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Synchronization of MEMS Resonators and
Mechanical Neurocomputing

Frank C. Hoppenstead¥lember, IEEEand Eugene M. Izhikevich

Abstract—We combine here two well-known and established form of the equations describing their dynamics is not important
concepts: microelectromechanical systems (MEMS) and neu- for the theory. For example, networks of such diverse oscillators
rocomputing. First, we consider MEMS oscillators having low as phase-locked loops (PLLs) [6] and lasers [7] have identical

amplitude activity and we derive a simple mathematical model tati | ties. We show h th f t
that describes nonlinear phase-locking dynamics in them. Then, Neurc-compuiiational propertes. ¥we Snownere me same iornet-

we investigate a theoretical possibility of using MEMS oscillators WOrks of MEMS OSC”_|at0r3- - . .
to build an oscillatory neurocomputer having autocorrelative We derive a canonical model describing nonlinear dynamics

associative memory. The neurocomputer stores and retrieves of a single MEMS oscillator in Section Il, and consider a net-
complex oscillatory patterns in the form of synchronized states \yqrk of such oscillators in Section IIl. The derivation is valid

with appropriate phase relations between the oscillators. Thus, we . L . .
show that MEMS alone can be used to build a sophisticated infor- only when the oscillators exhibit small amplitude periodic ac-

mation processing system (U.S. provisional patent 60/178,654).  tivity, which happens when damping becomes negative, the rest
state becomes unstable, and an oscillation builds up. From a

dynamical systems point of view this corresponds to an An-
dronov—Hopf bifurcation. To keep our exposition as simple as
possible, we do not provide a detailed derivation of the canon-
. INTRODUCTION ical model, which is done in [9]-[11]. In Section IV we apply

ICROELECTROMECHANICAL systems (MEMS) the theory to pattern recognition problem.
M are used to create miniature, highly accurate sensors
and actuators which can gather nonelectronic information [I. A SINGLE MEMS OSCILLATOR

from the physical world, such as temperature, barometric ;s oscillators are being developed to provide miniature
pressure, relative humidity, acceleration, vibration, etc. [18}ptit tes for crystal oscillators in wireless communication and
[19]. This analog information may be digitized and transmittedn 5| hrocessing applications [17]. Detailed information about
to a resident microcontroller for signal processing. WheRair electro-mechanics can be found in [16] and [18].
sophisticated signal analysis is required, such as extraction ofrpa most important part of a MEMS oscillator is a polycrys-

spatio-temporal patterns, the signal may be radio-transmitiggline silicon micromechanical resonator (MEMS resonator)
to a high-end computer. - similar to the one depicted in Fig. 1. A typical resonator has a

MEMS may have better power efficiency than that of CMOggmp_jike geometry, which enhances its performance. The res-
electronics. Therefore, it might be desirable to use MEMS,510r consists of a spring-like shuttle that is anchored at its
not only as sensors, but also as simple analog informatiggnter t the ground plane; see Fig. 2. It supports two combs of
processing units that could act on the information directly, €.Gingers and allows them to oscillate in thedirection. A dc-bias
removing noise, compensating for nonlinearities, performingiagey: is applied to the resonator and its ground plane to ex-
analog Fourier transformations, etc., thereby leading to smagh, nd hias the device. As with a pendulum, the resonator has
sensor technology. Even more interesting is the possibility L0 ngqamental resonance frequency. If an ac-excitation voltage
use MEMS for sophisticated information processing, Such 8$,5ying this frequency is applied to the comb transducers, the
pattern recognition, thereby eliminating the need for microcofsechanical structure starts to vibrate in thdirection, thereby
trollers entirely. enerating a motional output currentwhich is amplified by

In this paper we develop a theory to show that a netwoKe cyrrent-to-voltage amplifier and fed back to the resonator.

of coupled MEMS oscillators can function as a neurocomputeps positive feedback loop can destabilize the system and lead
having oscillatory autocorrelative associative memory. This 1§ sustained oscillations.

based on our previous result that networks of arbitrary oscilla-
tors have associative memory when coupled appropriately [
[9], [13]. The physical nature of the oscillators and the detaile

Index Terms—Andronov—-Hopf bifurcation, g resonantors,
neural networks, oscillatory associative memory, smart matter.

' Basic Equations

The complete and accurate set of equations describing dy-
_ _ , ___namics of a single MEMS resonator (let alone a network of
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Fig. 3. Andronov-Hopf bifurcation in MEMS oscillator (1) when the
parametei crosses the threshold value;.

g(—z) = —g(x). A typical example of this is the Duffing stiff-
Fig. 1. A scanning-electron micrograph of a 16.5-KHz folded-beanhessg(x) =z + 3.
capacitive-comb transduced CMOS micromechanical resonator, which

occupie230 x 420-um? (modified from [18]). B. Derivati f the Model
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plays an important role in determining the frequency of oscil-
lation when\ crosses the threshold valugy. Indeed, since
(0, Ag) = 0andg(x) = kx for smallz, the Lienard equation
(1) has the form

m + kx + high-order terms= 0. (2)
Neglecting the high-order terms results in linear harmonic os-

y
[
cillation with the frequency
Fig. 2. System-level schematic of the MEMS oscillator, which consists of
k .
w =1/ — (radians)
m

MEMS resonator (depicted in Fig. 1) and current-to-voltage amplifier that

creates a positive feedback loop.

where variabler denotes the displacement of the shuttle frornd an arbitrary amplitude. However, to find the amplitude and
the rest positionc = 0. The constanin is its effective mass, frequency of the nonlinear device, one needs to account for
and f(z, \) andg(z) are the damping and stiffness functionshigh-order terms, which we do next.

respectively. The former depends on the parameteshich can  Itis convenient to introduce a complex variable

represent the dc-bias voltadé applied to the oscillator, the
gain of the sustained current-to-voltage amplifier, or any other
physical parameter that affects the gain of the positive feedbelﬁ
loop.

The form of the damping functiofi(z, \) varies because it
depends on details of the feedback loop, which may include an
automatic level control circuitry that regulates the oscillation’s
amplitude. Damping at rest= 0 is positive when\ is less than Normal form theory [5], [9], [14] enables us to transform this

a certain threshold valuky, and negative otherwise. A typicalequation into
example is the van der Pol dampinffz, A) = 2 — ), with

z=z+wzeC

lét describes dynamics of the oscillator. One can easily check
that (2) acquires a simple form

z = iwz + high-order terms

Ax = 0. While X increases throughy, the damping changes #=(c+iw)z + (a+1ib)z|2|? (3)
sign, the rest state = 0 becomes unstable, and the MEMS
resonator begins small amplitude oscillation, which grows witffhere
A. Such a transition from rest to oscillation corresponds to the "
supercritical Andronov—Hopf bifurcatigmvhich is illustrated in T 6mw? )
Fig. 3. 3mg" — 21,

The form of the stiffness function(x) depends on the ge- b= 482w’ (®)
ometry of the oscillator and the properties of its materials. If it f4
is symmetric without defects, theriz) is an odd function, i.e., c=—50 (A=) (6)
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and all derivatives are evaluated at the pdintA) = (0, Ay) by measuring the frequency shift for variorusThe condition

(see [5, p. 155]). Converting (1) into the normal form (3) = 0 may be desirable in applications requiring stable fre-

is standard in dynamical system theory. The supercriticgliency. From (5) it follows thai = 0 when the damping and

Andronov—Hopf bifurcation occurs when< 0 andcincreases stiffness satisfy

through the value 0. This corresponds £, > 0 and A

crossing . 3mg" = 2(f1,)° )
We emphasize that particular forms of the functigigs, ) ) o o

and (=), which depend on the resonator geometry, details 8f* =0 and\ = Ay This equation is useful for designing the

the feedback loop design, etc., do not affect the normal forghitomatic level control circuitry for higky oscillators.

(3), but only the values of coefficients b, andc. If the stiffness

functiong(z) were not odd, e.g., due to material imperfections, Ill. A N ETWORK OFMEMS OSCILLATORS

and the damping function depended alsa:pthen the oscillator ~ Now we consider a network of coupled MEMS oscillators

dynamics could still be described by (3), but (4) and (5) would

be more complicated . . . .
P mi; + f(wi, M)+ g(w) = Y (pigdy + kijz;)  (10)

o f;éf;2 n f;g” . ve 3 b =1
8”;,,3" 1?8,,‘)"2 1(?7}2‘3’2 1?7}?)2 51" fori =1, ..., n. Herep;; andk;; are conductances and me-
= 5 — = — - — = chanical spring constants, which describe the strength of elec-
16mw®  48miw®  24miw®  6miw  2dmiw trical and mechanical connections from tfh to theith oscil-
while (6) would be unchanged. lator, respectively. If the oscillators are coupled via soft springs,
i.e., via low stiffness beams, then (10) needs additional equa-
C. Analysis of the Model tions for beam dynamics.

Systems (1) and (3) have equivalent dynamics foralear ~ System (10) has been investigated in [9, Chaps. 5, 10] and in
Am. The latter system, however, has an advantage that all[#§] and [11]. There one can find details of the reduction of (10)
parameters can be measured experimentally. To understand tifethe canonical model
meaning, we rewrite (3) in the polar coordinates n
% = (¢ +iw)z + (a+ib)z| 2 |? + Z CijZj (11)

Z=Tc

=1

wherer = |z| is the amplitude and = Arg » is the phase of wherez;, = &; + iwz;

oscillation (see [9, Chap. 10] for detailed discussion). Differen- )

. . . . . 1 1

tiating this equation with respect tagives Cij = — pij — —— kij (12)
J 2m " 2mw "V

SR U o _ _
Z=7c” +re! ;19 . and the other parameters were defined in the previous section.
=(c+iw)re” + (a+ib)r3e'’.

A. Polar Coordinates
Dividing the right-hand sides by yields iy . .
9 9 by™y Lete;; = s;;¢™, wheres;; = |¢;;] is the effective strength

P+ rid = (¢4 iw)r + (a + ib)r? of coupling andy;; = Argc;; is the natural phase shift. The
canonical model (11) has the following form in polar coordi-
and separating the real and imaginary parts gives nates [10], [11]:
P =cr+ ar’ @)

T =T+ CLT? + Z SiiTy COS(Q?j + 1/)“ - 191) (13)

=1

Y =w + br?. (8)

The first equation describes dynamics of the amplitude and the 5 __ 2, 1 - o ) o q.

second of the phase. V=W b 2 sty (0 s = 9i). (14
When the parametek is below the threshold valua gy,

the parameter defined in (6) is negative. Then the amplitudéf all oscillators have positive amplitudes afad is much larger

r(t) — 0 exponentially, which corresponds to a dampethat the effective strength of connectidas|, then one can dis-

oscillation. When the parameter is above the threshold,0 card (13) and study dynamics in the frequency domain using

and

i=L

r(t) — ﬁ Ui = wi + Z wi; sin(d; + i; — ;)
V la

i=L

Thus, measuring the amplitude of a sustained oscillation, onkerew; = w + be;/|a| andw,;; = s;;1/¢;/c;. The major

can estimate the rati¢/ a. advantage of this system is that one can easily study synchro-
Equation (8) describes how the amplitude affects the fraization [12] and other nonlinear locking properties, which we

quency, which isv + br2. One can determinkeexperimentally do next.
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Fig. 4. The type of locking of identical MEMS oscillators depends on the sign . .
of coefficient of electrical coupling = p1» = ps1 in (10).Tog p > 0 leadsto Fig- 6. A fully connected network of MEMS oscillators has oscillatory
in-phase synchronizatioBottom p < 0 leads to anti-phase synchronization. associative memory. Constants are conductances.
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phase-locked patterns corresponding to many memorized im-

ages The proof of this can be found in [11] and in [9, Sect.
Consider two identical oscillators having symmetrical ele@0.4]. It follows from the existence of an energy function

trical couplings of strength = p12 = p21. If p > 0, then from " "

(12) gnd the fackij_: 0 itiollows thatcio = cy are real anq E(z) = — Z (@I%IQ _a |75i|4) _ Z cij7i%;

positive. Hence),» = 121 = 0, and the oscillators synchronize 2

in-phase; that is, they oscillate with equal amplitudes and zero

phase difference; see the top of Fig. 4. Indeed, we can consitférthe canonical model (11).

the phase difference variable= ¥, — ¥}; and note that

B. Two Oscillators

=1 2, 5=1

IV. PATTERN RECOGNITION USING MEMS OSCILLATORS

X =2 =11 = sy sin(—x) —s12sin(x) = —(s12+sx)sinx. A natural approach to pattern recognition is to use artificial

) neural networks having associative memory [2]. Although that

Therefore, the phase d!fferen}get) — 0. If p< O,' thempy, = promised more than it could accomplish, it still remains attrac-
¥21 = =, and the oscillators synchronize anti-phase; that i§ye since artificial neural networks possess an advantageous

with x(#) — m, see the bottom of Fig. 4. Variations in oscillatogqmntational property, parallelism. Each network consists of

parameters or coupling would slightly shift the phase differencgmpie, siow unreliable units, i.e., artificial neurons, processing

) ) ) ) information in parallel. An enormous computational speed can

Mechanical coupling affects the imaginary part of the corya achieved when the number of neurons is large.

nection coefficients;; through the coefficients;; and makes  artificial neurons are usually sigmoidal units described by a
locking dynamics more complicated. The case of two |dent|c§|,stem similar to

oscillators was investigated in [9, Sect. 10.3], and it was shown

that there can be stable in-phase or anti-phase synchronizations, n
or even their co-existence, depending on the values of the pa- T =—x;+5|a+ Z CigT; (15)
rameters. j=1

whereS(y) = 1/(1 + ¢7¥) is the sigmoidal functiong; is the
threshold parameter, arg is a connection coefficient frorjth
Analysis of a network ofr > 2 oscillators is a daunting to ;th neuron. The dynamics of the network depends on the con-
problem unless certain restrictions are imposed on the paraiaction matrixC’ = (¢i;) that retains the memory of “memo-
eters. In this section we assume that 0 so that the frequency rjzed” patterns. Below we show how one can use MEMS oscil-

does not depend on the amplitude, at least in the leading ordgfors to build a device that implements various neural network
In this case we have a rather pleasant result that lays the bagishitectures.

for oscillatory neurocomputing using MEMS oscillatolsthe

oscillators have symmetrical electrical coupling, then the nef. Hopfield-Grossberg Networks

work always converges to an oscillatory phase-locked pattern; 5, nnose we are given a set of binary patterns to be memorized
that is, the oscillators have equal frequencies and constant, but

not necessarily identical, phases. There could be many such ¢* = (¢k ¢k ... &M, F==41,k=0,...,m

C. Many Oscillators
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Fig. 7. Pattern recognition by a network of MEMS oscillators. Shown are simulations of the canonical model (dil)}withl, b = 0,¢c = 1, andw = 8.
Hebbian learning rule (16) is used to “memorize” patterns from Fig. 5.

wheret® = —1(+1) denotes a black (white) pixel; see Fig. 5

The case of continuous (graded) patterns corresponds to c«

plex-valued vectors havingf = ¢i#7, and it is considered else- 4§

where [9], [13]. 13
One can use a Hebbian learning rule

1 m ‘ ‘
G =— D & (16)
k=0 Fig. 8. A two-layer perceptron consisting of electrically coupled MEMS
oscillators.
to form the connection matri€’ = (¢;,), which is always sym-

metric, i.e.¢;; = s, forall¢ andj. The Cohen-Grossbergcon- =~ o . . P

vergence theorem [4] and a number of other results show that 1" and "2 frgm Fig. 5 are memorlzgd using the Heb-
the memorized images become attractors of the sigmoidal apfi@n rule (16), which results in a symmetric matrix of connec-
ficial neural network (15) provided that the number of patterrjféons,c, = (cij) [the same rule. WOU'O_' be used to determme the
is not very large in comparison with the size of the networl?.oeﬁ'c'ef‘n:[,s ofelectncal_ couplings;;, in (10)]. Then we distort
For example, if an initial state of the network corresponds toPgtern: 1 an(_JI presentit t?_th_e ne_twork asan initial state. (Ad_e-
distorted patterg?, then the network converges to an attract&?'led discussion of the |n|t|aI|z_at|on procedur(_a can be found in
corresponding to nondistorted pattgfnso thatz; ~ £} for all [7]and[8].) To qbserve dynamics of _the associative memory re-
i. (A negative pattern;-¢1, is also an attractor). Such network&2all We plotas pixelsreal parts of variablest the top of Fig. 7.

are said to have autocorrelative association memory. We refeﬁgce the net\_/v_ork has rhyth”ﬁ"’ qunamlcs, the picture glternates
them as being Hopfield—Grossberg networks. between positive and negative image. However, during recall
the oscillators change their phases so that the correct pattern

B. MEMS Neurocomputer “1” is recovered. In the middle of Fig. 7 we pl&e z;(¢) and

z2(t) for comparison. Since the first and the second pixels

The convergence result discussed in Section IlI-C claims trha ve different colors initially, the oscillators andz, have an

a network of MEMS oscillators described by (10) and depicted"‘ : . i .
- . . ; . anti-phase relation a = 0. During the associative memory
in Fig. 6 with the Hebbian learning rule (16) has associative o . .
memory similar to that of Hopfield—Grossberg networks butraeCaII they synchronize in-phase so that the pixels acquire the

y . P DErg Ne - .same color eventually. At the bottom of Fig. 7 we depict the
greater memory capacity [1], [13]. There is one important dis- , . . :
S ’ o . volution of relative phase relations between the oscillators. One
tinction though: The attractors are not equilibria (fixed points wam

. . . an clearly see how pattern “1” is gradually recovered.

but phase-locked oscillatory states with phase relations corre-

: . ) This pattern recognition process is relatively insensitive to the
sponding to the memorized patteréfs. For example, the at- :
tractor corresponding to the memorized pattghrasith and parameters of the canonical model (11) as lonf-as0 and the
. : P gto . P e connections are symmetric. Since the canonical model (11) and
jth oscillators synchronized in-phase when ttfeand thejth - . .
. . 1 . the original system (10) have equivalent dynamics, they have
pixels have the same color, i.e., whgn= ¢}, and synchronized

anti-phase when the pixels have different colors. Notice that thdenycal_neuro—cqmputgnonal prqpertles. In particular, one can
oftain Fig. 7 by simulating (10) directly.

problem of negative images is not an issue in oscillatory neural
networks, since bothi* and its negative-¢!, define the same
pattern of phase relations. Moreover, the network oscillates be-
tween¢! and—¢* periodically as we see in Fig. 7. We derive here a canonical model describing dynamics of a
We use the canonical model (11) with= 60 oscillators to network of coupled MEMS oscillators near the onset of peri-
illustrate the pattern recognition process. First, three patterosljc activity. We use the model to study the theoretical possi-

V. DISCUSSION
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bility of using MEMS oscillators to build an oscillatory neuro- [12] E. M. Izhikevich, “Weakly pulse-coupled oscillators, FM interactions,
computer having autocorrelative associative memory similar to ~ Synchronization, and oscillatory associative memot§EE Trans.
h in Hopfield—Grossberg artificial neural networks. Inci- Neura] Networksvol. 10, pp. 508-526, 1959
the one In Hoptield— sherg artincl u W - INCl-[13] —— “Computing with oscillators,"Neural Networks submitted for
dentally, the patterns depicted in Fig. 5 have also been used to  publication.
test oscillatory neuro-computational properties of networks ofl4] Y. Kuznetsov,Elements of Applied Bifurcation TheoryNew York:
lasers [7] and phase-locked loops [6]. In all cases we obtain Springer-Verlag, 1995. o :
ok p ' " p - > qqs] A. Mason, N. Yazdi, A. V. Chavan, K. Najafi, and K. D. Wise, “A
similar results, which confirms the theoretical prediction [8], [9] generic multielement microsystem for portable wireless applications,”
that neurocomputing is a universal property of all coupled os- _ Proc. IEEE vol. 86, pp. 1733-1746, 1998. :
il dl f their phvsical 13 [16] C.T.-C. Nguyen and R. T. Howe, “An integrated CMOS micromechan-
cillators regaraless of their p y?'ca nature [ ] ) ical resonator high-Q oscillatorJEEE J. Solid-State Circuits/ol. 34,
One can also use MEMS oscillators to build other signal pro-  pp. 440-455, 1999.
cessing units, such as multilayer perceptrons depicted in Fig. 871 C T.—C_. Nguyen, “Micromechanical devices _for wireless communica-
D | f . « back ion” al tions,” in Proc. 1998 IEEE Int. Workshop Micro Electro Mechanical
)eve opment of an appropr_|ate error bac pro_paga_tlon algo-  systemsHeidelberg, Germany, Jan. 25-29, 1998, pp. 1-7.
rithm to “teach” such an oscillatory perceptron is an interesting18] ——, “Micromechanical resonators for oscillators and filters, Piroc.
open problem. 1995 IEEE Int. Ultrasonics SympSeattle, WA, Nov. 7-10, 1995, pp.
MEMS oscillatory neurocomputers can be combined with 4897499,
y p [19] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,”

MEMS sensors and actuators to create “super-smart” matter.
Moreover, one can envisage an architecture in which the
strength of interconnections between MEMS oscillators is not
pre-computed using the Hebbian or some other learning rule,
but depends on the current environment so that the network

Proc. IEEE vol. 86, pp. 1640-1659, 1998.
rewires itself dynamically every time the environment chang Frank C. Hoppensteadt (M'89) was born in Oak

Park, IL in 1938. He received the Ph.D. degree in
mathematics from the University of Wisconsin,
Madison.

He is currently Director of the Regent’s Center
in system science and engineering research, Pro-
fessor of mathematics and Professor of electrical
engineering at Arizona State University. He has
published 12 books and numerous articles about

REFERENCES

[1] T. Aoyagi, “Network of neural oscillators for retrieving phase informa:
tion,,” Phys. Rev. Lettvol. 74, pp. 4075-4078, 1995.
[2] M. A. Arbib, Brain Theory and Neural Networks Cambridge, MA:
MIT Press, 1995.
3] D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude respons . . . .
< of coupled oscillators,Physica O vol. 41, pp.F4)103—449I:,J 1990. P perturbation met_hods for dn‘fere_ntlal equations and
[4] M.A.Cohen and S. Grossberg, “Absolute stability of global pattern for- . . abo_ut mathema_tlcal p”’b'e".‘s in the_ life sciences.
mation and parallel memory storage by competitive neural networké—us present |nter_ests are in m_athematlcal neuroscience, biotechnology and
IEEE Trans. Syst., Man, Cybervol. SMC-13, pp. 815-826, 1983. 'andom perturbations of dynamical systems.
[5] J. Guckenheimer and D. Holmes\onlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Fieldblew York:
Springer-Verlag, 1983.
[6] F. C. Hoppensteadt and E. M. Izhikevich, “Pattern recognition via syn-
chronization in phase-locked loop neural networkSEE Trans. Neural

Networks vol. 11, pp. 734-738, 2000.

Eugene M. Izhikevich was born in Moscow,

[71 ——, “Synchronization of laser oscillators, associative memory, and o Russia, in 1967. He received the Master's degree in
tical neurocomputing,Phys. Rev. Evol. 62, pp. 4010-4013, 2000. applied mathematics and computer sciences from
[8] ——, “Oscillatory neurocomputers with dynamic connectivitiphys. Lomonosov Moscow State University, Moscow,
Rev. Lett.vol. 82, pp. 2983—-2986, 1999. Russia in 1992, and the Ph.D. degree in mathematics
[9] ——, Weakly Connected Neural NetworksNew York: Springer- from Michigan State University, Ml, in 1996.
Verlag, 1997. ] He is currently an Associate Fellow in theoretical
[10] —, “Synaptic organizations and dynamical properties of weakly cor. = «=1" .., neurobiology at The Neurosciences Institute, San
nected neural oscillators: I. Analysis of canonical modBiglogical 4<% x & la‘f!-;-.l Diego, CA. His research interests include nonlinear
Cybern, vol. 75, pp. 117-127, 1996. _~"-,"-:'1, e .Illl'ui'u.'{-,l'-. dynamics of biological neurons and neural systems.
[11] —, “Synaptic organizations and dynamical properties of weakly con- =~ - Dr. Izhikevich is a member of the International

nected neural oscillators. Il. Learning of phase informati@iglogical
Cybern, vol. 75, pp. 129-135, 1996.

Neural Network Society. He won the SIAM Student Award for the best student
paper in applied mathematics in 1995.



