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Synchronization is a common phenomenon in physical and biological systems. We examine the
synchronization of twgand morg¢ metronomes placed on a freely moving base. The small motion

of the base couples the pendulums causing synchronization. The synchronization is generally
in-phase, with antiphase synchronization occurring only under special conditions. The metronome
system provides a mechanical realization of the popular Kuramoto model for synchronization of
biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics
lab. © 2002 American Association of Physics Teachers.
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[. INTRODUCTION AND SUMMARY Here we examine a variant of Huygens’ original system,
two pendulum metronomes on a light, easily movable plat-
Synchronization is the process where two or more systemform. For small intrinsic frequency differences, the oscilla-
interact with each other and come to move together. It igors generally synchronize with a small phase difference, that
commonly observed to occur between oscillators. Synchrois, in-phase. This system makes an excellent classroom dem-
nization differs from the well-known phenomena of reso-onstration: it can be assembled quickly, synchronization oc-
nance, where an oscillator responds to an external periodicurs in a few tens of seconds, the mechanical motion is vi-
signal. Collections of oscillators are observed to synchronizeually appealing, and the metronomes’ ticks provide an
in a diverse variety of systems, despite the inevitable differadded indication of the pendulum bob’s motion. The system
ences between the oscillators. Synchronization is a fundas also useful for an experimental study of synchronization.
mental theme in nonlinear phenomena and is currently dhe audible tickdand/or the base motigmprovide an easy
popular topic of research. way to quantify the relative motion of the pendulum bobs.
Biology abounds with examples of synchronizatfoh. The ticks can be recorded and used to study the approach to
Populations of certain cicada species emerge simultaneoussynchronization and the small phase difference between the
with periods of 13 or 17 yeafsHuge swarms of fireflies in  synchronized metronomes.
South-East Asia gather in the same tree to flash in synchrony The results are well described by a simple model. The
(see, for example, Ref.)5Networks of pacemaker cells in metronomes are described as van der Pol oscilfHt@nsd
the heart beat togethBAn example from psychology is the the coupling between the metronomes comes from the un-
synchronization of clapping in audience3here are many damped motion of the base. Using this model, the absence of
physical examples also. The voltage oscillations of supercorthe antiphase synchronization that Huygens and others ob-
ducting Josephson junctions are observed to synchrériize.served is readily explained. The large oscillation amplitudes
Neutrino oscillations in the early universe may also exhibit(45 degreesof the pendulum bobs’ motion destabilize the
synchronized oscillation¥. More generally, synchronized antiphase synchronization. However, antiphase synchroniza-
chaotic dynamics has been studied as a promising way dfon can be produced in the metronome system by either
exploiting chaotic systems. adding large damping to the base motion, or by going to very
The earliest known scientific discussion of synchronizadarge oscillation frequencies.
tion dates back to 1657 when Christian Huygens built the From the model, approximate evolution equations are de-
first pendulum clock? Huygens continued to refine the pen- rived using the method of averaging. These equations are
dulum clock, trying to develop a reliable timepiece for mari- used to calculate stability diagrams showing the parameter
time use in order to solve the longitude probl&hlo im-  regions where the in-phase and the various possible an-
prove reliability and to allow for continued timekeeping tiphase synchronization states exist. In a particular, experi-
while one clock was being serviced, Huygens tried systemsentally accessible parameter region, the approximate evo-
of two pendulum clocks mounted on a common base. Héution equations simplify to a single, effective, first-order
observed that the clocks would swing at the same frequenagifferential equation that is commonly used in textbook dis-
and 180 degrees out of phase. This motion was robust—afteussions of synchronization. We then consider many metro-
a disturbance the synchronized motion came back in aboutomes and show that the effective phase evolution equations
one-half hour* are equivalent to the Kuramoto model, which is commonly
Surprisingly, it appears that there have been relatively fewsed to describe self-driven, biological oscillattt3® Sev-
subsequent attempts at studying the synchronization of pemral possible extensions of the present work are given at the
dulums. In 1906 Kortwely studied weakly coupled, small end of this article.
amplitude motion of pendulums, but without any explicit
damping or driving in the analysis. Blekhm@rexamined a || METRONOME SYSTEM AND EQUATIONS OF
similar system experimentally and theoretically and foundy;oTi0ON
two possible synchronized states; in-phase and antiphase mo-
tion, corresponding to phase differences of approximately 0 Our system consists of two metronomes resting on a light
and 180 degrees. Recently, Benretal 1* have re-examined wooden board that sits on two empty soda caee Fig. 1
and reproduced Huygens original results. The metronomes are Wittner's Super-Mini-TaktéBeries
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Ref. 22. The last term is just the torque produced by this
inertial force.

The center of mass of the system of two pendulums is
given by

MX+mx;+mx,
Xem=""Miom (]
whereM is the mass of the base, and
Xi=X+a;+T¢m.Sino; 3

denotes the horizontal position of théh pendulum bob.

Fig. 1. Picture of two metronomes sitting on a light, wooden board which_Hereai denotes the constant position difference between the

lies on two empty soda cans. ith metronome and the base board. The mass of the soda
cans is neglected in E¢R). If we neglect all external forces

on the system, the equation of motion of the base is con-

880), and are claimed to be the world's smallest pendulurf@inéd in

metronomemass 94 § These metronomes were chosen be-  d?x, ,,

cause they were inexpensive and have a light base. Energy is —gz — 0- (4)
supplied to each metronome by a hand wound spring. The

frequency of the metronome is adjusted by changing the pd=quation(4) neglects the damping of the base motion, be-
sition of a mass on the metronome’s pendulum bob. Th&ause the pendulum bob’s damping mechanism is contained
metronomes’ standard settings range from 40 ticks peiln the van der Pol term which is not an external force. This
minute (largo) to 208 ticks per minutéprestissimg, but fre-  approximation appears reasonable because the base motion is
quencies outside of this range are possible. For the measurémaller and slower than that of a pendulum bob, so the effect
ments performed in this paper the highest standard frequendyf air drag on the base should be relatively unimportant. The
settings were used, which corresponds to 104 oscillations pénly initial conditions considered correspond to the center-
minute because the metronomes tick twice per cycle. Thef-mass velocity equal to zero. Theq, and thea; are
wooden board on which the metronomes rest is li§& g), position constants that are irrelevant to the equations of mo-
flat with smooth sides, and long enough to support severdion, and can be eliminated by an appropriate choice for the
metronomes. The base supports were empty beverage copkgin of the coordinate system. Thus, the position of the
tainers(12 fl. 02. To insure that they rolled smoothly and base is given by

evenly, they were washed and their pop-tops and a little of

the surrounding metal on their ends were removed. X= Iem(Sin@;+sin6,), (5)

 M+2m

) ) wherex, 6, and @, are time-dependent variables. Equation
A. The equations of motion (5) describes the coupling between the metronomes. The

For the equation of motion of a single metronome on ggeneralization of Eq(5) to more than two metronomes is

moving base, we use straightforward. .
) ) For two metronomes, the coupled system of equations
a0 L Memd o e ﬁ) _ 1} de may be written as
dtz | 60 dt d201 . 61 2 d01
remMmcosé)| d?x g2 F(A+A)sing +u % -1 4
c.m! _
(—I ae =0 @ "

whered is the angle the pendulum makes with the vertital,
is the moment of inertia of the pendulumm, is the mass of 420
the pendulumy ., is the distance of the pendulum’s center 72+(1—A)sin 6+

—ﬂcosald—fz(sin 0,+sinf,)=0, (6a)
(62)2 1) de,

of mass from the pivot poing is the acceleration of gravity, to dr

andx is the horizontal position of the base. The first two d2

terms in Eq.(1) are the usual ones that describe the motion -B cosazp(sin 0,+sinf,)=0. (6b)

of a pendulum, that is, the angular acceleration and the gravi- T

tational torque. The third term in E¢1l) crudely models the We have changed variables to a dimensionless time variable

metronomes’ escapeméhtand any damping of the bob’s 7= wt, where

motion from air resistance. This term is of the van der Pol mr

type and increases the angular velocity #x 6, and de- w2:;m-g )

creases it for6>#6,. For smalle, this term will produce '

stable oscillations with an amplitude of approximatef§g2n  is the square of the average angular frequency of the un-

the isolated oscillatofsee, for example, Ref. 21The last  coupled, small amplitude oscillator without damping or driv-

term in Eq.(1) describes the effect of the base motion on theing. This frequency differs only slightly from the angular

metronome. Because the base moves, the metronome is infrequency of the uncoupled, nonlinear oscillat@f,,. The

noninertial reference frame and thus experiences an inertidghrgest correction comes from large oscillation amplitude ef-

or fictitious force Fi,enia= —M d?x/dt? (see, for example, fects
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perr= (1= 37), ®) 0. f\
where 0. ! ‘...-.
62 w0 S\
Y= 3 9 ~0. ':::
20

parametrizes the leading large angle corrections to pendulum w

O B N W s ooy
o
Y

motion [ sin 6/ 6y~ 6l 6,— ¥( 6l 6,)°]. Equation(8) assumes that 4
the steady-state amplitude of the oscillations is approxi- 0.
mately twice the angle appearing in the van der Pol teign,
Note that the correction te@ in Eq. (8) from the van der Pol 0 10 20 30 40 50
term is of orderu? and so is neglected. The relative fre- time (seconds)
quency difference between the oscillators is Fig. 2. Plot of the relative time lag versus time. The metronomes’ pendu-
w;— Wy lums are started with equal but opposite deflections, and they evolve to
A~ . (10 synchronized oscillations a half cycle away. The evolution is away from the
w unstable antiphase oscillations and toward the stable in-phase oscillations.
The dimensionless coupling parameter is The _dark dots are the experimental data and the light dots are a numerical
solution of Eq.(6).
er.m. rc.m.m
B= : (11
M +2m I - .
The remaining parameter of the system is the van der Pol

where the first factor comes from the base motion, &Y.  damping/driving paramete:. To determineu, numerical

and the second factor from the inertial torque, Eq. solutions of Eq.(6) were found using Mathematica. These
numerical solutions were compared to the observations and
the valuex =0.010 was chosen to best fit the data in Figs. 2

B. System parameters and 3. The numerical results are included in these figures.

The dynamics of the system depends on the small, dimen-
sionless parameteng A, B, andu. These parameters depend [[|. EXPERIMENTAL OBSERVATIONS
on the average frequency. For all the measurements done
here, wper=10.9 Hz, which corresponds to 208 ticks per A- TWO metronomes
minute as obtained from the metronome scale. For this set- £qr small frequency differences, the metronomes were ob-
ting the maximum swing amplitude of a single, uncoupledseryed to synchronize for all initial conditions where the ini-
metronome was about 45 degrees, which correspondg to tja| amplitudes were large enough to engage the escapement
=0.39 rad, which is half the maximum swing angle. Thus,mechanism. Synchronization was attained on a time scale of
large angle effects enter proportional to the parameter order tens of seconds. This phase locked state was main-
=0.025[see Eq(9)]. The intrinsic frequency difference pa- tained until the metronomes springs wound down. For the
rameterA can be varied by changing the position of the standard parameters given previously, the synchronized os-
adjustable mass on one of the metronomes. This quantity igllators always had only a small phase difference, that is,
most accurately measured by uncoupling the two metrothey exhibited in-phase synchronization. Synchronization
nomes, that is, taking them off the base and placing them owith a phase difference near 180 degrees, antiphase synchro-
the table, and measuring the time intergwith a stopwatch  nization, was not observed except under altered configura-
between when their “ticks” overlap. tions (see later discussipn

The coupling parametg® depends on the physical param- Phase differences between the metronomes can be heard
eters of the metronome and of the base. It can be decreased a very small time difference between the clicks of the
by adding mass to the base. Equatidd) for 8 can be re-

written as
Xow? 0.1
1) |
0.08
where + +
Mrem. 13 : 0.06 + eesees
X0: o"..
M+2m W 004 * .'é.'...o
is the distance scale of the base motjsee Eq.(5)]. This .*..-"
distance was determined by weighing and measuring parts o 0. 02 #.v
the system to obtain g.o'
Xo=0.088 cm, (14 ) 0.01 0.02 0.03 0.04
B=0.011 (15) A

h lculated usine ~ Th | Fig. 3. Plot of the relative time lag versus the intrinsic frequency difference.
where 8 was calculate using =~ wpen- ese values agree 1nq resyits are independent of the initial conditions. The boxes with error

reasonably well with the values obtained by direct measurenars are the experimental data and the black dots are a numerical solution of
ment of the base motion. Eq. (6).
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metronomes. The clicks can easily be recorded using a mivas still the only one observed. However, antiphase synchro-
crophone to provide a record of how the phases evolve. It isization was observed at the standg@dralue of Eq.(15)
possible to do this with a single microphone, but the use ofvhen the metronome system was placed on a wet surface.
two microphonesione for each metronomeamproves the The water increased the adhesion of the soda cans to the
ability to separate the signals. The microphones, data intesurface and thus significantly increased the damping of the
face, and data analysis software used were all part dbase motion. In this configuration, phase locking with a
PASCO’s Science Workshdp. phase difference near 180 degrees was consistently reproduc-

The relaxation to the synchronized state is shown in Figible. This result is consistent with the results of Ref. 14
2. The relative time lag between the metronorttee differ-  where damping of the base motion is assumed to be the
ence in tick times of the two metronomes divided by thedominant damping in their system. This assumption is very
average oscillation perigds plotted as a function of time. different from that of the standard metronome system studied
The two pendulums were started at rest, approximately 18@ere, where damping of the base motion is neglected. In our
degrees out of phase, and with a very small frequency difmathematical model, adding damping of the base motion al-
ference A~10"3). Figure 2 shows the system relaxing to lows phase locked states with a phase difference near 180
the in-phase synchronized state, which is half a cycle awaglegrees. In the limit of large base damping, the antiphase
from the initial state. The evolution is initially very slow, state becomes the dominant fixed point. Quantitative mea-
with the rate increasing with the separation. This observegurements of the phase difference in this configuration were
behavior indicates that the antiphase state is an unstable fixé@t made.
point—although it might also be a small bottleneck, that is, Antiphase synchronization also was observed when the
close to a saddle node bifurcation. The oscillations aroundgnetronomes operated at average frequencies much higher
the in-phase state damp out on a time scale of tens of sefhan the standard setting. With the adjustable pendulum bob
onds. mass completely removed, the metronomes would oscillate

After the oscillators have settled down to synchronizedat approximately 315 ticks per minute. In this configuration,
motion, small differences in their intrinsic frequency cause &oth in-phase and antiphase synchronization was observed.
small, steady state phase difference. The fast oscillator leadscreasing the frequency corresponds to increagnigee
the slow oscillator by a small amount. The relative time lagEQ. (12)] and to decreasing, the dimensionless van der Pol
between the oscillators as a function of the intrinsic fre-parameter.
qguency difference is shown in Fig. 3. The relative time lag is
approximately the phase difference divided by. 2s Fig. 3 ¢ geveral metronomes
shows, the time lag increases as the frequency difference
increases until a threshold is reached. For frequency differ- The behavior of seven metronomes on a common platform
ences larger than this threshold, phase locking is not posvas briefly studied. The platform was large enough so that
sible. We recorded several time lags at each frequency dithe pendulum bobs did not hit each other. For the same av-
ference, chosen at random over several minutes. The spreadage frequency given in Sec. Il B and small frequency dif-
in the time lag was used to generate the error bars shown iierences, in-phase synchronization of seven metronomes was
Fig. 3. This spread might be due to nonuniformities in theconsistently observed. Note that the size of the base motion
escapement mechanism. [see Egs(5) and(13)] is roughly independent of the number

of metronomes studied because adding metronomes to the
system adds mass to both the base and to the pendulum bob.

B. Antiphase synchronization

The original observations of Huygens found phase lockingV. ANALYTICAL ANALYSIS
in two pendulum clocks with a phase difference close to 180 The tend f met i i hroni
degrees? This antiphase state was the only type of synchro- € tendency ol metronome systems 1o synchronize can

nization observed in a recent reproduction of Huygens ext TR B IR A, | e S G e
periment using pendulum clock$.However, for the stan- 3PP y

dard metronome system discussed here, the phase lockglgal mechanics class. Then we present a more general analy-

state always had a phase difference close to zero. othé&fs:

phase locked states were not observed irrespective of the Heuristic analysis

initial starting configuration of the metronomes. Huygens’

system differed from the one considered here in some impor- The general tendency of coupled pendulums to synchro-
tant ways. First, the clocks had extremely small frequencylize can be understood easily if we study an approximate
differences, of order 10*. Also, they were mounted on a Version of the present system. In particular, let's consider the
very massive base so that coupling between the clogks, case of identical §—0), small amplitude ¥—0) oscilla-
was extremely small. One effect of these small parameter®rs. In terms of scaled sum and difference angle variables

for the clock system was that observations were more diffi- 0.— 0
cult, and reportedly took of order of one-half hour for the 5= g, (163
clocks to settle down to the phase locked state; in contrast, 26
the metronomes typically settle down in tens of seconds. 0.+ 6
More importantly, the small clock parameters make that sys- ¢= ! 2, (16b)
tem sensitive to effects not relevant for the metronomes. 2060

Attempts were made to reproduce the antiphase synchrgeq. (6) takes the approximate form
nization observed by Huygens. For example, mass was
added to the bas€ kg), reducing the parametes by a i d_5+ 02+}52_1 sl+s=0 (173
factor of 10. For this configuration, in-phase synchronization dr|dr ® 3 '
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d 1 coupled, identical,small amplitude metronomes, the an-
ar §UZ+ #—1|o|+(1+2pB)c=0. (17b tiphase state is also stabli@ agreement with Ref. 16
Antiphase synchronization was observed experimentally
It has been assumed that and g are small variables of for the metronome system at the standard frequency setting
comparable sizésee Sec. || B and only the leading order when damping of the base motion was added by wetting the
terms in these parameters are kept. The reason for using tit@ble. Because the base motion is the same for both metro-
sum and difference variablesand o is now apparent—there nomes, base damping will enter like tifeterms do in Eq.
are nog terms in Eq.(17a for 8. The 8 term describes the (17). Thus base damping will add damping primarily to the
coupling of the metronomes through the base motion. Thivolution of o and not tod. Enhanced base damping will
motion is identical for the two metronomes, so the couplingstabilize theo evolution, leading toc— 0, which corre-
cancels oufto leading orderin the evolution of the ampli- sponds to antiphase synchronization. In Huygens’ observa-
tude differenceg. tions only the antiphase synchronized state was observed.
Near the in-phase synchronization stalgs= 6, so thats  This is apparently because the base damping was much
<1. When this condition holds, the equation of motiondor larger than the damping associated directly with the pendu-
decouples and is lum bobs’ motion.
To describe the metronome system in Fig. 1, the previous,

do

—+
dr  # 7

d20' do . . ™ . .
2\ 9T _ simple analysis must be modified to include large amplitude
a2 T D grt(1+2)0=0. 18 crects (y#0) as is done in the following.

Equation(18) is just the equation for a simple van der Pol

oscillator. The term in Eq18) with a coefficient ofu drives

the amplitude to 2, for any small value pf[see Eq.(25)], B. Method of averaging

and the long-term solution is approximately

The evolution of the angleg; and 6, in Eq. (6) is pre-

o(7)~2 cog(1+B)7). (19 dominantly oscillatory. As zeroth order solutions we take
Using this solution foto, and working to leading order i8,
Eq. (179 becomes 01=A0cod 7+ o), (249
d|dé —
oot u(1+2c082(14 B)7)3|+6=0. (20 02=B 0o cot7+¢), (24D

which are the solutions for the uncoupled, small angle oscil-
The term in Eq.(20) with a coefficient ofu contains two |ators, that is, when the parameters 8, A, and y vanish.
parts, a constant damping part and a part oscillating afyhen these parameters are nonvanishing but shaR, ¢,
roughly twice the natural frequency of The effects of the  anq¢ are slowly evolving functions of time. To find this slow
oscillatory part cancel on average to a good. approximatiogme dependence, we use a method called “two-timing” or
and can be neglected. The approximate solutionsfisrthen  «the method of averaging(see, for example, Ref. 21This

S(t)~5(0)e ™ cogd -+ x) , (21) perturpative method is designed_to avoid secular terms, and

thus yields an approximate solution that models the true so-
where y is an arbitrary phase shift. Thus near the in-phasgution for all time. To leading order in the small variables, the
state,0—0, and hence in-phase synchronization is stable. relevant evolution equations are

An experimentally observed quantity is the metronomes’

ticks as they relax to synchronizatigsee Fig. 2 The ticks dy 1 ) B A
occur when thed;’s are a multiple ofr. If we use the ap- 9, 8| “3VAT=BY)FBA+AS) L~ 5 iCOSY|,
proximate solutions of Eq921) and (19), the small time (253
difference between the two metronomes’ ticks near the fixed
point is approximately dA 1
_ — = —[uA(4— A% +4BBsiny], (25b)
(72— 71)n=8(0)e™#™?sin(x— By, (22 dr 8
where dB 1
_ Fr g[,uB(4—Bz)—4[3A siny]. (250
m=(2n+1)5 (n=0,12..). (23

Here = ¢— ¢ is the phase difference between the oscilla-

Equation(22) describes the evolution toward synchroniza-tors. Equation$25) will be used to find the long term behav-
tion observed in Fig. 2, damped oscillations with the fre-ior of the system.
quency of oscillations equal to the difference in frequency The implication of Eq(25) is straightforward in the limit
between ther and é oscillations. of a very massive bas@=0. Then the amplitude evolution

It is instructive to repeat the stability analysis of identical, equations, Eqg25b) and(25¢), decouple, and it is apparent
small angle oscillators near the antiphase state. Tligre that the van der Pol term drives the individual oscillation
~—0,, so oc<1. Equations(17g and (17b) are identical amplitudesA andB to 2 (as mentioned earligrlf we sub-
under interchange af and &, except for thed term, but the stitute these amplitude fixed points into the evolution equa-
B term just gives a small change in the frequency. Thus, it igion for ¢, Eq. (2538, we see that in the long time limit, the
not surprising that near the antiphase state a similar analysjghase difference of the uncoupled oscillators simply evolves
is possible. Therd evolution decouples to a simple van der at a constant rate equal to the frequency differeAcd here
Pol oscillator, ando oscillations damp out to zero. For is no synchronization for uncoupled oscillators.
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In general, the implications of E¢25) can be analyzed in 3 T T
a similar manner by using a slightly different parametriza- / !
tion. We define the variablasands as 2.5 | |
A2+ B2 2 ; i
r=—pr (264 i !
L1 (1.0 5 (1,1)
B A Po(L2)
S= K_ E . (26b) 1 :' i
i |
Then Eqg.(25) can be rewritten as 0.5 K‘\f i
dr s?+2 : i
d—T=,ur 1- <ia ri, (279 1 2 3 4 5
B
ds__ 1 + B(S?+4)si 27b ’
—— =—sLmuSr S siny|, . S . . . .
dr 2 [n B ) v ( ) Fig. 4. Stability diagram for identical oscillatord €0). The regions sepa-
rated by dashed lines correspond to different valuesnpfn(,), wheren;
dy 1 3yr andn, are the number of in-phase and antiphase fixed points, respectively.
_— == > + B cosy | s+ 2A . (2790 The large dot shows the parameters for the metronome system studied in this
dr 2 Vs +4 paper; the solid curve estimates how these parameter change for different

. . . average frequencies.
These equations may be analyzed stepwise to find when syn- gefred
chronization occurs.

In particular, the evolution of is straightforward. Its  Equation(32) has a very simple form and is a standard ex-
qualitative behavior can be easily discerned from a sketch aimple in textbooks on nonlinear dynamisge, for example,
dr/dr versusr. Because both theand thes dependent term  Ref. 21). It arises in many branches of science and engineer-

in Eq. (278 are non-negativer;, is monotonically driven to  ing, and has been used to describe firefly flashing rhythms,
the human sleep—wake cycle, Josephson junctidrand

the attractive fixed point*,
) many other synchronization phenomena. The attractive fixed
= s*+4 (29) point gives an approximate expression for the phase differ-
242 ence
for any nonzero initial value of. We substitute this value * : pA
into Eq.(27b), and then study its fixed point structure. If we Y-y~ ~arcsl BBvy+p))’ (33

setds/dr=0, we find two finite fixed points. A graphical . .
analysis shows that one is attractive and one repulsive. Th'Ae‘n analysis of 53(30) shows that Eq(33) is accurate up to
attractive fixed point is terms of orderA®. At larger 'valu.es pfA, the phasej) be-
comes large and the approximation in Egl) breaks down.
. M : 5 The results in Eq(33) can be compared to Fig. 3 where the
S—8° = 28 sind/[_l+ V1-2(2Bsinglu)?], (29 relative time lag(which is approximately the phase differ-
ence divided by 2), is plotted as a function ak. At small
where —v2=<s*=<v2. This attractive fixed point exists ex- A, the slope in Fig. 3 agrees with E(3). At large A, the
cept for values of3 siny/u such that the square root in Eq. threshold value ofis, where synchronization is no longer
(29) becomes imaginary. These fixed point valuessfandr possible, agrees with the value whetebecomes imaginary.
may now be substituted into E¢27¢ to yield a single, In addition to varying the frequency difference, the aver-
effective evolution equation age frequency and the mass of the platform may also be
varied. Thus a wide range df, u, B parameter space is

d_’z”: E Vs*?+4 + Bcosy| st +2A (30) experimentally accessible. For different parameters, different
dr 2 Vg2 ' types of fixed points are possible. To map out the possibili-

Equation(30) describes the fixed point structure of the phasetles’ Eq.(’3.,0) was used to findn; , ny). Wh'C.h are the number
difference. qf attractive m—phas_e (cap>0) and antlphage (c.:qls<0).
For the standard parameters of the system used (fere f|r>]<ed ppln;s, rde_fsfpectlvely. The types of attractive fixed Eomts4
T that exist for different system parameters are given in Figs.
=0.011, »=0.010, andy=0.025, Eq. (30) may be simpli- and 5
e e o oo, (e vahase, ied bt o2 The sabilty diagram fo denial sclatora (0 i
tion that siry is small F0r2(;'Bsinzp/ J2<<1, Eq.(29) gives shown in Fig. 4. Th_e dot shows the s_tandard parameters
' M » Q- 9 used. It lies in the regiofi,0), where only in-phase synchro-
nization occurs, in agreement with experimental observa-

2
S*~— —ﬁsin U, (31)  tions. The dotted lines indicate the boundaries between dif-
K ferent stability regions. For identical oscillators, in-phase
and to leading order in this approximation, the evolutionsynchronization is always possible; however, antiphase syn-
equation fory is chronizatiorts) is also possible at larger values @fy. When
more than one stable fixed point exists, the initial conditions
d—¢~ A—(3y+ ,G)Esinzp . (32) determine which is realized. Although there is only one type
dr “ of in-phase fixed point, there are two different types of an-
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4 » the (1,0 and(1,1) regions at larger values &/y and &/y.
r,,-f The boundary between th@,2) and right (1,1) region is
" different from the boundaries previously described, in that it
- * is not a bifurcation associated with an extremal valus*of
3 (0,0) o siny, or cosy. It is associated with a saddle node bifurcation
Y intrinsic to Eq.(30).

o The solid vertical line in Fig. 5 shows the parameters
» where synchronization occurs in Fig. B/y=0.44 and 0
. 4 <A/y=<1.5. There is good agreement between the threshold
o values in Figs. 3 and 5. The region above this curve, where
-~ no synchronization occurs, can easily be explored experi-
i (1,0) mentally by further increasing the frequency difference of
¢ o the metronomes. By changing the average frequency of the
;‘ metronomes, the parameter regions to the left and right of the
1 . (1,1) (1,2) o solid curve in Fig. 5 also can be explorétlowever, a small

5 - ! j g change inu/y would also occuy. In particular, as shown in
\
|

Ay
N

%a 1,1 . . .

S N l ( ) Fig. 4, values of3/y>2 are easily achievable. Thus all the
el different antiphase states shown in Fig. 5 should be acces-
0 : sible to experimental study.

B/

Fig. 5. Stability diagram for nonidentical oscillators. It is assumed that
=0.011. The regions separated by dashed lines correspond to different vag' Several metronomes

ues of f;,n,), wheren; andn, are the number of inphase and antiphase . . -
fixed points, respectively. The solid curve corresponds to the range of fre- The previous analySIS may be generahzed tO_ the case of
quency differences where synchronization occurred in Fig. 3. several mEtronqmes on a common base. FO||0WIng(E4),
the angular position of theth metronome’s pendulum is pa-
rametrized asf;=A;f,cosir+¢;), where A; and ¢; are
tiphase fixed points. At intermediate values @ffy, the an-  slowly varying functions of time. By using the method of
tiphase fixed point corresponds to where the factor in curlyaveraging, we obtain the evolution equations
brackets in Eq(30) vanishes. This factor is a function of

(siny)?, and because it is symmetrical abqut 7, there are dA; A AV BU i\

two attractive fixed points at nonzero values of giThe left rrr e A R oy A N,Zl 2} sin ¢i— ¢;],
boundary of this region corresponds to whef€ has its (349
maximum values*2=2. The right boundary of this region

corresponds to whesf 2 has its minimum valug* 2= 0. For de, A, 3 [A\?2 B N A

large 8/, there is only one antiphase fixed point correspond- =2 —57 5| * 5y > |5 |cof di— o1,

: I © ) . r 2 2"12) T2N&A

ing to s*=0=siny, =. This result agrees with the re- (34b)

sults of the heuristic analysis where it was found that small

(small amplitude oscillationscorresponds to &l,1) region. — hereN is the number of metronomes, parametrizes the
The solid curve going through the dot in Fig. 4 shows a : 2 ~ i

rough estimate of how the parameters may be varied experfreauency differencespi~1+A;, and 8 is a generalized

mentally by changing the average metronome frequejgcy version of Eq.(11). If we neglect the mass of the supporting
board and two cans compared to the total mass of all the

xw? wxllw). There is agreement between this phase dia:

gram and the experimental observation of both antiphase arld

in-phase synchronization when the metronomes were ad- 2

justed to unusually high frequencies. B= (m) ( rc_m_m> (35
The stability diagram for nonidentical oscillators is shown M I ’

in Fig. 5. Herepu is taken to have its standard value of ) )
wly=0.40. For large values af/y, no synchronization oc- Where M is the mass of a single metronome, and the other

curs. AsA/y decreases, the first synchronization to occur ig°@rameters represent the same quantities as in Sec. Il. Equa-
in_phase_ The boundary Separating m@) and(l,o) regions tion (34) describes the evolution ﬁi and d)i to first order in

is described approximately = —v2 for large 8/y and by ~ small parametera;, y, u, and .

sing=1 for small B/y. The boundary separating th&,0 Equation (34) may be combined to obtain a simplified
region from where antiphase synchronization occurs is morexpression analogous to E@2). In particular, we consider
complicated. At vanishing\/y, we note that Fig. 5 agrees the limit of small3, specifically 3/, B/ y)<1. This param-

with Fig. 4; in particular, there are two stable antiphase stategter region is where in-phase synchronization is the only at-
at intermediate values g/, and the boundary point be- tractive final state. It corresponds approximately to the stan-
tween the(1,0) and (1,2) regions occurs as*?=2. At non-  dard parameters described in Sec. |l B; however, these limits
zero values of\/y, the s* — —s* symmetry is broken, and are better achieved as the average metronome frequency is
the boundary splits into two curves that correspond approxitowered. In this limit the amplitudes);, have their attrac-
mately tos* =v2 for the left curve ands* = —v2 for the tive fixed point close to 2, and the approximate phase evolu-
right. The right curve becomes the main boundary betweetion equations can be written as

etronomes, we find
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erage frequency, the frequency difference, and the base mass,

~ =12
% —=_ § y+ ﬁ — 3 E + E (l) which is analogous to changing A, and g, respectively. At
dr 2 2 K v/ \2N higher frequencies, in-phase and a rich structure of antiphase
N synchronization states can be explofséee Figs. 4 and)5In
% E sin ¢ — ¢, — €], (36) particular, the transition regions near the onset of new types
j=1 of synchronization should be especially interesting.
where Measurement of the base motidWleasuring the position

of the base would provide a useful continuous order param-
eter describing the degree of synchronization of the oscilla-
tang= 3_7 (37) tors. For in-phase synchronization, the magnitude of the base
. . . . motion is a couple of millimeterssee Eq(13)]. This motion
This system of equations is a version of the Kuramotog ohservable with a typical ultrasonic motion sensor, but is
model, ™ which was proposed to describe coupled, biologi-a¢ the |ower limits of its resolution. More precise measure-
cal oscillators. The model has been studied extensively in thg,ants are desirable.
literature (see, for example, Refs. 2, 3, 24, and 25, and ref-

h | th hibi h Measurement of the multimetronome systsimore met-
erences therejnin general, the system exhibits a phase tranyonomes are added to the system, more opportunities for in-

sition from incoherent oscillations to collective synchroniza—teresting physics exist. One possibility would be to study the
tion as the coupling parameter is increased relative to the :

. . - system when it provides a mechanical realization of the
spread in frequencies. Thus the metronome system prowdqgJ

ol hanical lizati f the K : del ramoto model, as discussed in Sec. IV C. In particular, the
a simple, mechanical realization of thé Kuramolo model.  ,n4qe transition that occurs in the Kuramoto model could be
In discussions of the Kuramoto model, the evolution equa

. . ; : « rv m ring th - motion for dif-
tions are often presented in a slightly different form. WeObse ed by measuring the steady-state base motion for d

introd the ord ¢ ferent base masses.
Introduce the order parameter Extension of modelThe model is in good qualitative

_ N agreement with the data. The quantitative agreement would
R e"/’zﬁz e'?i, (38)  be improved by introducing additional parameters into the
=1 model. The present model is economical in that it uses the
and write the evolution equations as van der Pol term to describe damping and driving. Quantita-
— tive improvement could be obtained by using a more detailed
d¢y 3 A, B B\ vy description of the metronome’s escapement mechanism plus
a2 2 N3 ) 2 a damping term for the pendulum bob’s motion.

_ Basins of attractionAt higher average frequencies, sev-
XRsin ¢ — ¢—¢£]. (39 eral synchronization states occur. The final synchronization

It is apparent that this model is a mean-field theory where th§tat€ Of the system depends on the initial conditions. Each
individual oscillators interact with the average of the otherSynchronization state should have separate basins of attrac-

oscillators. For the metronome system this average is prdion, which could be calculated numerically from the present
vided by the base motion model and/or studied experimentally.

Unsynchronized motionThe effective evolution equa-
tions, Eq.(25), suggest that the unsynchronized motion is
quasiperiodic. This behavior could be tested experimentally
by using the observed tick times to reconstruct attractors
through time-delay plots. In addition, the behavior of a sys-
fem near a saddle node “bottleneck” could be observed.

Additional base dampingDamping of the base motion
ould be added to the system in various ways. As noted, this
amping enhances the stability of some antiphase synchroni-
zation states, thus producing results similar to those found by
Huygens'? This modified system could be studied experi-
mentally and theoretically.

. . ” it In addition to the above straightforward generalizations of

lective synchronization has neutral stability, that is, it cang,q present work, several other unlikely but intriguing possi-

exist at large coupling parameters, but does not spontang;iias exist. '

ously occur. It is intriguing that the metronome system might Search for oscillator deathThe stopping of oscillations by

be able to provide a mechanical realization of neutrino oscCily 4 or both of the metronomes was observed only at or near

Iati_ons in th_e early _universe. However, this limit is probablyWhen a metronome’s spring wound down. However, oscilla-

quite sensitive to higher order corrections. tor death has been observed in the recent study of coupled
pendulums clockd? and it might exist for some version of

V. DISCUSSION the metronome system. - - .

Search for synchronization when frequencies are a ratio-

The results in this paper are not a complete investigatiomal ratio. There are many different physical examples of syn-
of the metronome system. There are many additional avehronization when the frequencies are near a ratio of inte-
enues that remain to be explored. Some of the obvious onegers, for example, the 3/2 ratio between the orbital and
are given below. rotation periods of the planet Mercury. This type of synchro-

Additional experimental measurements at other parametenization was not observed for the present metronome system,
values The parameters that can easily be varied are the avn agreement with the result of an averaging analysis,

X=— %rc.m.R siny, (40
which is the generalization of E@5) to several oscillators.
Hence, measurements of the base motion directly yield th
order parameter of the system.

At extremely low average frequencies, it is estimated tha[:
uly will become larggsee Fig. 4. Thus it might be possible d
to reach the situation wheré&~ =/2. In this limit, Eq.(36)
implies that the metronomes couple via a cosine-like inter
action. This situation is very similar to the description of
neutrino oscillations in the early univer§&ln this limit col-
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