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Synchronization is a common phenomenon in physical and biological systems. We examine the
synchronization of two~and more! metronomes placed on a freely moving base. The small motion
of the base couples the pendulums causing synchronization. The synchronization is generally
in-phase, with antiphase synchronization occurring only under special conditions. The metronome
system provides a mechanical realization of the popular Kuramoto model for synchronization of
biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics
lab. © 2002 American Association of Physics Teachers.
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I. INTRODUCTION AND SUMMARY

Synchronization is the process where two or more syst
interact with each other and come to move together. I
commonly observed to occur between oscillators. Synch
nization differs from the well-known phenomena of res
nance, where an oscillator responds to an external peri
signal. Collections of oscillators are observed to synchron
in a diverse variety of systems, despite the inevitable dif
ences between the oscillators. Synchronization is a fun
mental theme in nonlinear phenomena and is currentl
popular topic of research.1

Biology abounds with examples of synchronization2,3

Populations of certain cicada species emerge simultaneo
with periods of 13 or 17 years.4 Huge swarms of fireflies in
South-East Asia gather in the same tree to flash in synch
~see, for example, Ref. 5!. Networks of pacemaker cells i
the heart beat together.6 An example from psychology is th
synchronization of clapping in audiences.7 There are many
physical examples also. The voltage oscillations of superc
ducting Josephson junctions are observed to synchroniz8,9

Neutrino oscillations in the early universe may also exh
synchronized oscillations.10 More generally, synchronized
chaotic dynamics has been studied as a promising wa
exploiting chaotic systems.11

The earliest known scientific discussion of synchroni
tion dates back to 1657 when Christian Huygens built
first pendulum clock.12 Huygens continued to refine the pe
dulum clock, trying to develop a reliable timepiece for ma
time use in order to solve the longitude problem.13 To im-
prove reliability and to allow for continued timekeepin
while one clock was being serviced, Huygens tried syste
of two pendulum clocks mounted on a common base.
observed that the clocks would swing at the same freque
and 180 degrees out of phase. This motion was robust—a
a disturbance the synchronized motion came back in ab
one-half hour.14

Surprisingly, it appears that there have been relatively
subsequent attempts at studying the synchronization of
dulums. In 1906 Kortweg15 studied weakly coupled, sma
amplitude motion of pendulums, but without any explic
damping or driving in the analysis. Blekhman16 examined a
similar system experimentally and theoretically and fou
two possible synchronized states; in-phase and antiphase
tion, corresponding to phase differences of approximate
and 180 degrees. Recently, Bennettet al.14 have re-examined
and reproduced Huygens original results.
992 Am. J. Phys.70 ~10!, October 2002 http://ojps.aip.org
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Here we examine a variant of Huygens’ original syste
two pendulum metronomes on a light, easily movable p
form. For small intrinsic frequency differences, the oscil
tors generally synchronize with a small phase difference,
is, in-phase. This system makes an excellent classroom d
onstration: it can be assembled quickly, synchronization
curs in a few tens of seconds, the mechanical motion is
sually appealing, and the metronomes’ ticks provide
added indication of the pendulum bob’s motion. The syst
is also useful for an experimental study of synchronizati
The audible ticks~and/or the base motion! provide an easy
way to quantify the relative motion of the pendulum bob
The ticks can be recorded and used to study the approac
synchronization and the small phase difference between
synchronized metronomes.

The results are well described by a simple model. T
metronomes are described as van der Pol oscillators17 and
the coupling between the metronomes comes from the
damped motion of the base. Using this model, the absenc
the antiphase synchronization that Huygens and others
served is readily explained. The large oscillation amplitud
~45 degrees! of the pendulum bobs’ motion destabilize th
antiphase synchronization. However, antiphase synchron
tion can be produced in the metronome system by eit
adding large damping to the base motion, or by going to v
large oscillation frequencies.

From the model, approximate evolution equations are
rived using the method of averaging. These equations
used to calculate stability diagrams showing the param
regions where the in-phase and the various possible
tiphase synchronization states exist. In a particular, exp
mentally accessible parameter region, the approximate e
lution equations simplify to a single, effective, first-ord
differential equation that is commonly used in textbook d
cussions of synchronization. We then consider many me
nomes and show that the effective phase evolution equat
are equivalent to the Kuramoto model, which is common
used to describe self-driven, biological oscillators.18,19 Sev-
eral possible extensions of the present work are given at
end of this article.

II. METRONOME SYSTEM AND EQUATIONS OF
MOTION

Our system consists of two metronomes resting on a li
wooden board that sits on two empty soda cans~see Fig. 1!.
The metronomes are Wittner’s Super-Mini-Taktell~Series
992/ajp/ © 2002 American Association of Physics Teachers
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880!, and are claimed to be the world’s smallest pendul
metronome~mass 94 g!. These metronomes were chosen b
cause they were inexpensive and have a light base. Ener
supplied to each metronome by a hand wound spring.
frequency of the metronome is adjusted by changing the
sition of a mass on the metronome’s pendulum bob. T
metronomes’ standard settings range from 40 ticks
minute~largo! to 208 ticks per minute~prestissimo!, but fre-
quencies outside of this range are possible. For the meas
ments performed in this paper the highest standard freque
settings were used, which corresponds to 104 oscillations
minute because the metronomes tick twice per cycle.
wooden board on which the metronomes rest is light~58 g!,
flat with smooth sides, and long enough to support sev
metronomes. The base supports were empty beverage
tainers~12 fl. oz!. To insure that they rolled smoothly an
evenly, they were washed and their pop-tops and a little
the surrounding metal on their ends were removed.

A. The equations of motion

For the equation of motion of a single metronome on
moving base, we use

d2u

dt2
1

mrc.m.g

I
sinu1eF S u

u0
D 2

21G du

dt

1S r c.m.m cosu

I D d2x

dt2
50, ~1!

whereu is the angle the pendulum makes with the verticaI
is the moment of inertia of the pendulum,m is the mass of
the pendulum,r c.m. is the distance of the pendulum’s cent
of mass from the pivot point,g is the acceleration of gravity
and x is the horizontal position of the base. The first tw
terms in Eq.~1! are the usual ones that describe the mot
of a pendulum, that is, the angular acceleration and the gr
tational torque. The third term in Eq.~1! crudely models the
metronomes’ escapement20 and any damping of the bob’
motion from air resistance. This term is of the van der P
type and increases the angular velocity foru,u0 and de-
creases it foru.u0 . For small e, this term will produce
stable oscillations with an amplitude of approximately 2u0 in
the isolated oscillator~see, for example, Ref. 21!. The last
term in Eq.~1! describes the effect of the base motion on
metronome. Because the base moves, the metronome is
noninertial reference frame and thus experiences an ine
or fictitious force F inertial52m d2x/dt2 ~see, for example

Fig. 1. Picture of two metronomes sitting on a light, wooden board wh
lies on two empty soda cans.
993 Am. J. Phys., Vol. 70, No. 10, October 2002
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Ref. 22!. The last term is just the torque produced by th
inertial force.

The center of mass of the system of two pendulums
given by

xc.m.5
Mx1mx11mx2

M12m
, ~2!

whereM is the mass of the base, and

xi5x1ai1r c.m.sinu i ~3!

denotes the horizontal position of thei th pendulum bob.
Hereai denotes the constant position difference between
i th metronome and the base board. The mass of the s
cans is neglected in Eq.~2!. If we neglect all external forces
on the system, the equation of motion of the base is c
tained in

d2xc.m.

dt2
50. ~4!

Equation~4! neglects the damping of the base motion, b
cause the pendulum bob’s damping mechanism is conta
in the van der Pol term which is not an external force. T
approximation appears reasonable because the base mot
smaller and slower than that of a pendulum bob, so the ef
of air drag on the base should be relatively unimportant. T
only initial conditions considered correspond to the cent
of-mass velocity equal to zero. Thenxc.m. and theai are
position constants that are irrelevant to the equations of
tion, and can be eliminated by an appropriate choice for
origin of the coordinate system. Thus, the position of t
base is given by

x52
m

M12m
r c.m.~sinu11sinu2!, ~5!

wherex, u1 , andu2 are time-dependent variables. Equati
~5! describes the coupling between the metronomes.
generalization of Eq.~5! to more than two metronomes i
straightforward.

For two metronomes, the coupled system of equati
may be written as

d2u1

dt2 1~11D!sinu11mS S u1

u0
D 2

21D du1

dt

2b cosu1

d2

dt2 ~sinu11sinu2!50, ~6a!

d2u2

dt2 1~12D!sinu21mS S u2

u0
D 2

21D du2

dt

2b cosu2

d2

dt2 ~sinu11sinu2!50. ~6b!

We have changed variables to a dimensionless time vari
t5vt, where

v25
mrc.m.g

I
~7!

is the square of the average angular frequency of the
coupled, small amplitude oscillator without damping or dri
ing. This frequency differs only slightly from the angula
frequency of the uncoupled, nonlinear oscillator,vpen. The
largest correction comes from large oscillation amplitude
fects

h
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vpen'v~12 3
2 g!, ~8!

where

g5
u0

2

6
~9!

parametrizes the leading large angle corrections to pendu
motion @sinu/u0'u/u02g(u/u0)

3#. Equation~8! assumes tha
the steady-state amplitude of the oscillations is appro
mately twice the angle appearing in the van der Pol term,u0 .
Note that the correction tov in Eq. ~8! from the van der Pol
term is of orderm2 and so is neglected. The relative fr
quency difference between the oscillators is

D'
v12v2

v
. ~10!

The dimensionless coupling parameter is

b5S mrc.m.

M12mD S r c.m.m

I D , ~11!

where the first factor comes from the base motion, Eq.~5!,
and the second factor from the inertial torque, Eq.~1!.

B. System parameters

The dynamics of the system depends on the small, dim
sionless parametersg, D, b, andm. These parameters depen
on the average frequency. For all the measurements d
here, vpen510.9 Hz, which corresponds to 208 ticks p
minute as obtained from the metronome scale. For this
ting the maximum swing amplitude of a single, uncoupl
metronome was about 45 degrees, which corresponds tu0

50.39 rad, which is half the maximum swing angle. Thu
large angle effects enter proportional to the parameteg
50.025@see Eq.~9!#. The intrinsic frequency difference pa
rameterD can be varied by changing the position of t
adjustable mass on one of the metronomes. This quanti
most accurately measured by uncoupling the two me
nomes, that is, taking them off the base and placing them
the table, and measuring the time interval~with a stopwatch!
between when their ‘‘ticks’’ overlap.

The coupling parameterb depends on the physical param
eters of the metronome and of the base. It can be decre
by adding mass to the base. Equation~11! for b can be re-
written as

b5S x0v2

g D , ~12!

where

x05
mrc.m.

M12m
~13!

is the distance scale of the base motion@see Eq.~5!#. This
distance was determined by weighing and measuring par
the system to obtain

x050.088 cm, ~14!

b50.011 ~15!

whereb was calculated usingv'vpen. These values agre
reasonably well with the values obtained by direct measu
ment of the base motion.
994 Am. J. Phys., Vol. 70, No. 10, October 2002
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The remaining parameter of the system is the van der
damping/driving parameter,m. To determinem, numerical
solutions of Eq.~6! were found using Mathematica. Thes
numerical solutions were compared to the observations
the valuem50.010 was chosen to best fit the data in Figs
and 3. The numerical results are included in these figure

III. EXPERIMENTAL OBSERVATIONS

A. Two metronomes

For small frequency differences, the metronomes were
served to synchronize for all initial conditions where the in
tial amplitudes were large enough to engage the escape
mechanism. Synchronization was attained on a time scal
order tens of seconds. This phase locked state was m
tained until the metronomes springs wound down. For
standard parameters given previously, the synchronized
cillators always had only a small phase difference, that
they exhibited in-phase synchronization. Synchronizat
with a phase difference near 180 degrees, antiphase sync
nization, was not observed except under altered config
tions ~see later discussion!.

Phase differences between the metronomes can be h
as a very small time difference between the clicks of

Fig. 2. Plot of the relative time lag versus time. The metronomes’ pen
lums are started with equal but opposite deflections, and they evolv
synchronized oscillations a half cycle away. The evolution is away from
unstable antiphase oscillations and toward the stable in-phase oscilla
The dark dots are the experimental data and the light dots are a nume
solution of Eq.~6!.

Fig. 3. Plot of the relative time lag versus the intrinsic frequency differen
The results are independent of the initial conditions. The boxes with e
bars are the experimental data and the black dots are a numerical soluti
Eq. ~6!.
994James Pantaleone
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metronomes. The clicks can easily be recorded using a
crophone to provide a record of how the phases evolve.
possible to do this with a single microphone, but the use
two microphones~one for each metronome! improves the
ability to separate the signals. The microphones, data in
face, and data analysis software used were all part
PASCO’s Science Workshop.23

The relaxation to the synchronized state is shown in F
2. The relative time lag between the metronomes~the differ-
ence in tick times of the two metronomes divided by t
average oscillation period! is plotted as a function of time
The two pendulums were started at rest, approximately
degrees out of phase, and with a very small frequency
ference (D'1023). Figure 2 shows the system relaxing
the in-phase synchronized state, which is half a cycle aw
from the initial state. The evolution is initially very slow
with the rate increasing with the separation. This obser
behavior indicates that the antiphase state is an unstable
point—although it might also be a small bottleneck, that
close to a saddle node bifurcation. The oscillations aro
the in-phase state damp out on a time scale of tens of
onds.

After the oscillators have settled down to synchroniz
motion, small differences in their intrinsic frequency caus
small, steady state phase difference. The fast oscillator le
the slow oscillator by a small amount. The relative time l
between the oscillators as a function of the intrinsic f
quency difference is shown in Fig. 3. The relative time lag
approximately the phase difference divided by 2p. As Fig. 3
shows, the time lag increases as the frequency differe
increases until a threshold is reached. For frequency dif
ences larger than this threshold, phase locking is not p
sible. We recorded several time lags at each frequency
ference, chosen at random over several minutes. The sp
in the time lag was used to generate the error bars show
Fig. 3. This spread might be due to nonuniformities in t
escapement mechanism.

B. Antiphase synchronization

The original observations of Huygens found phase lock
in two pendulum clocks with a phase difference close to 1
degrees.12 This antiphase state was the only type of synch
nization observed in a recent reproduction of Huygens
periment using pendulum clocks.14 However, for the stan-
dard metronome system discussed here, the phase lo
state always had a phase difference close to zero. O
phase locked states were not observed irrespective of
initial starting configuration of the metronomes. Huyge
system differed from the one considered here in some im
tant ways. First, the clocks had extremely small freque
differences, of order 1024. Also, they were mounted on
very massive base so that coupling between the clocksb,
was extremely small. One effect of these small parame
for the clock system was that observations were more d
cult, and reportedly took of order of one-half hour for th
clocks to settle down to the phase locked state; in contr
the metronomes typically settle down in tens of secon
More importantly, the small clock parameters make that s
tem sensitive to effects not relevant for the metronomes.

Attempts were made to reproduce the antiphase sync
nization observed by Huygens. For example, mass
added to the base~2 kg!, reducing the parameterb by a
factor of 10. For this configuration, in-phase synchronizat
995 Am. J. Phys., Vol. 70, No. 10, October 2002
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was still the only one observed. However, antiphase sync
nization was observed at the standardb value of Eq.~15!
when the metronome system was placed on a wet surf
The water increased the adhesion of the soda cans to
surface and thus significantly increased the damping of
base motion. In this configuration, phase locking with
phase difference near 180 degrees was consistently repro
ible. This result is consistent with the results of Ref.
where damping of the base motion is assumed to be
dominant damping in their system. This assumption is v
different from that of the standard metronome system stud
here, where damping of the base motion is neglected. In
mathematical model, adding damping of the base motion
lows phase locked states with a phase difference near
degrees. In the limit of large base damping, the antiph
state becomes the dominant fixed point. Quantitative m
surements of the phase difference in this configuration w
not made.

Antiphase synchronization also was observed when
metronomes operated at average frequencies much hi
than the standard setting. With the adjustable pendulum
mass completely removed, the metronomes would oscil
at approximately 315 ticks per minute. In this configuratio
both in-phase and antiphase synchronization was obser
Increasing the frequency corresponds to increasingb @see
Eq. ~12!# and to decreasingm, the dimensionless van der Po
parameter.

C. Several metronomes

The behavior of seven metronomes on a common platfo
was briefly studied. The platform was large enough so t
the pendulum bobs did not hit each other. For the same
erage frequency given in Sec. II B and small frequency d
ferences, in-phase synchronization of seven metronomes
consistently observed. Note that the size of the base mo
@see Eqs.~5! and~13!# is roughly independent of the numbe
of metronomes studied because adding metronomes to
system adds mass to both the base and to the pendulum

IV. ANALYTICAL ANALYSIS

The tendency of metronome systems to synchronize
be understood in various ways. First we present a sim
approximate analysis suitable for use in an intermediate c
sical mechanics class. Then we present a more general a
sis.

A. Heuristic analysis

The general tendency of coupled pendulums to synch
nize can be understood easily if we study an approxim
version of the present system. In particular, let’s consider
case of identical (D→0), small amplitude (g→0) oscilla-
tors. In terms of scaled sum and difference angle variabl

d5
u12u2

2u0
, ~16a!

s5
u11u2

2u0
, ~16b!

Eq. ~6! takes the approximate form

d

dt Fdd

dt
1mS s21

1

3
d221D dG1d50, ~17a!
995James Pantaleone
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d

dt Fds

dt
1mS 1

3
s21d221Ds G1~112b!s50. ~17b!

It has been assumed thatm and b are small variables o
comparable size~see Sec. II B! and only the leading orde
terms in these parameters are kept. The reason for using
sum and difference variablesd ands is now apparent—there
are nob terms in Eq.~17a! for d. The b term describes the
coupling of the metronomes through the base motion. T
motion is identical for the two metronomes, so the coupl
cancels out~to leading order! in the evolution of the ampli-
tude difference,d.

Near the in-phase synchronization state,u1'u2 so thatd
!1. When this condition holds, the equation of motion fors
decouples and is

d2s

dt2 1m~s221!
ds

dt
1~112b!s50. ~18!

Equation~18! is just the equation for a simple van der P
oscillator. The term in Eq.~18! with a coefficient ofm drives
the amplitude to 2, for any small value ofm @see Eq.~25!#,
and the long-term solution is approximately

s~t!'2 cos~~11b!t!. ~19!

Using this solution fors, and working to leading order ind,
Eq. ~17a! becomes

d

dt Fdd

dt
1m~112 cos~2~11b!t!!dG1d50. ~20!

The term in Eq.~20! with a coefficient ofm contains two
parts, a constant damping part and a part oscillating
roughly twice the natural frequency ofd. The effects of the
oscillatory part cancel on average to a good approxima
and can be neglected. The approximate solution ford is then

d~ t !'d~0!e2mt/2 cos~t1x! , ~21!

wherex is an arbitrary phase shift. Thus near the in-pha
state,d→0, and hence in-phase synchronization is stable

An experimentally observed quantity is the metronom
ticks as they relax to synchronization~see Fig. 2!. The ticks
occur when theu i ’s are a multiple ofp. If we use the ap-
proximate solutions of Eqs.~21! and ~19!, the small time
difference between the two metronomes’ ticks near the fi
point is approximately

~t22t1!n'd~0!e2mtn/2 sin~x2btn!, ~22!

where

tn5~2n11!
p

2
~n50,1,2,...!. ~23!

Equation ~22! describes the evolution toward synchroniz
tion observed in Fig. 2, damped oscillations with the f
quency of oscillations equal to the difference in frequen
between thes andd oscillations.

It is instructive to repeat the stability analysis of identic
small angle oscillators near the antiphase state. Thereu1

'2u2 , so s!1. Equations~17a! and ~17b! are identical
under interchange ofs andd, except for theb term, but the
b term just gives a small change in the frequency. Thus,
not surprising that near the antiphase state a similar ana
is possible. Thend evolution decouples to a simple van d
Pol oscillator, ands oscillations damp out to zero. Fo
996 Am. J. Phys., Vol. 70, No. 10, October 2002
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coupled, identical,small amplitudemetronomes, the an
tiphase state is also stable~in agreement with Ref. 16!.

Antiphase synchronization was observed experiment
for the metronome system at the standard frequency se
when damping of the base motion was added by wetting
table. Because the base motion is the same for both me
nomes, base damping will enter like theb terms do in Eq.
~17!. Thus base damping will add damping primarily to th
evolution of s and not tod. Enhanced base damping wi
stabilize thes evolution, leading tos→0, which corre-
sponds to antiphase synchronization. In Huygens’ obse
tions only the antiphase synchronized state was obser
This is apparently because the base damping was m
larger than the damping associated directly with the pen
lum bobs’ motion.

To describe the metronome system in Fig. 1, the previo
simple analysis must be modified to include large amplitu
effects (gÞ0) as is done in the following.

B. Method of averaging

The evolution of the anglesu1 and u2 in Eq. ~6! is pre-
dominantly oscillatory. As zeroth order solutions we take

u15Au0 cos~t1f!, ~24a!

u25Bu0 cos~t1j!, ~24b!

which are the solutions for the uncoupled, small angle os
lators, that is, when the parametersm, b, D, and g vanish.
When these parameters are nonvanishing but small,A, B, f,
andj are slowly evolving functions of time. To find this slow
time dependence, we use a method called ‘‘two-timing’’
‘‘the method of averaging’’~see, for example, Ref. 21!. This
perturbative method is designed to avoid secular terms,
thus yields an approximate solution that models the true
lution for all time. To leading order in the small variables, t
relevant evolution equations are

dc

dt
5

1

8 F23g~A22B2!18D14bH B

A
2

A

BJ coscG ,
~25a!

dA

dt
5

1

8
@mA~42A2!14bB sinc#, ~25b!

dB

dt
5

1

8
@mB~42B2!24bA sinc#. ~25c!

Here c5f2j is the phase difference between the oscil
tors. Equations~25! will be used to find the long term behav
ior of the system.

The implication of Eq.~25! is straightforward in the limit
of a very massive base,b50. Then the amplitude evolution
equations, Eqs.~25b! and~25c!, decouple, and it is apparen
that the van der Pol term drives the individual oscillati
amplitudesA and B to 2 ~as mentioned earlier!. If we sub-
stitute these amplitude fixed points into the evolution eq
tion for c, Eq. ~25a!, we see that in the long time limit, th
phase difference of the uncoupled oscillators simply evol
at a constant rate equal to the frequency difference,D. There
is no synchronization for uncoupled oscillators.
996James Pantaleone
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In general, the implications of Eq.~25! can be analyzed in
a similar manner by using a slightly different parametriz
tion. We define the variablesr ands as

r 5
A21B2

4
, ~26a!

s5H B

A
2

A

BJ . ~26b!

Then Eq.~25! can be rewritten as

dr

dt
5mr F12S s212

s214D r G , ~27a!

ds

dt
52

1

2
@msr1b~s214!sinc#, ~27b!

dc

dt
5

1

2 F S 3gr

As214
1b cosc D s12DG . ~27c!

These equations may be analyzed stepwise to find when
chronization occurs.

In particular, the evolution ofr is straightforward. Its
qualitative behavior can be easily discerned from a sketc
dr/dt versusr . Because both ther and thes dependent term
in Eq. ~27a! are non-negative,r is monotonically driven to
the attractive fixed pointr * ,

r→r * 5
s214

s212
~28!

for any nonzero initial value ofr . We substitute this value
into Eq. ~27b!, and then study its fixed point structure. If w
set ds/dt50, we find two finite fixed points. A graphica
analysis shows that one is attractive and one repulsive.
attractive fixed point is

s→s* 5
m

2b sinc
@211A122~2b sinc/m!2#, ~29!

where2&<s* <&. This attractive fixed point exists ex
cept for values ofb sinc/m such that the square root in Eq
~29! becomes imaginary. These fixed point values fors andr
may now be substituted into Eq.~27c! to yield a single,
effective evolution equation

dc

dt
5

1

2 F H 3g
As* 214

s* 212
1b coscJ s* 12DG . ~30!

Equation~30! describes the fixed point structure of the pha
difference.

For the standard parameters of the system used her~b
50.011,m50.010, andg50.025!, Eq. ~30! may be simpli-
fied further. As Fig. 3 shows, the in-phase, fixed point ph
difference is small for smallD, so we make the approxima
tion that sinc is small. For 2(2b sinc/m)2!1, Eq.~29! gives

s* '2
2b

m
sinc, ~31!

and to leading order in this approximation, the evoluti
equation forc is

dc

dt
'FD2~3g1b!

b

m
sincG . ~32!
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Equation~32! has a very simple form and is a standard e
ample in textbooks on nonlinear dynamics~see, for example,
Ref. 21!. It arises in many branches of science and engine
ing, and has been used to describe firefly flashing rhythm2

the human sleep–wake cycle, Josephson junctions,8,9 and
many other synchronization phenomena. The attractive fi
point gives an approximate expression for the phase dif
ence

c→c* 'arcsinS mD

b~3g1b! D . ~33!

An analysis of Eq.~30! shows that Eq.~33! is accurate up to
terms of orderD3. At larger values ofD, the phasec be-
comes large and the approximation in Eq.~31! breaks down.
The results in Eq.~33! can be compared to Fig. 3 where th
relative time lag~which is approximately the phase diffe
ence divided by 2p!, is plotted as a function ofD. At small
D, the slope in Fig. 3 agrees with Eq.~33!. At large D, the
threshold value ofc, where synchronization is no longe
possible, agrees with the value wheres* becomes imaginary

In addition to varying the frequency difference, the av
age frequency and the mass of the platform may also
varied. Thus a wide range ofD, m, b parameter space i
experimentally accessible. For different parameters, differ
types of fixed points are possible. To map out the possib
ties, Eq.~30! was used to find~ni , na!, which are the number
of attractive in-phase (cosc.0) and antiphase (cosc,0)
fixed points, respectively. The types of attractive fixed poi
that exist for different system parameters are given in Fig
and 5.

The stability diagram for identical oscillators (D50) is
shown in Fig. 4. The dot shows the standard parame
used. It lies in the region~1,0!, where only in-phase synchro
nization occurs, in agreement with experimental obser
tions. The dotted lines indicate the boundaries between
ferent stability regions. For identical oscillators, in-pha
synchronization is always possible; however, antiphase s
chronization~s! is also possible at larger values ofb/g. When
more than one stable fixed point exists, the initial conditio
determine which is realized. Although there is only one ty
of in-phase fixed point, there are two different types of a

Fig. 4. Stability diagram for identical oscillators (D50). The regions sepa-
rated by dashed lines correspond to different values of (ni ,na), whereni

andna are the number of in-phase and antiphase fixed points, respecti
The large dot shows the parameters for the metronome system studied i
paper; the solid curve estimates how these parameter change for diff
average frequencies.
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tiphase fixed points. At intermediate values ofb/g, the an-
tiphase fixed point corresponds to where the factor in cu
brackets in Eq.~30! vanishes. This factor is a function o
(sinc)2, and because it is symmetrical aboutc5p, there are
two attractive fixed points at nonzero values of sinc. The left
boundary of this region corresponds to wheres* 2 has its
maximum values* 252. The right boundary of this region
corresponds to wheres* 2 has its minimum values* 250. For
largeb/g, there is only one antiphase fixed point correspo
ing to s* 505sinc, c5p. This result agrees with the re
sults of the heuristic analysis where it was found that smag
~small amplitude oscillations! corresponds to a~1,1! region.

The solid curve going through the dot in Fig. 4 shows
rough estimate of how the parameters may be varied exp
mentally by changing the average metronome frequency~b
}v4, m}1/v!. There is agreement between this phase d
gram and the experimental observation of both antiphase
in-phase synchronization when the metronomes were
justed to unusually high frequencies.

The stability diagram for nonidentical oscillators is show
in Fig. 5. Herem is taken to have its standard value
m/g50.40. For large values ofD/g, no synchronization oc-
curs. AsD/g decreases, the first synchronization to occu
in-phase. The boundary separating the~0,0! and~1,0! regions
is described approximately bys52& for largeb/g and by
sinc51 for small b/g. The boundary separating the~1,0!
region from where antiphase synchronization occurs is m
complicated. At vanishingD/g, we note that Fig. 5 agree
with Fig. 4; in particular, there are two stable antiphase sta
at intermediate values ofb/g, and the boundary point be
tween the~1,0! and ~1,2! regions occurs ats* 252. At non-
zero values ofD/g, the s* ↔2s* symmetry is broken, and
the boundary splits into two curves that correspond appr
mately to s* 5& for the left curve ands* 52& for the
right. The right curve becomes the main boundary betw

Fig. 5. Stability diagram for nonidentical oscillators. It is assumed tham
50.011. The regions separated by dashed lines correspond to differen
ues of (ni ,na), whereni and na are the number of inphase and antipha
fixed points, respectively. The solid curve corresponds to the range of
quency differences where synchronization occurred in Fig. 3.
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the ~1,0! and ~1,1! regions at larger values ofD/g and b/g.
The boundary between the~1,2! and right ~1,1! region is
different from the boundaries previously described, in tha
is not a bifurcation associated with an extremal value ofs* ,
sinc, or cosc. It is associated with a saddle node bifurcati
intrinsic to Eq.~30!.

The solid vertical line in Fig. 5 shows the paramete
where synchronization occurs in Fig. 3,b/g50.44 and 0
<D/g<1.5. There is good agreement between the thresh
values in Figs. 3 and 5. The region above this curve, wh
no synchronization occurs, can easily be explored exp
mentally by further increasing the frequency difference
the metronomes. By changing the average frequency of
metronomes, the parameter regions to the left and right of
solid curve in Fig. 5 also can be explored.~However, a small
change inm/g would also occur.! In particular, as shown in
Fig. 4, values ofb/g.2 are easily achievable. Thus all th
different antiphase states shown in Fig. 5 should be ac
sible to experimental study.

C. Several metronomes

The previous analysis may be generalized to the cas
several metronomes on a common base. Following Eq.~24!,
the angular position of thei th metronome’s pendulum is pa
rametrized asu i5Aiu0 cos(t1fi), where Ai and f i are
slowly varying functions of time. By using the method o
averaging, we obtain the evolution equations

dAi

dt
5mS Ai

2 D H 12S Ai

2 D 2J 1
b̃

N (
j 51

N S Aj

2 D sin@f i2f j #,

~34a!

df i

dt
5

D i

2
2

3

2
gS Ai

2 D 2

1
b̃

2N (
j 51

N S Aj

Ai
D cos@f i2f j #,

~34b!

whereN is the number of metronomes,D i parametrizes the

frequency differences,v i
2'11D i , and b̃ is a generalized

version of Eq.~11!. If we neglect the mass of the supportin
board and two cans compared to the total mass of all
metronomes, we find

b̃5S m

MD S r c.m.
2 m

I D , ~35!

whereM is the mass of a single metronome, and the ot
parameters represent the same quantities as in Sec. II. E
tion ~34! describes the evolution ofAi andf i to first order in

small parametersD i , g, m, andb̃.
Equation ~34! may be combined to obtain a simplifie

expression analogous to Eq.~32!. In particular, we consider
the limit of smallb̃, specifically (b̃/m,b̃/g)!1. This param-
eter region is where in-phase synchronization is the only
tractive final state. It corresponds approximately to the st
dard parameters described in Sec. II B; however, these lim
are better achieved as the average metronome frequen
lowered. In this limit the amplitudes,Ai , have their attrac-
tive fixed point close to 2, and the approximate phase evo
tion equations can be written as

al-

e-
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df i

dt
52

3

2
g1

D i

2
2AS 3

b̃

m
D 2

1S b̃

g
D 2S g

2ND
3(

j 51

N

sin@f i2f j2j#, ~36!

where

tanj5
m

3g
. ~37!

This system of equations is a version of the Kuram
model,18,19which was proposed to describe coupled, biolo
cal oscillators. The model has been studied extensively in
literature~see, for example, Refs. 2, 3, 24, and 25, and r
erences therein!. In general, the system exhibits a phase tr
sition from incoherent oscillations to collective synchroniz
tion as the coupling parameter is increased relative to
spread in frequencies. Thus the metronome system prov
a simple, mechanical realization of the Kuramoto model.

In discussions of the Kuramoto model, the evolution eq
tions are often presented in a slightly different form. W
introduce the order parameter

R eic5
1

N (
j 51

N

eif j , ~38!

and write the evolution equations as

df i

dt
52

3

2
g1

D i

2
2AS 3

b̃

m
D 2

1S b̃

g
D 2S g

2D
3R sin@f i2c2j#. ~39!

It is apparent that this model is a mean-field theory where
individual oscillators interact with the average of the oth
oscillators. For the metronome system this average is
vided by the base motion

x52
m

M r c.m.R sinc, ~40!

which is the generalization of Eq.~5! to several oscillators
Hence, measurements of the base motion directly yield
order parameter of the system.

At extremely low average frequencies, it is estimated t
m/g will become large~see Fig. 4!. Thus it might be possible
to reach the situation wherej'p/2. In this limit, Eq. ~36!
implies that the metronomes couple via a cosine-like in
action. This situation is very similar to the description
neutrino oscillations in the early universe.10 In this limit col-
lective synchronization has neutral stability, that is, it c
exist at large coupling parameters, but does not spont
ously occur. It is intriguing that the metronome system mig
be able to provide a mechanical realization of neutrino os
lations in the early universe. However, this limit is probab
quite sensitive to higher order corrections.

V. DISCUSSION

The results in this paper are not a complete investiga
of the metronome system. There are many additional
enues that remain to be explored. Some of the obvious o
are given below.

Additional experimental measurements at other parame
values. The parameters that can easily be varied are the
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erage frequency, the frequency difference, and the base m
which is analogous to changingm, D, andb, respectively. At
higher frequencies, in-phase and a rich structure of antiph
synchronization states can be explored~see Figs. 4 and 5!. In
particular, the transition regions near the onset of new ty
of synchronization should be especially interesting.

Measurement of the base motion. Measuring the position
of the base would provide a useful continuous order para
eter describing the degree of synchronization of the osc
tors. For in-phase synchronization, the magnitude of the b
motion is a couple of millimeters@see Eq.~13!#. This motion
is observable with a typical ultrasonic motion sensor, bu
at the lower limits of its resolution. More precise measu
ments are desirable.

Measurement of the multimetronome system. As more met-
ronomes are added to the system, more opportunities fo
teresting physics exist. One possibility would be to study
system when it provides a mechanical realization of
Kuramoto model, as discussed in Sec. IV C. In particular,
phase transition that occurs in the Kuramoto model could
observed by measuring the steady-state base motion for
ferent base masses.

Extension of model. The model is in good qualitative
agreement with the data. The quantitative agreement wo
be improved by introducing additional parameters into
model. The present model is economical in that it uses
van der Pol term to describe damping and driving. Quant
tive improvement could be obtained by using a more deta
description of the metronome’s escapement mechanism
a damping term for the pendulum bob’s motion.

Basins of attraction. At higher average frequencies, se
eral synchronization states occur. The final synchroniza
state of the system depends on the initial conditions. E
synchronization state should have separate basins of at
tion, which could be calculated numerically from the prese
model and/or studied experimentally.

Unsynchronized motion. The effective evolution equa
tions, Eq. ~25!, suggest that the unsynchronized motion
quasiperiodic. This behavior could be tested experiment
by using the observed tick times to reconstruct attract
through time-delay plots. In addition, the behavior of a s
tem near a saddle node ‘‘bottleneck’’ could be observed.

Additional base damping. Damping of the base motion
could be added to the system in various ways. As noted,
damping enhances the stability of some antiphase synchr
zation states, thus producing results similar to those found
Huygens.12 This modified system could be studied expe
mentally and theoretically.

In addition to the above straightforward generalizations
the present work, several other unlikely but intriguing pos
bilities exist.

Search for oscillator death. The stopping of oscillations by
one or both of the metronomes was observed only at or n
when a metronome’s spring wound down. However, osci
tor death has been observed in the recent study of cou
pendulums clocks,14 and it might exist for some version o
the metronome system.

Search for synchronization when frequencies are a ra
nal ratio. There are many different physical examples of sy
chronization when the frequencies are near a ratio of in
gers, for example, the 3/2 ratio between the orbital a
rotation periods of the planet Mercury. This type of synch
nization was not observed for the present metronome sys
in agreement with the result of an averaging analysi26
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which found that the metronomes decouple from each o
to leading order in small parameters. However it might
possible to enhance this type of synchronization by mod
ing the basic metronome system.
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