable critical point and two pairs of periodic orbits with opposite

stability. In the region FGK there is one unstable critical point and two

stable periodic orbits and one unstable periodic orbit. In the region

CDEF there is one stable critical point and three stable and three pairs

of periodic orbits with opposite stability, etc.

is bounded by (ǫ = ǫsn±) saddle node bifurcations, shown as

green lines in Fig. 2. These intersect in a cusp bifurcation at

δ =
√

3 and ǫ
√

NGω = 4ω̄√
3
.

The case ω = 2 is relevant for the experiments described in

[8,10]. However, for ω > 2, as in [22,23], there is no qualitative

change in the bifurcation diagram, although the generalized

Hopf bifurcation (δ = −
√

8ω2+3
5

) occurs for larger values of

|δ|. Figure 3 shows the corresponding situation for (a) ω = 5

and (b) ω = 10 and γ = 0.001 with δ < 0 (blue detuning).

Multistable behavior due to the presence of limit cycles stacked

above each other remains an important feature (see also

Fig. 4).

B. Amplitude equations and multistability

for blue detuning (δ < 0)

Periodic orbits and multiple periodic orbits can exist, if

the weakly forced oscillators are sufficiently weakly damped.

This multistable behavior, resulting from the playoff between

weak damping and cavity forcing, has been noted elsewhere

[8,10,24]. Here we explore it in more depth using amplitude

equations.

The method relies on defining a slow time which is

proportional to the damping rate of the resonators (τ = γ t)

and on assuming that the forcing is on the order of the square

root of the damping, ǫ = √
γ ǭ. Then the cavity amplitude is

naturally of the same order as the forcing and we can obtain

equations for the slowly varying amplitude A(τ ). Let

X = X0 + [A(τ )e iω̄t + c.c.] = X0 + 2|A(τ )| cos(ω̄t + θ ),

(22)

where X0 is the critical point of the system given in the previous

section, which is O(ǫ2). Given that γ is small and both ǫ and

|α| are O(
√

γ ) then Ẍ + ω̄2(X − X0) ≈ 2γ iω dA
dτ

e iω̄t + c.c.

[25]. The cavity forcing (Gω
2

|α|2) can then be written as a

sum of products of Bessel functions. To see this, substitute

X = X0 + 2|A| cos(ω̄t + θ ) into the cavity equation;

dα

dt
= −{1 + i[δ + NX0 + 2N |A| cos(ω̄t + θ )]}α − iǫ .

(23)

Then if

α = e iψ(t)
∑

m

Bme imωt (24)

it follows that

α̇ = iψ̇(t)α + e iψ(t)
∑

m

imωBme imωt , (25)

and using the Jacobi Anger expansion [8]
∑∞

n=−∞ inJn(z)

e inθ = e iz cos θ , this can be matched to the right hand side of

the cavity equation if

ψ̇(t) = −
2N |A|

ω
cos(ωt + θ ) and

(26)

Bm = −
im+1ǫJm

(

2N |A|
ω

)

κ̄ + imω
,

where κ̄ = 1 + i(δ + NX0) and Jm(x) are Bessel functions of

the first kind. Substituting this back into

Ẍ = −ω̄2X −
Gω

2
|α|2 − 2Ẋ (27)
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FIG. 3. (Color online) Bifurcation diagrams (a) ω = 5 and (b) ω = 10 and γ = 0.001 with δ < 0 (blue detuning) showing the Hopf

bifurcation (red) and saddle node bifurcations of periodic orbits. The labeling in (a) is similar to that in Fig. 2. For instance, in the region

ABG(GH) there is one stable critical point and a pair of periodic orbits with opposite stability.

gives an amplitude equation for the oscillation in terms of sums

of pairs of Bessel functions,

dA

dτ
= −A −

iGǫ2e iθ

4

∞
∑

m=−∞

Jm

(

2N |A|
ω

)

Jm+1

(

2N |A|
ω

)

[κ̄ + i(m + 1)ω](κ̄∗ − imω)
.

(28)

Identical mechanical resonators synchronize to oscillate with

amplitude A(τ ) given by this equation.

In polar form (A = re iθ ) the equations become

dr

dτ
= −r + Gǭ2

∞
∑

m=0

amr (δ̄,ω)Jm

(

2Nr

ω

)

Jm+1

(

2Nr

ω

)

,

dθ

dτ
= +

Gǭ2

r

∞
∑

m=0

ami(δ̄,ω)Jm

(

2Nr

ω

)

Jm+1

(

2Nr

ω

)

, (29)

where

amr (δ̄,ω) =
δ̄ω2(2m + 1)[1 + δ̄2 + ω2m(m + 1)]

[(1 + δ̄2 − m2ω2)2 + 4m2ω2]{[1 + δ̄2 − (m + 1)2ω2]2 + 4(m + 1)2ω2}
,

(30)

ami(δ̄,ω) =
δ̄ω(2m + 1){(1 + δ̄2 − m2ω2)[1 + δ̄2 − (m + 1)2ω2] + 4m(m + 1)ω2}

2[(1 + δ̄2 − m2ω2)2 + 4m2ω2]{[1 + δ̄2 − (m + 1)2ω2]2 + 4(m + 1)2ω2}
,

and δ̄ = δ + X0. For δ < 0 (blue detuning) then X0 ≈
γ [(δ2−ω2+κ2)2+4κ2ω2]

2κω2δ
. Since each term in the sum has |A| as

a factor, the amplitude equation may be rewritten as

dA

dτ
= −A + Gǭ2NAF (N |A| ,ω,δ), (31)

where F (Nr,ω,δ) is a complex function. The conditions for

the Hopf bifurcation, given in Sec. II A, can be obtained by

setting d r
dτ

= 0 in the linearized radial equation,

Since θ does not appear in the equation for r , the periodic

orbits of the system are given by

Fr (Nr,ω,δ) =
1

r

∑

m=0,∞

amr (δ̄,ω)Jm

(

2Nr

ω

)

× Jm+1

(

2Nr

ω

)

=
1

NGǭ2
. (32)

These curves are plotted in Fig. 4 for ω = 2 and γ =
0.01,0.001,0.0001 and various values of δ. Corresponding to

these oscillations, the cavity field amplitude oscillates with

frequency ω̄ + Fi (Nr,ω,δ) and amplitude ǫ
√

2Nr |F |:

(Leading oscillatory term in |α|2)

= 2Nrǫ2|F (Nr,ω,δ)| cos{[ω̄ + Fi(Nr,ω,δ)]t + ζ }, (33)

where ζ is a constant.

Although the equation governing the periodic orbits is

simple, the multiple ranges of the function Fr (Nr,ω,δ), whose

contours are plotted in Fig. 6 for ω = 2, result in multistability.

Its turning points define the positions of the saddle node

bifurcations, which map out the number of periodic orbits

existing in parameter space, as shown in Fig. 2. (The curves

shown in Fig. 2 were calculated using ten terms in the sum.)

Expanded in a Taylor series as a function of r2 about zero,

Fr (Nr,κ̄,ω) = Fr0(κ̄,ω) + r2Fr1(κ̄,ω) + r4Fr2(κ̄,ω) + · · · ,

(34)
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periodic orbits of the system calculated from the amplitude equations
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NGǫ for ω = 2 and γ = 0.01,0.001,0.0001 and

various values of δ. In (a) δ = −2, (b) δ = −5, (c) δ = −9, and (d)

δ = −10. The unstable periodic orbits are given by dashed lines and

the stable one are given by solid lines.

the linear term Fr1 (κ̄,ω) defines the criticality of the Hopf

bifurcation. The Hopf bifurcation is supercritical, creating a

stable periodic orbit, if Fr1 (κ̄,ω) < 0, which is the case here

for γ small if δ > −
√

8ω2+3
5

.

For larger values of ω the oscillations occur at radii with

greater values of N |A| (= Nr). Figure 5 compares the

amplitudes |α| and N |A| with the bifurcation diagram for

ω = 10 and γ = 0.000 01. For instance in the experiment

described in [22] the upper bound for the magnitude of ǫ

implies that oscillatory behavior occurs for N on the order

of 10 and multistable behavior occurs for N on the order

of 500.
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the sum of products of Bessel functions. Stable periodic orbits exist

in green shaded regions. There are no periodic orbits in the regions

enclosed by red lines where Fr (N |A| , 2,δ) < 0.

Here we will not consider the case with δ > 0, which

corresponds to red detuning, except to note that the dynamics

is more complicated and deserves a separate study. While

periodic orbits, similar to those discussed here, exist, there

are other orbits as well, associated with the Hopf bifurcation,

and many of these undergo period doubling (see Fig. 2) to

chaos.

C. N nonidentical mechanical resonators and synchronization

If the frequencies and/or dampings of each individual

mechanical resonator differ, reduction to a single collective

variable is no longer possible. However, the results of the

previous section can be generalized to give a set of N
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coupled amplitude equations. Here we consider the case

where the linear frequencies of the mechanical resonators are

approximately the same: ω̄i = ω + γ�ωi . The equations of

motion (14) then become

dα

dt
= − (1 + iδ) α − iα

∑

i

NiXi − iǫ,

(35)

Ẍi = −(ω2 + 2ω�ωi)Xi −
Giωi

2
|α|2 − 2γ Ẋi .

As in the previous section, amplitude equations, as functions

of a slow time (τ ), can be derived for the dominant oscillatory

term [11]:

Xi = X0 + [Ai(τ )e iωt + c.c.] = X0 + 2|Ai(τ )| cos(ωt + θi).

(36)

Taking a sum as before and rewriting this as one oscillatory

term,

X =
1

N

∑

i

NiXi = X0 +
1

N

(

∑

i

Ai(τ )e iωt + c.c.

)

= X0 + 2|A| cos(ωt + θ ), (37)

we can see that |A| = r acts as a dynamical order parameter

for the mechanical resonators, in the sense of Kuramoto [9],

A(τ ) =
1

N

∑

i

Ai(τ ) ⇒ |A| e iθ =
1

N

∑

i

rie
iθi . (38)

As before, we can use Bessel functions to work out the

cavity amplitude response and substitute this back into the

equations for the individual oscillators to give the amplitude

equations,

dAi

dτ
= −(1 + �ωi)Ai + NiGǭ2e iθ

∑

m=0,∞

am(δ̄,ω)

× Jm

(

2N |A|
ω

)

Jm+1

(

2N |A|
ω

)

, (39)

where am(δ̄,ω) = amr (δ̄,ω) + iami(δ̄,ω) is defined in the pre-

vious section.

1. Two sets of nonidentical mechanical resonators

In terms of two sets of oscillators this becomes

dA1

dτ
= −(1 + i�ω1)A1 + GN1ǭ

2(A1 + A2)F (|A1 + A2|),

dA2

dτ
= −(1 + i�ω2)A2 + GN2ǭ

2(A1 + A2)F (|A1 + A2|).

(40)

If the �ωi are equal they do not affect the radial motion and

we still have

dr

dτ
= −r + Gǭ2NrFr (Nr,ω,δ), (41)

which implies that N2r2 = r2
1 + r2

2 + 2r1r2 cos(θ2 − θ1) is

a constant of the motion. Substituting this into the

equations for Ai results in a linear system whose

symmetrical solution N1A2 = N2A1 is stable. So apart

from some transients the individual oscillators synchro-

nize, d (N1A2−N2A1)

dt
= − (γ + i�ω) (N1A2 − N2A1), as noted

before.

If the �ωi are not equal the dynamics of the system, which

is a function of the relative phase φ = θ2 − θ1 only, is given

by the nonlinear system

dr1

dτ
= −r1 + ǭ2GN1{r1Fr (Nr) + r2[Fr (Nr) cos φ − Fi (Nr) sin φ]},

d r2

dτ
= −r2 + ǭ2GN2{r2Fr (Nr) + r1[Fr (Nr) cos φ + Fi (Nr) sin φ]}, (42)

dφ

dτ
= �ω21 + ǭ2GFi (Nr)

[

(N2 − N1) +
(

N2r1

r2

−
N1r2

r1

)

cos φ

]

+ ǭ2GFr (Nr)

(

N2r1

r2

+
N1r2

r1

)

sin φ,

where Fi,r (Nr) = Fi,r (Nr,ω,δ), Nr = |A1 + A2| =
√

r2
1 + r2

2 + 2r1r2 cos φ, and �ω21 = �ω2 − �ω1. For

N1 = N2 we can assume that �ω21 > 0 as the transformation

(�ω21 → −�ω21, φ → −φ) and (r1 → r2 and vice versa)

leaves the equations unchanged. The coupling, however, is

strong rather than weak and the system cannot be reduced

to a phase model. But it is nevertheless useful to compare

our results with those of similar phase and phase amplitude

models [2,9,11,26,27].

In the simplest two-oscillator phase model (φ̇ = �ω −
K sin φ with φ = θ2 − θ1) there are two critical points, ap-

proximately an in-phase and an out-of-phase solution. One of

the critical points is stable, for |�ω| sufficiently small (|�ω| <

K). Unsynchronized motion occurs when the critical points are

lost via a saddle node bifurcation (|�ω| > K). More complex

models include a sin 2φ term in which case the in-phase solu-

tion (φ ≈ 0) may lose stability to a stable out-of-phase solution

(φ ≈ π ). The model here can also be discussed in terms of the

stabilities of in-phase and out-of-phase solutions. However

the “unsynchronized behavior” occurs as a transient state,

resembling the transient rotational motion of a damped non-

linear pendulum started near to the separatrix of the undamped

system. Similar motion has been noted for other systems with

multistability [24].

Nonzero �ω21 breaks the symmetry and the in-phase

critical points, which are still stable for �ω21 very small, exist

only with r1 �= r2. Their relative sizes as |�ω21| is varied

are shown in Fig. 7(b). As |�ω21| is increased they lose

stability via a Hopf bifurcation, Fig. 7(a). This creates a stable

periodic orbit which does not initially envelope the origin.
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FIG. 7. (Color online) The bifurcation diagram for two mechanical resonators for N1 = N2, γ = 0.0001, ω = 2, and δ = −1.5. The

in-phase solutions are stable outside the shaded central regions. The out-of-phase solutions are stable outside the slice near the horizontal axis.

They are singular at �ω21 = 0 and unstable for |�ω21| small, where they occur for very large values of ri . In the unshaded regions both in-phase

and out-of-phase solutions are stable, but have different basins of attraction. (b) shows the in-phase solution in (r1,r2) space as �ω21 is varied.

r1 + r2 remains approximately constant. (c) shows the out-of-phase solution in (r1,r2) space as �ω21 is varied.

However, in a bifurcation scenario typical of large amplitude

coupling [2], it grows rapidly to enclose the origin. [In

(r1,r2,φ) space this transition is a heteroclinic bifurcation with

saddles at r1 or 2 = 0, φ = ±π
2

.] Transient unsynchronized

motion results for solutions started near the (unstable) in-phase

solution, where solutions appear unbounded in phase, but

eventually become trapped by a stable out-of-phase solution.

[In fact the out-of-phase solutions are only unstable for �ω21

very small, where they exist at large amplitude, Fig. 7(c).]

The bifurcation diagram Fig. 7 was created using the package

MATCONT with F (|A|2 ,κ̄,ω) approximated by the first four

terms in its Maclaurin series in |A|2, N1 = N2, γ = 0.0001,

ω = 2, and δ = −1.5.

If we consider only the solutions started near the in-phase

solution then, for sufficiently large
√

N1Gǫ > 0.5, increasing

|�ω21| engenders a loss of synchronization; see Fig. 8. A

heteroclinic bifurcation provides the real boundary for loss

of synchronization and eventually solutions synchronize into

an out-of-phase solution. In the unsynchronized behavior

the radii execute fairly large oscillations. However, the

oscillations in the cavity amplitude are not large. A typical

example is shown in Fig. 8 for ω = 2, δ = −1.5, γ = 0.0001,√
N1Gǫ = 2, and �ω21 = 0.04 starting near the unstable

in-phase solution.

If the Ni are not equal the bifurcation diagram is not

symmetrical in �ω21. However, apart from this it is not

066203-9



C. A. HOLMES, C. P. MEANEY, AND G. J. MILBURN PHYSICAL REVIEW E 85, 066203 (2012)

dissimilar. The in-phase solution with φ = 0 occurs for r1

r2
= N1

N2
and loses stability as |�ω21| is increased away from

zero, eventually stabilizing on an out-of-phase solution.

2. Three sets of nonidentical mechanical resonators

The system for N sets of mechanical resonators,

dri

dτ
= −ri + ǫ2NiG

⎡

⎣

∑

j

rj [Fr (Nr) cos(θj − θi) − Fi(Nr) sin(θj − θi)]

⎤

⎦ ,

(43)

dθi

dτ
= �ωi + ǫ2NiG

⎡

⎣

∑

j

rj

ri

[Fi(Nr) cos(θj − θi) + Fr (Nr) sin(θj − θi)]

⎤

⎦ ,

where (Nr)2 = |
∑N

i=1 Ai |2 =
∑N

i,j=1 rirj cos(θi − θj ), may

be reduced to 2N − 1 equations of motion because the

equations above are functions only of the relative phase:

φi = θi+1 − θi . So three mechanical resonators are described

by five equations of motion for r1,r2,r3,φ1,φ2. If the �ωi

are equal the model can be reduced to that for a single

collective variable. In fact, if any two of the �ωi are equal

then those two resonators can be thought of as one. Using the

notation �ωij = �ωi − �ωj , the three oscillator case reduces

to the two oscillator case if �ω21 = 0 or if �ω32 = 0 or if

�ω21 + �ω32 = 0. Figure 9 shows a typical example of loss

of synchronization for �ω21 + �ω32 small.

From a dynamical point of view the three resonator case

has only one in-phase motion (φi ≈ 0) and one out-of-phase

motion with φ1 ≈ π, φ2 ≈ 0 or the other way round. (The case

with both φi ≈ π is dynamically the same as φ1 ≈ π, φ2 ≈ 0.)

So as before we can think in terms of the in-phase and out-of-

phase solutions. (This is not the case for N � 4.) Otherwise
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FIG. 8. (Color online) Transient unsynchronized motion for two

nonidentical mechanical resonators for N1 = N2, ω = 2, δ = −1.5,

γ = 0.0001,
√

N1Gǫ = 2, and �ω21 = 0.04. Started near the in-

phase solution, in the blue shaded region of Fig. 7, the transient

unsynchronized motion is only temporary. Eventually solutions are

trapped by an out-of-phase solution [φ mod (2π ) → π ]. The variables

are plotted against time. In (a) r1 and r2 are shown in solid lines, the

collective variable r is dashed, and φ mod(2π ) is dotted. (b) is a plot

of φ and (c) is a plot of the amplitude of GN |α|2.

the bifurcation diagram is more complicated, involving two

sets of Hopf curves; however, if �ω31 and �ω32 are close the

Hopf curves are also close. In contrast, if they differ, as shown

in Fig. 10 where we have taken �ω21 = 5�ω32, three unstable

regions result. The most complex behavior occurs in the blue

region in which the in-phase solution is unstable to both φi and

the motion may switch from librational to rotational motion in

one or both of the φi apparently randomly.

III. QUANTUM MECHANICAL DESCRIPTION

A. Quantum mechanical model

The classical model derived in Sec. I and analyzed in Sec. II

is given by the classical Hamiltonian

H = h̄δ|α|2 +
N

∑

i=1

h̄ωi |α|2 + h̄(ǫ∗α + ǫα∗) +
N

∑

i=1

h̄gi |α|2xi,

(44)
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FIG. 9. (Color online) Transient unsynchronized motion of the

in-phase solution for three sets of mechanical nonidentical res-

onators for Ni equal, ω = 2, δ = −1.5, γ = 0.0001,
√

NiGǫ = 2,

�ω21 = 0.04, and �ω21 = 0.045. Eventually solutions are trapped

by an out-of-phase solution [φi mod(2π ) → π here]. The variables

are plotted against time. In (a) ri are shown in solid lines, the collective

variable r is dashed, and φi mod (2π ) are dotted. (b) is a plot of φi

and (c) is a plot of the amplitude of GN |α|2.

066203-10



SYNCHRONIZATION OF MANY NANOMECHANICAL . . . PHYSICAL REVIEW E 85, 066203 (2012)

0 1 2 3 4

GHGH

HH

(Transient 

     unsynchronized behavior)

S
y
n

c
h

ro
n

iz
e

d
φ ι

   
0

b
e

h
a

v
io

r 
w

it
h

  
  

s
o
m

e
 r

j >
>

 r
i

Out of phase UNSTABLE

    In Phase φ   0  UNSTABLE

 (In phase 2D unstable)

(I
n
 p

h
a
se

 2
D

 u
n
st

a
b
le

)
4D unstable

Hopf and Heteroclinic  bifurcation

ω
32

NG ε√

0

0.01

0.02

0.03

FIG. 10. (Color online) The bifurcation diagram for three me-

chanical resonators for Ni equal, ω = 2, δ = −1.5, γ = 0.0001,

and �ω21 = 5�ω32. The in-phase solution is stable outside the

shaded central regions. The out-of-phase solutions are stable outside

the gray regions. In the dark shaded central region the in-phase

solution is unstable to both φ1 and φ2 and the motion is transiently

unsynchronized, eventually setting on an out-of-phase solution. Once

again the out-of-phase solutions tend to exist where at least some of

the ri take larger values.

where the microwave cavity amplitude α = xc + iyc, and

the dimensionless canonical positions xc and xi , and their

conjugate momenta yc and yi , respectively, satisfy the Poisson

bracket relations

{xc,yc} =
1

2h̄
,

(45)

{xi,yj } =
1

2h̄
δij .

The original canonical positions � =
√

2EcL xc and qi =
√

2Em

mω2 xi , and their conjugate momenta Q =
√

2EcC0 yc and

pi =
√

2mEm yi respectively, satisfy the canonical Poisson

bracket commutation relations

{�,Q} = 2h̄{xc,yc} = 1,
(46)

{qi,pj } = 2h̄{xi,yj } = δij .

The quantum mechanical description of the Hamiltonian

dynamics matches that obtained by canonical quantization

of the classical Hamiltonian. We promote the canonical

position and momenta Φ and Q of the microwave cavity

to the quantum mechanical operators Φ̂ and Q̂, respectively.

Similarly, we promote the nanomechanical resonator positions

qi and momenta pi to the quantum mechanical operators

q̂ i and p̂i , respectively. We then define the annihilation

operators for the microwave cavity field mode â and the

nanomechanical vibrational modes b̂i . We again have the

dimensionless microwave cavity quadrature operators x̂c =
1
2
(â + â †) and ŷc = −i 1

2
(â − â †), and the dimensionless

nanomechanical positions and momenta x̂i = 1
2
(b̂i + b̂

†
i ) and

ŷi = −i 1
2
(b̂i − b̂

†
i ), respectively. We have the commutation

relations for the quantum operators

[â ,â †] = Î , [x̂c,ŷc] = i 1
2
Î , [Φ̂ ,Q̂] = ih̄Î ,

(47)
[b̂i,b̂

†
j ] = δij Î , [x̂i,ŷj ] = i 1

2
δij Î , [q̂ i,p̂i] = ih̄δij Î ,

in terms of which the corresponding quantum Hamiltonian in

the interaction picture is given by

Ĥ = h̄δ

(

â †â +
1

2

)

+
N

∑

i=1

h̄ωi

(

b̂
†
i b̂i +

1

2

)

+ h̄(ǫ∗â + ǫâ †) +
N

∑

i=1

h̄gi

(

â †â +
1

2

)

x̂i . (48)

For a realistic device we adopt a dissipative model. We model

both the microwave cavity resonator and the mechanical

resonators as being damped in zero-temperature heat baths.

This correctly describes the systematic effect of damping but

does not include thermal fluctuations. However, we have not

included thermal fluctuations in the classical model either. A

zero-temperature heat bath for the cavity is certainly justified

as the typical microwave cavity is at millikelvin temperature

and thus very close to zero [28]. Treating the environment

of the N nanomechanical resonators as a zero-temperature

heat bath is not a good approximation at typical mechanical

frequencies. However, the mean thermal occupation of the ith

bath n̄i �= 0 does not enter the semiclassical equations, and

thus the semiclassical bifurcation structure studied in Sec. II is

the correct one. The quantum model we are using does describe

damping as well as the unavoidable quantum noise arising from

spontaneous emission and the uncertainty principle (which

enters via the nonpositive definite diffusion matrix discussed

below). The amplitude decay for the microwave cavity is

κ , and for the ith nanomechanical resonator is γi . We then

describe the dissipative dynamics with the master equation

(with weak damping and the rotating wave approximation for

the system-environment couplings)

d ρ̂

dt
= −

i

h̄
[Ĥ,ρ̂ ] + κ(2â ρ̂ â † − â †â ρ̂ − ρ̂ â †â)

+
N

∑

i=1

γi(2b̂i ρ̂ b̂
†
i − b̂

†
i b̂i ρ̂ − ρ̂ b̂

†
i b̂i), (49)

where ρ̂ is the density matrix of the coupled system.

Corresponding to the classical description, we are

interested in the M collective quantities X̂i and Ŷ i defined by

X̂i =
1

Ni

∑

j∈Si

gj x̂j ,

(50)

Ŷ i =
1

Ni

∑

j∈Si

gj ŷj .

We can define creation and annihilation operators for these

collective mechanical modes,

B̂ i =
1

Ni

∑

j∈Si

gj b̂j ,

(51)

B̂
†
i =

1

Ni

∑

j∈Si

gj b̂
†
j ,
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where from (47), we can show that the commutation relations

for the new collective operators are

[B̂ i,B̂
†
j ] =

Gi

Ni

δi,j Î . (52)

B. Fokker-Planck-like equation

From the master equation (49), we proceed by deriving

a Fokker-Planck-like equation for the nanoelectromechanical

system which is the equation of motion of the positive P
function P (χ ). The positive P function is the Fourier transform

of the expectation of the normally ordered characteristic

function,

P (χ) =
1

(2π )2M+2

∫

〈e iλ2M+2B̂
†
M e iλ2M+1B̂M

· · · e iλ4B̂
†
1 e iλ3B̂1e iλ2â

†

e iλ1â 〉e−iλ·χdλ, (53)

where

χ = [αβμ1ν1μ2ν2 · · · μMνM ]T ,
(54)

λ = [ λ1 λ2 · · · λ2M+2 ]T .

We follow the procedure outlined in [19]. Using the appropri-

ate commutation relations, we arrive at the Fokker-Planck-like

equation

dP (χ )

dt
= −

∑

i

∂

∂χi

[A(χ)]i P (χ )

+
1

2

∑

ij

∂

∂χi

∂

∂χj

[B(χ)B(χ)T ]ijP (χ ), (55)

where the drift term vector A(χ) is

A(χ ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−iǫ − (κ + iδ)α − i 1
2
α

∑M
i=1 Ni(μi + νi)

iǫ − (κ − iδ)β + i 1
2
β

∑M
i=1 Ni(μi + νi)

−(γ + iω1)μ1 − i G1

2
αβ

−(γ − iω1)ν1 + i G1

2
αβ

...

−(γ + iωM )μM − i GM

2
αβ

−(γ − iωM )νM + i GM

2
αβ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(56)

and the diffusion term matrix B(χ)B(χ )T is

B(χ)B(χ)T

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −i G1

2
α 0 · · · −i GM

2
α 0

0 0 0 i G1

2
β · · · 0 i GM

2
β

−i G1

2
α 0 0 0 · · · 0 0

0 i G1

2
β 0 0 · · · 0 0

...
...

...
...

. . .
...

...

−i GM

2
α 0 0 0 · · · 0 0

0 i GM

2
β 0 0 · · · 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(57)

If we consider only the drift term of the Fokker-Planck-like

equation (55) and make the mappings β �→ α∗ and u �→
v∗ to reduce the phase space dimension by half onto the

semiclassical phase space (the positive P function has twice

the dimensionality of the classical phase space), then we obtain

the semiclassical equations of motion.

C. Quantum spectra

A future direction for research that builds on the work of this

paper is the investigation of the quantum physics associated

with the multistable semiclassical limit cycles. As a starting

point, in this section we calculate the linearized spectrum as

we increase the driving strength to approach the first Hopf

bifurcation at the supercritical Hopf line for blue detuning

(δ < 0) in Figs. 2 and 3. We do this calculation for the case

of a single group of nanomechanical resonators following the

procedure of [29]. For a single group, using the dimensionless

notation where we have rescaled the coupling coefficients and

time by the cavity dissipation rate κ , we have the stochastic

differential equations of motion corresponding to the Fokker-

Planck-like equation (55):

dχ

dt
= A(χ) + B(χ )E(t), (58)

where

χ = [α β μ ν]T , (59)

the drift term vector A(χ ) is

A(χ ) =

⎡

⎢

⎢

⎢

⎣

− (1 + iδ) α − i 1
2
αN (μ + ν) − iǫ

− (1 − iδ) β + i 1
2
βN (μ + ν) + iǫ

− (γ + iω) μ − i G
2
αβ

− (γ − iω) ν + i G
2
αβ

⎤

⎥

⎥

⎥

⎦

, (60)

the diffusion term matrix B(χ )B(χ)T is

B(χ )B(χ)T =

⎡

⎢

⎢

⎢

⎣

0 0 −i G
2
α 0

0 0 0 i G
2
β

−i G
2
α 0 0 0

0 i G
2
β 0 0

⎤

⎥

⎥

⎥

⎦

, (61)

and E(t) is the noise process. The principal matrix square root

of the diffusion matrix B(χ )B(χ)T is

B(χ) = B(χ )T =
√

G

2

⎡

⎢

⎢

⎣

√
α 0 −i

√
α 0

0
√

β 0 i
√

β

−i
√

α 0
√

α 0

0 i
√

β 0
√

β

⎤

⎥

⎥

⎦

.

(62)

The diffusion matrix and its square root have determinants

det{B(χ )B(χ)T} = 1
16

G4α2β2,

(63)

det {B(χ )} = 1
4
G2αβ,

and the two matrices are thus positive definite on the

semiclassical manifold where β = α∗. We see that the off-

diagonal terms with the factors of i in the matrix square root

B(χ) will take the solution off the semiclassical manifold and

will lead to quantum correlations.
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We will linearize these equations of motion about the

semiclassical fixed points we obtained in Sec. II. In terms of the

stochastic differential equations above, we make the mappings

β �→ α∗ and u �→ v∗ to reduce the phase space dimension by

half onto the semiclassical phase space (the positive P function

has twice the dimensionality of the classical phase space). The

linearized stochastic differential equations are then

dχ

dt
≈ M(χ − χ0) + D1/2E(t), (64)

where our Jacobian matrix M is

M =
∂ f(χ0)

∂χ
=

⎡

⎢

⎢

⎢

⎢

⎣

−(1 + iδ) − i 1
2
N (μ0 + μ∗

0) 0 −i 1
2
α0 −i 1

2
α0

0 −(1 − iδ) + i 1
2
N (μ0 + μ∗

0) i 1
2
α∗

0 i 1
2
α∗

0

−i G
2
α∗

0 −i G
2
α0 − (γ + iω) 0

i G
2
α∗

0 i G
2
α0 0 − (γ − iω)

⎤

⎥

⎥

⎥

⎥

⎦

, (65)

X0 = 1
2
(μ0 + μ∗

0), and our diffusion matrix about the semi-

classical fixed points D = B(χ0)B(χ0)T is

D =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 −i G
2
α0 0

0 0 0 i G
2
α∗

0

−i G
2
α0 0 0 0

0 i G
2
α∗

0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (66)

The linearized normally ordered moments at steady state can

be expressed in terms of these matrices [19]

S(Ω) =
1

2π

∫ ∞

−∞
e−iΩτ 〈χ (t)χ(t + τ )T 〉t→∞dτ

=
1

2π
(iΩI − M)−1D(−iΩI − MT )−1. (67)

We plot the microwave cavity component of these quantum

noise spectra in Fig. 11. We see that in Fig. 11(a) as the Hopf

bifurcation is approached, the spectrum becomes more sharply

peaked at two frequencies. The frequency corresponding to the

Hopf bifurcation—the magnitude of the two purely imaginary

eigenvalues—is the peak at the mechanical frequency ω. The

second, shorter but broader peak, is at the detuning δ. For a

drive detuned exactly on a sideband, these two peaks coincide.

Beyond the supercritical Hopf bifurcation, the semiclassical

fixed point is no longer stable and we enter the regime

dominated by the first stable limit cycle, where we have

the oscillatory motion analyzed by semiclassical amplitude

equations in Sec. II. However, we can continue to linearize

about this point, and show the results in Fig. 11(b). The two

peaks begin to converge as the driving strength and coupling

are increased.

The spectra calculated here correspond to the stationary

fluctuations in the cavity field. The power spectrum of these

fluctuations can be directly measured by homodyne detection.

Below the Hopf bifurcation, the noise power spectrum of

these fluctuations is peaked at a frequency associated with

the decay of fluctuations back to the fixed point. The width of

the peaks gives the time scale of this decay. Above the Hopf

bifurcation, the fluctuations decay onto the limit cycles. In our

model, there are no thermal fluctuations and all fluctuations

are due to intrinsic quantum noise manifest as off-diagonal

components in the diffusion matrix in (66). Thus the linewidths

in the spectra are due only to quantum noise: they would be δ

FIG. 11. (Color online) Linearized quantum noise spectrum of the microwave cavity S11(Ω) (a) approaching the Hopf bifurcation;

and (b) continuing the linearization beyond the Hopf bifurcation. The magnitude of the normally ordered cavity spectrum at steady state

(1/2π)
∫ ∞

−∞ e−iΩτ 〈α(t)α(t + τ )T 〉t→∞dτ , the first diagonal element of S(Ω), is plotted at the frequency Ω for varying driving amplitude ǫ.

Here we have set ω = 10, δ = −4, γ = 0.001, N = 1, G = 1, for which the Hopf bifurcation occurs at a driving strength of ǫh ≈ 1.76.

066203-13



C. A. HOLMES, C. P. MEANEY, AND G. J. MILBURN PHYSICAL REVIEW E 85, 066203 (2012)

functions in the classical theory at zero temperature. As such

this is a purely quantum feature.

There may be other uniquely quantum features in this

model, for example, dissipative switching between fixed

points. For example, a system localized on one fixed point (or

limit cycle) may show a spontaneous switching to another fixed

point (or limit cycle). This is not equivalent to quantum tun-

neling, neither is it reducible to thermally activated switching,

as it occurs in the presence of dissipation at zero temperature.

A more careful study is required to determine if the multiple

peak structure evident in Fig. 11(b) is evidence for dissipative

quantum switching between limit cycles. Such phenomena

have been investigated in the case of driven damped parametric

amplification in quantum optics [30], which has a similar

linearized diffusion matrix to the model of this paper. This

will form the subject of a future investigation.

IV. DISCUSSION AND CONCLUSION

We have discussed the situation in which multiple me-

chanical resonators are coupled to a single mode of the

electromagnetic field in a microwave superconducting cavity.

This interaction results in an all-to-all coupling between each

of the mechanical resonators that is highly nonlinear. However,

if the oscillators are identical, they synchronize and a collective

variable can be used to understand the dynamics. Analysis of

the dynamics of this collective variable (see the bifurcation

diagram in Fig. 2) reveals the prevalence of periodic behavior

and suggests the use of amplitude equations (28) to describe

the dominant oscillation. Even though the amplitude equations

involve elliptic functions their overall form is relatively simple

for small mechanical damping and from them we are able to

gain considerable insight into the dynamics of the collective

variable.

The form of the amplitude equations imply the presence of

multiple periodic orbits and hysteresis (at the bifurcations of

the periodic orbits). Specific results are also easy to extract; for

instance, we are able to plot the amplitudes of the mechanical

resonators as a function of the external forcing for specific

values of the other parameters (Fig. 4) and to locate the saddle

node bifurcations of periodic orbits where hysteresis would

occur as a result of a slight change in the mechanical forcing

(Figs. 2, 3, and 6).

The simplicity of the amplitude equations means that

it is straightforward to extend the identical mechanical

resonator case to one with distinct subgroups of identical

oscillators. Considering two and three frequency subgroups

we are able to give bifurcation diagrams showing the regions

where synchronization occurs. Synchronization is lost via

a mechanism involving a Hopf and heteroclinic bifurcation

similar to that found in large amplitude forcing, rather than

the sniper bifurcation that is involved in small amplitude

forcing and, although in a reduced form, in Kuramoto’s phase

model. In spite of this difference there is a single collective

variable Nr that functions as a measure of synchronized

behavior and that is related to a measurable quantity, the cavity

amplitude.

Given the current interest in fabricating nanomechanical

resonators in microwave cavities, our model offers a realizable

and very controllable way to study synchronization in a

system with all-to-all coupling via a common field mode.

While the equations for our model cannot be reduced to a

simple phase model, it offers some advantages over more

complex naturally occurring examples of synchronization. A

particularly important feature is that the measured quantity—

the cavity field leaving the microwave resonator—has an

amplitude that is directly proportional to a collective parameter

similar to the order parameter introduced in previous studies

of synchronization. The need to use very low temperatures

required for superconducting circuits may seem a disadvantage

but in fact leads to a huge reduction in noise for both the

mechanics and the microwave field. This should lead to

especially clean observation of multistability and perhaps

even controlled switching between limit cycles. In the long

run it also motivates us to study the effect of quantum

noise on synchronization, and to look for quantum signatures

of synchronization which will be the subject of a future

presentation.
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APPENDIX: EXPERIMENTAL PARAMETERS

A number of experiments are described by the model

examined in this paper,

d ρ̂

dt
= −

i

h̄
[Ĥ,ρ̂ ] + κ(2â ρ̂ â † − â †â ρ̂ − ρ̂ â †â)

+
N

∑

i=1

γi(2b̂i ρ̂ b̂
†
i − b̂

†
i b̂i ρ̂ − ρ̂ b̂

†
i b̂i), (A1)

where

Ĥ = h̄δ

(

â †â +
1

2

)

+
N

∑

i=1

h̄ωi

(

b̂
†
i b̂i +

1

2

)

+ h̄(ǫ∗â + ǫâ †)

+
N

∑

i=1

1

2
h̄gi

(

â †â +
1

2

)

(b̂i + b̂
†
i ), (A2)

and

[â ,â †] = Î ,
(A3)

[b̂i,b̂
†
j ] = δi,j Î .

A summary of the different values of the parameters for a

selection of these experiments is given in Table I. In terms

of the dimensionless parameters introduced in Sec. II these

become those listed in Table II. Note that the detuning δ is

typically set to be on a mechanical frequency sideband, such

that δ = ωi ; and thus while not an experimental limitation,

the range of δ we list in the table is δ � ωi . Also note

that the maximum driving |ǫ| indicates the maximum driving

before the cavity becomes nonlinear, causing our model to

fail. Finally, also note that the factors of 2 in front of κ and

γi in Table I are present because our κ and γi (as defined

by the master equation above) are amplitude decay rates, not

occupation number decay rates.
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TABLE II. Dimensionless experimental coupling values for various systems. The “Type” column indicates the experimental context: “S”

indicates a superconducting microwave coplanar waveguide resonator (â ) coupled to a nanomechanical resonator (b̂i); “M” indicates an optical

cavity (â ) coupled to a micromechanical membrane (b̂i); “T” indicates a toroidal microresonator (â ) coupled to a nanomechanical string

resonator (b̂i); and “C” indicates an optomechanical crystal array where an optical mode of a cell (â ) is coupled to a mechanical mode of

a cell (b̂i).

Experiment Mode â Mode b̂i Coupling

Ref. Type |δ′| = |δ|
κ

|ǫ ′| = |ǫ|
κ

ω′
i = ωi

κ
γ ′

i = γi

κ
g′

i = gi

κ

[31] S �0.722 0.722 2.33 × 10−7 6.02 × 10−7

[22] S �13.26 �1.87 × 104 13.26 2.209 × 10−5 1.66 × 10−6

[14] S �0.5 0.5 2.5 × 10−6

→�12 → 12 → 6 × 10−6

[14] S �9.34 9.34 1.23 × 10−3

[32] S �9.39 9.39 3.92 × 10−5 2.02 × 10−7

[23] S �350.8 �1.28 × 104 350.8 6.5 × 10−4 1.31 × 10−4

[15] M �0.066 0.066 3 × 10−8 1.37 × 10−5

[16] T <2.65 <2.65 <1.33 × 10−5

→<6.53 →<6.53 →<3.27 × 10−4

[16] T �0.43 0.43 4.05 × 10−6 5.89 × 10−6

[16] T �0.32 0.32 4 × 10−6 2.22 × 10−6
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