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Synchronization of MEMS Resonators and
Mechanical Neurocomputing

Frank C. Hoppensteadt, Member, IEEE,and Eugene M. Izhikevich

Abstract—We combine here two well-known and established
concepts: microelectromechanical systems (MEMS) and neu-
rocomputing. First, we consider MEMS oscillators having low
amplitude activity and we derive a simple mathematical model
that describes nonlinear phase-locking dynamics in them. Then,
we investigate a theoretical possibility of using MEMS oscillators
to build an oscillatory neurocomputer having autocorrelative
associative memory. The neurocomputer stores and retrieves
complex oscillatory patterns in the form of synchronized states
with appropriate phase relations between the oscillators. Thus, we
show that MEMS alone can be used to build a sophisticated infor-
mation processing system (U.S. provisional patent 60/178,654).

Index Terms—Andronov–Hopf bifurcation, resonantors,
neural networks, oscillatory associative memory, smart matter.

I. INTRODUCTION

M ICROELECTROMECHANICAL systems (MEMS)
are used to create miniature, highly accurate sensors

and actuators which can gather nonelectronic information
from the physical world, such as temperature, barometric
pressure, relative humidity, acceleration, vibration, etc. [15],
[19]. This analog information may be digitized and transmitted
to a resident microcontroller for signal processing. When
sophisticated signal analysis is required, such as extraction of
spatio-temporal patterns, the signal may be radio-transmitted
to a high-end computer.

MEMS may have better power efficiency than that of CMOS
electronics. Therefore, it might be desirable to use MEMS
not only as sensors, but also as simple analog information
processing units that could act on the information directly, e.g.,
removing noise, compensating for nonlinearities, performing
analog Fourier transformations, etc., thereby leading to smart
sensor technology. Even more interesting is the possibility to
use MEMS for sophisticated information processing, such as
pattern recognition, thereby eliminating the need for microcon-
trollers entirely.

In this paper we develop a theory to show that a network
of coupled MEMS oscillators can function as a neurocomputer
having oscillatory autocorrelative associative memory. This is
based on our previous result that networks of arbitrary oscilla-
tors have associative memory when coupled appropriately [8],
[9], [13]. The physical nature of the oscillators and the detailed
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form of the equations describing their dynamics is not important
for the theory. For example, networks of such diverse oscillators
as phase-locked loops (PLLs) [6] and lasers [7] have identical
neuro-computational properties. We show here the same for net-
works of MEMS oscillators.

We derive a canonical model describing nonlinear dynamics
of a single MEMS oscillator in Section II, and consider a net-
work of such oscillators in Section III. The derivation is valid
only when the oscillators exhibit small amplitude periodic ac-
tivity, which happens when damping becomes negative, the rest
state becomes unstable, and an oscillation builds up. From a
dynamical systems point of view this corresponds to an An-
dronov–Hopf bifurcation. To keep our exposition as simple as
possible, we do not provide a detailed derivation of the canon-
ical model, which is done in [9]–[11]. In Section IV we apply
the theory to pattern recognition problem.

II. A SINGLE MEMS OSCILLATOR

MEMS oscillators are being developed to provide miniature
substitutes for crystal oscillators in wireless communication and
signal processing applications [17]. Detailed information about
their electro-mechanics can be found in [16] and [18].

The most important part of a MEMS oscillator is a polycrys-
talline silicon micromechanical resonator (MEMS resonator)
similar to the one depicted in Fig. 1. A typical resonator has a
comb-like geometry, which enhances its performance. The res-
onator consists of a spring-like shuttle that is anchored at its
center to the ground plane; see Fig. 2. It supports two combs of
fingers and allows them to oscillate in the-direction. A dc-bias
voltage is applied to the resonator and its ground plane to ex-
cite and bias the device. As with a pendulum, the resonator has
a fundamental resonance frequency. If an ac-excitation voltage

having this frequency is applied to the comb transducers, the
mechanical structure starts to vibrate in the-direction, thereby
generating a motional output current, which is amplified by
the current-to-voltage amplifier and fed back to the resonator.
This positive feedback loop can destabilize the system and lead
to sustained oscillations.

A. Basic Equations

The complete and accurate set of equations describing dy-
namics of a single MEMS resonator (let alone a network of
thereof) is not known due to many implementation details. Fol-
lowing [16], we start from the Lienard equation, which describes
motion of a nonlinear pendulum

(1)
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Fig. 1. A scanning-electron micrograph of a 16.5-KHz folded-beam,
capacitive-comb transduced CMOS micromechanical resonator, which
occupies230� 420-�m (modified from [18]).

Fig. 2. System-level schematic of the MEMS oscillator, which consists of
MEMS resonator (depicted in Fig. 1) and current-to-voltage amplifier that
creates a positive feedback loop.

where variable denotes the displacement of the shuttle from
the rest position . The constant is its effective mass,
and and are the damping and stiffness functions,
respectively. The former depends on the parameter, which can
represent the dc-bias voltage applied to the oscillator, the
gain of the sustained current-to-voltage amplifier, or any other
physical parameter that affects the gain of the positive feedback
loop.

The form of the damping function varies because it
depends on details of the feedback loop, which may include an
automatic level control circuitry that regulates the oscillation’s
amplitude. Damping at rest is positive when is less than
a certain threshold value , and negative otherwise. A typical
example is the van der Pol damping, , with

. While increases through , the damping changes
sign, the rest state becomes unstable, and the MEMS
resonator begins small amplitude oscillation, which grows with

. Such a transition from rest to oscillation corresponds to the
supercritical Andronov–Hopf bifurcation, which is illustrated in
Fig. 3.

The form of the stiffness function depends on the ge-
ometry of the oscillator and the properties of its materials. If it
is symmetric without defects, then is an odd function, i.e.,

Fig. 3. Andronov–Hopf bifurcation in MEMS oscillator (1) when the
parameter� crosses the threshold value� .

. A typical example of this is the Duffing stiff-
ness .

B. Derivation of the Model

The system spring constant

plays an important role in determining the frequency of oscil-
lation when crosses the threshold value . Indeed, since

and for small , the Lienard equation
(1) has the form

high-order terms (2)

Neglecting the high-order terms results in linear harmonic os-
cillation with the frequency

(radians)

and an arbitrary amplitude. However, to find the amplitude and
frequency of the nonlinear device, one needs to account for
high-order terms, which we do next.

It is convenient to introduce a complex variable

that describes dynamics of the oscillator. One can easily check
that (2) acquires a simple form

high-order terms

Normal form theory [5], [9], [14] enables us to transform this
equation into

(3)

where

(4)

(5)

(6)
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and all derivatives are evaluated at the point
(see [5, p. 155]). Converting (1) into the normal form (3)
is standard in dynamical system theory. The supercritical
Andronov–Hopf bifurcation occurs when and increases
through the value 0. This corresponds to and
crossing .

We emphasize that particular forms of the functions
and , which depend on the resonator geometry, details of
the feedback loop design, etc., do not affect the normal form
(3), but only the values of coefficients, , and . If the stiffness
function were not odd, e.g., due to material imperfections,
and the damping function depended also on, then the oscillator
dynamics could still be described by (3), but (4) and (5) would
be more complicated

while (6) would be unchanged.

C. Analysis of the Model

Systems (1) and (3) have equivalent dynamics for allnear
. The latter system, however, has an advantage that all its

parameters can be measured experimentally. To understand their
meaning, we rewrite (3) in the polar coordinates

where is the amplitude and is the phase of
oscillation (see [9, Chap. 10] for detailed discussion). Differen-
tiating this equation with respect togives

Dividing the right-hand sides by yields

and separating the real and imaginary parts gives

(7)

(8)

The first equation describes dynamics of the amplitude and the
second of the phase.

When the parameter is below the threshold value ,
the parameter defined in (6) is negative. Then the amplitude

exponentially, which corresponds to a damped
oscillation. When the parameter is above the threshold,
and

Thus, measuring the amplitude of a sustained oscillation, one
can estimate the ratio .

Equation (8) describes how the amplitude affects the fre-
quency, which is . One can determineexperimentally

by measuring the frequency shift for various. The condition
may be desirable in applications requiring stable fre-

quency. From (5) it follows that when the damping and
stiffness satisfy

(9)

at and . This equation is useful for designing the
automatic level control circuitry for high- oscillators.

III. A N ETWORK OFMEMS OSCILLATORS

Now we consider a network of coupled MEMS oscillators

(10)

for . Here and are conductances and me-
chanical spring constants, which describe the strength of elec-
trical and mechanical connections from theth to the th oscil-
lator, respectively. If the oscillators are coupled via soft springs,
i.e., via low stiffness beams, then (10) needs additional equa-
tions for beam dynamics.

System (10) has been investigated in [9, Chaps. 5, 10] and in
[10] and [11]. There one can find details of the reduction of (10)
to the canonical model

(11)

where

(12)

and the other parameters were defined in the previous section.

A. Polar Coordinates

Let , where is the effective strength
of coupling and is the natural phase shift. The
canonical model (11) has the following form in polar coordi-
nates [10], [11]:

(13)

(14)

If all oscillators have positive amplitudes and is much larger
that the effective strength of connections , then one can dis-
card (13) and study dynamics in the frequency domain using

where and . The major
advantage of this system is that one can easily study synchro-
nization [12] and other nonlinear locking properties, which we
do next.
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Fig. 4. The type of locking of identical MEMS oscillators depends on the sign
of coefficient of electrical couplingp = p = p in (10).Top: p > 0 leads to
in-phase synchronization.Bottom: p < 0 leads to anti-phase synchronization.

B. Two Oscillators

Consider two identical oscillators having symmetrical elec-
trical couplings of strength . If , then from
(12) and the fact it follows that are real and
positive. Hence , and the oscillators synchronize
in-phase; that is, they oscillate with equal amplitudes and zero
phase difference; see the top of Fig. 4. Indeed, we can consider
the phase difference variable and note that

Therefore, the phase difference . If , then
, and the oscillators synchronize anti-phase; that is,

with , see the bottom of Fig. 4. Variations in oscillator
parameters or coupling would slightly shift the phase difference.

Mechanical coupling affects the imaginary part of the con-
nection coefficients through the coefficients and makes
locking dynamics more complicated. The case of two identical
oscillators was investigated in [9, Sect. 10.3], and it was shown
that there can be stable in-phase or anti-phase synchronizations,
or even their co-existence, depending on the values of the pa-
rameters.

C. Many Oscillators

Analysis of a network of oscillators is a daunting
problem unless certain restrictions are imposed on the param-
eters. In this section we assume that so that the frequency
does not depend on the amplitude, at least in the leading order.
In this case we have a rather pleasant result that lays the basis
for oscillatory neurocomputing using MEMS oscillators:If the
oscillators have symmetrical electrical coupling, then the net-
work always converges to an oscillatory phase-locked pattern;
that is, the oscillators have equal frequencies and constant, but
not necessarily identical, phases. There could be many such

Fig. 5. Three patterns to be memorized by a network of MEMS oscillators.

Fig. 6. A fully connected network of MEMS oscillators has oscillatory
associative memory. Constantsp are conductances.

phase-locked patterns corresponding to many memorized im-
ages. The proof of this can be found in [11] and in [9, Sect.
10.4]. It follows from the existence of an energy function

for the canonical model (11).

IV. PATTERN RECOGNITIONUSING MEMS OSCILLATORS

A natural approach to pattern recognition is to use artificial
neural networks having associative memory [2]. Although that
promised more than it could accomplish, it still remains attrac-
tive since artificial neural networks possess an advantageous
computational property, parallelism. Each network consists of
simple, slow unreliable units, i.e., artificial neurons, processing
information in parallel. An enormous computational speed can
be achieved when the number of neurons is large.

Artificial neurons are usually sigmoidal units described by a
system similar to

(15)

where is the sigmoidal function, is the
threshold parameter, and is a connection coefficient fromth
to th neuron. The dynamics of the network depends on the con-
nection matrix that retains the memory of “memo-
rized” patterns. Below we show how one can use MEMS oscil-
lators to build a device that implements various neural network
architectures.

A. Hopfield–Grossberg Networks

Suppose we are given a set of binary patterns to be memorized
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Fig. 7. Pattern recognition by a network of MEMS oscillators. Shown are simulations of the canonical model (11) witha = �1, b = 0, c = 1, and! = 8.
Hebbian learning rule (16) is used to “memorize” patterns from Fig. 5.

where denotes a black (white) pixel; see Fig. 5.
The case of continuous (graded) patterns corresponds to com-
plex-valued vectors having , and it is considered else-
where [9], [13].

One can use a Hebbian learning rule

(16)

to form the connection matrix , which is always sym-
metric, i.e., for all and . The Cohen–Grossberg con-
vergence theorem [4] and a number of other results show that
the memorized images become attractors of the sigmoidal arti-
ficial neural network (15) provided that the number of patterns
is not very large in comparison with the size of the network.
For example, if an initial state of the network corresponds to a
distorted pattern , then the network converges to an attractor
corresponding to nondistorted patternso that for all
. (A negative pattern, , is also an attractor). Such networks

are said to have autocorrelative association memory. We refer to
them as being Hopfield–Grossberg networks.

B. MEMS Neurocomputer

The convergence result discussed in Section III-C claims that
a network of MEMS oscillators described by (10) and depicted
in Fig. 6 with the Hebbian learning rule (16) has associative
memory similar to that of Hopfield–Grossberg networks, but a
greater memory capacity [1], [13]. There is one important dis-
tinction though: The attractors are not equilibria (fixed points),
but phase-locked oscillatory states with phase relations corre-
sponding to the memorized patterns. For example, the at-
tractor corresponding to the memorized patternhas th and
th oscillators synchronized in-phase when theth and the th

pixels have the same color, i.e., when , and synchronized
anti-phase when the pixels have different colors. Notice that the
problem of negative images is not an issue in oscillatory neural
networks, since both and its negative, , define the same
pattern of phase relations. Moreover, the network oscillates be-
tween and periodically as we see in Fig. 7.

We use the canonical model (11) with oscillators to
illustrate the pattern recognition process. First, three patterns,

Fig. 8. A two-layer perceptron consisting of electrically coupled MEMS
oscillators.

“0,” “1,” and “2” from Fig. 5 are “memorized” using the Heb-
bian rule (16), which results in a symmetric matrix of connec-
tions [the same rule would be used to determine the
coefficients of electrical coupling, , in (10)]. Then we distort
pattern “1” and present it to the network as an initial state. (A de-
tailed discussion of the initialization procedure can be found in
[7] and [8].) To observe dynamics of the associative memory re-
call we plot as pixels real parts of variablesat the top of Fig. 7.
Since the network has rhythmic dynamics, the picture alternates
between positive and negative image. However, during recall
the oscillators change their phases so that the correct pattern
“1” is recovered. In the middle of Fig. 7 we plot and

for comparison. Since the first and the second pixels
have different colors initially, the oscillators and have an
anti-phase relation at . During the associative memory
recall they synchronize in-phase so that the pixels acquire the
same color eventually. At the bottom of Fig. 7 we depict the
evolution of relative phase relations between the oscillators. One
can clearly see how pattern “1” is gradually recovered.

This pattern recognition process is relatively insensitive to the
parameters of the canonical model (11) as long as and the
connections are symmetric. Since the canonical model (11) and
the original system (10) have equivalent dynamics, they have
identical neuro-computational properties. In particular, one can
obtain Fig. 7 by simulating (10) directly.

V. DISCUSSION

We derive here a canonical model describing dynamics of a
network of coupled MEMS oscillators near the onset of peri-
odic activity. We use the model to study the theoretical possi-
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bility of using MEMS oscillators to build an oscillatory neuro-
computer having autocorrelative associative memory similar to
the one in Hopfield–Grossberg artificial neural networks. Inci-
dentally, the patterns depicted in Fig. 5 have also been used to
test oscillatory neuro-computational properties of networks of
lasers [7] and phase-locked loops [6]. In all cases we obtained
similar results, which confirms the theoretical prediction [8], [9]
that neurocomputing is a universal property of all coupled os-
cillators regardless of their physical nature [13].

One can also use MEMS oscillators to build other signal pro-
cessing units, such as multilayer perceptrons depicted in Fig. 8.
Development of an appropriate “error backpropagation” algo-
rithm to “teach” such an oscillatory perceptron is an interesting
open problem.

MEMS oscillatory neurocomputers can be combined with
MEMS sensors and actuators to create “super-smart” matter.
Moreover, one can envisage an architecture in which the
strength of interconnections between MEMS oscillators is not
pre-computed using the Hebbian or some other learning rule,
but depends on the current environment so that the network
rewires itself dynamically every time the environment changes.
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