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Synchronization of Mutually Coupled Self-Mixing Modulated Lasers
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Synchronization of mutually coupled chaotic lasers has been demonstrated in a microchip LiNdP4O12

laser array with self-mixing feedback modulation. An abrupt transition to synchronized chaos by way of
“phase squeezing” was observed when coupling between the two lasers was increased. This phenomenon
is well reproduced by numerical calculations using model equations. It is also shown that low energy
variation as well as high disorder are concurrently established in synchronized chaos.

PACS numbers: 05.45.Xt, 42.50.Lc, 42.55.Sa, 42.65.Sf

A recent study in nonlinear dynamics has revealed that
two, or more than two, chaotic systems can be synchro-
nized when they are coupled appropriately [1,2]. This
interesting phenomenon plays a key role in the chaotic dy-
namics of communication signals and may be applied to
the real-time recovery of signals which have been masked
in a chaotic background and thus to encoded communica-
tions [3]. In the context of interacting chaotic oscillators,
there are different interpretations of the term “synchro-
nization,” such as master-slave synchronization [2] and
the synchronization based on mutually coupled oscillators
[4,5]. Synchronization based on generalized functional de-
pendence between two different variables has also been
included to reveal the dynamical correlations [6]. On the
other hand, a related chaos synchronization phenomenon
can be developed in terms of a suitably defined “phase” of
a chaotic oscillator [7]. Chaotic amplitude fluctuation usu-
ally triggers a diffusion of phase. In the phase synchroniza-
tion state, amplitudes of coupled oscillators remain chaotic
but their phases are in step with a common timing charac-
teristic. Phase synchronization may be an important con-
sideration in schemes for communication using the natural
symbolic dynamics of chaos [8]. The clock timing of in-
formation bits is typically a key factor in a communication
system, so, a termination of phase diffusion is crucial in an
application to encoded communication. Although chaos
synchronization has been demonstrated in electronic sys-
tems [2,9], including single-chip systems [10] as well as
laser systems [3,5,11,12], the role of phase in chaos syn-
chronization has not yet been clarified and more experi-
mental schemes are desired to find potential applications
to signal processings.

In this Letter, experimental results on synchronized
chaos in mutually coupled lasers subjected to de-
layed self-mixing laser-Doppler-velocimetry (SMLDV)
modulations [13] are reported. An abrupt transition
from asynchronous chaos to synchronous chaos via a
“phase-squeezed state” has been observed. Coupled
laser array equations with self-mixing feedback are

proposed and observed behaviors have been reproduced
successfully.

The experimental system, in which we used an Ar-laser-
pumped LiNdP4O12 (LNP) laser, is shown in Fig. 1. The
output light was divided into two beams by the beam split-
ter and was focused on the input surface of the LNP crys-
tal by the common focusing lens. The intensity of pump
beam 2 was about 3 times that of beam 1 and was con-
trolled by the variable attenuator. The facets of the plane-
parallel 1-mm-thick LNP crystal were directly coated by
dielectric mirrors, M1 (transmission at pump wavelength
lp � 514.5 nm: 80%; reflection at lasing wavelength
ll � 1048 nm: 99.9%) and M2 (transmission at ll: 1%).
The stoichiometric LNP crystal has a Nd concentration
which is 30 times higher than Nd:YAG and the absorp-
tion length at 514.5 nm was only 400 mm. Consequently,
the pumping of laser 2 by the oblique beam 2 resulted
in only a slight increase in threshold pump power be-
cause of the pump-induced thermal lens effect. The thresh-
old pump power Pth for both lasers was 120 mW, and
linearly polarized TEM00 oscillations were obtained. The
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FIG. 1. Experimental setup of a LNP laser array subjected to
Doppler-shifted light injections.
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spatial separation d of the pump positions of laser 1 and 2
was larger than their pump beam spot size �� 40 mm�
averaged over the absorption length. Therefore, cross-
saturation of population inversions did not take place be-
tween two lasers. The coupling between the two lasers
occurred through the overlap of their lasing fields which
each have spot size wl � 200 mm. The coupling coeffi-
cient, jhj � exp�2d2�2w

2
l �, is normalized so that jhj �

1 for d � 0 [14]. At the separation of 0.8 mm used in
this experiment, jhj is estimated to be 3.35 3 1024. The
separation d was varied precisely by tilting the mirror Mc

in Fig. 1. p out-of-phase locking was observed in the
present system, so h can be considered to have a nega-
tive real value [14]. The two parallel beams from the LNP
laser were incident to and scattered from the turntable to
modulate themselves by the SMLDV feedback, in which
microcavity lasers are loss modulated because of the inter-
ference between the lasing and scattered feedback fields,
which possess a narrow-band Gaussian frequency distri-
bution, at the Doppler-shift frequency fD , when fD is
higher than the injection lock-in range of the laser DfL

[13]. The distance between the LNP laser and the turntable
was 50 cm. The distinct difference between the present

system and the pump (or loss) modulation scheme [5,12]
is that the self-mixing feedback modulation depends upon

whether or not the two coupled lasers are locked and on

each laser’s own intensity. The perturbation to the laser

system is unidirectional and no feedback action occurs in

the usual pump (or loss) modulation scheme. The two
monitoring beams were converted to electrical signals by
two InGaAs photoreceivers (New Focus 1811, bandwidth:
125 MHz) and observed by using a digital oscilloscope
(Tektronix 420A, bandwidth: 200 MHz, 100 MS�s sam-
pling). Time series consisting of 30 000 data points were
analyzed by using the personal computer. The rf spectrum
analyzer (Tektronix 2712) was used to monitor the power
spectra of the two lasers. The far-field pattern and intensity
profile were measured by using a PbS infrared television.
When the distance between beams 1 and 2 was shortened,
a two-lobed far-field pattern was observed, indicating p
out-of-phase locking of two lasers similar to [14].

The following experiments were carried out in
the single-longitudinal-mode oscillation regimes of
both lasers. When the modulation frequency fD was
tuned to be near the relaxation oscillation frequency

fR � �1�2p�
q

�w 2 1��ttp , where w � P�Pth is the

relative pump, t is the fluorescence lifetime, and tp is
the photon lifetime, chaotic relaxation oscillations were
easily obtained. Synchronization was obtained when the
pump power of beam 2 was set so that the relaxation
oscillation frequencies of both coupled free-running lasers
almost coincided, i.e., for fR � 600 kHz. Otherwise,
synchronization did not occur. Figure 2(a) is a plot of the
correlation in amplitude between the two signals when
d � 1.5 mm. To examine the phase correlation of the
chaotic pulsations, the time interval between the nth peak
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FIG. 2. Signal correlations of the LNP laser array: (a),(b) at
weak coupling �d � 1.5 mm�; (c),(d) at d � 0.85 mm; (e),(f )
at stronger coupling �d � 0.8 mm�. (a),(c),(e) are for amplitude
correlation, and (b),(d),(f ) are for phase correlation.

and the subsequent peak for laser 2, T2�n�, was plotted
against that for laser 1, T1�n�, in Fig. 2(b). In this case,
asynchronous chaotic fluctuations in both amplitude and
phase are apparent, and the two lasers are found to be
behaving independently. When the separation between the
two lasers was decreased, a mutual interaction appeared
and the phase fluctuations of two lasers were squeezed,
while their amplitudes remained uncorrelated, just before
the onset of chaos synchronization, as shown in Figs. 2(c)
and 2(d). We refer to this hereafter as the phase-squeezed
state. This phenomenon could be interpreted in terms of
a slaving principle [15]: system dynamics is governed by
the longer time scales involved in oscillations. Pulsation
periods (i.e., phase) are governed by �ttp�1�2, while the
amplitudes are determined by the much shorter time scale
of tp . Detailed results will be published elsewhere.

When d was decreased further, synchronized chaotic
states, in which the two lasers exhibited chaotic pulsations
with both strong amplitude and phase correlation within
allowable errors, were obtained. Results for d � 0.8 mm
are shown in Figs. 2(e) and 2(f). The nature of synchro-
nized chaos has been found to be qualitatively different
from that of asynchronized chaos before the transition by
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the singular-value-decomposition (SVD) analysis of time
series [16].

The following model equations are used to explore the
dynamics of coupled lasers subjected to Doppler-shifted
light injections:

dEi�dt � NiEi 1 hEi11 cosu 1 miEi�t 2 td� coswi ,

(1)

dwi�dt � Vi 2 Vs,i 2 mi�Ei�t 2 td��Ei�t�� sinwi ,

(2)

dNi�dt � �wi 2 1 2 Ni 2 �1 1 2Ni�E
2
i ��K , (3)

du�dt � V2 2 V1 2 h�E1�E2 1 E2�E1� sinu ,

i � 1, 2 ,

(4)

where Ei is the normalized field amplitude �E3 � E1�,
Ni is the normalized population inversion, wi � Pi�Pi,th

is the relative pump power, u � f2 2 f1 is the relative
phase of two electric fields, Vi � vitp is the normalized
oscillation frequency, Vs,i � vs,itp is the normalized
frequency of the scattered field, wi is the phase difference
between the lasing field and the scattered field fed back to
the resonator, mi is the feedback coefficient, K � tf�tp ,
and t and td are the time and delay time normalized by
tp . The present system is more complicated than a simple
pump [5,12] or loss modulation and in fact the experi-
mental results are different from those in [5,12]. This
may result from the self-mixing feedback effect which we
have explained above. An example of correlation analyses
of numerically generated synchronized chaos is shown
in Fig. 3, assuming w1,2 � 1.05, frequency detuning
of the two lasers V2 2 V1 � 1025, h � 24 3 1024,
m1,2 � 0.005, V1 2 Vs,1 � V2 2 Vs,2 � 2p 3 1023,
and K � 2 3 103. The delay time of td � 3 ns was
much smaller than the fluctuation time scale, so we
assumed td ø 1 (a short delay limit). The distinctive
feature of synchronized chaos states in the present system
is that oscillations of the two chaotic lasers are strongly
localized in the vicinity of the “perfect” synchronous
state even in the presence of frequency detuning and,
as shown in Fig. 3, cannot escape from this state. That
is, they are stable stagnant motions. It has also been
confirmed numerically that phase squeezing occurs when
the coupling is reduced, similar to the experimental result
shown in Figs. 2(c) and 2(d), as shown below.

Let us show the global feature by varying the
coupling coefficient numerically. The degree of syn-
chronization can be characterized by the average errors
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FIG. 3. Numerical example of synchronized chaos where
(a) is for amplitude correlation and (b) is for phase correlation.
Adopted parameter values are given in the text.

defined as �´I	 �

1

DT

RDT

0 jE1�t�2 2 E2�t�2j dt for the in-

tensity �DT ¿ 1� and as �´T 	 �

1

M

P

M
i�1 jT1�i� 2 T2�i�j

for the phase �M ¿ 1�. The degree of phase squeezing
can be identified by the average standard deviation of

phase. It is defined as dT �

1

2

P

2
i�1 ����Ti 2 �Ti	�

2			
where �· · ·	 denotes the time average. As shown in Fig. 4,
transition occurred at the coupling jhj 
 1.38 3 1024

and phase squeezing took place just before the onset of
chaos synchronization. These numerical characterizations
parallel the experimental observations. To explore more
features around the transition, we calculated the average
standard deviation of intensity (i.e., energy), defined as

dI �

1

2

P

2
i�1 ������E2

i �t� 2 �E2
i 	���2			, as a function of the

coupling. As shown in Fig. 4(b), an abrupt change
can be seen. This means that synchronized chaos re-
quires a low variation of energy. We also calculated
the average variation of disorder based on the Shan-

non entropy. That is, we calculated dH �

1

2

P

2
i�1 Hi ,

where Hi � 2
P

l�1 Pi�l� lnPi�l�, in which Pi�l� is
the probability of the intensity localized within the lth
interval during time evolution for laser i �i � 1, 2� [17].
The result, shown in Fig. 4(b), implies that when the
synchronized chaos occurs a larger disorder is established
while the mutual information between the two lasers is
increased. From these results, it should be pointed out that
a lower variation of energy as well as a higher disorder are
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FIG. 4. Variations of dynamical states as a function of cou-
pling jhj. Adopted parameter values are the same as in Fig. 3.
(a) average errors for amplitude ´I and phase ´T ; (b) aver-
age standard deviations of phase dT and intensity dI , and en-
tropy dH.

required for synchronized chaos to be established. This
is a significant feature and could be a general character-
istic of the synchronization of mutually coupled chaotic
oscillators in systems where energy can be defined. At
any rate, the nature of synchronized chaos is qualitatively
different from that of asynchronized chaos before the
transition.

In summary, we experimentally examined synchronous
chaos in two coupled microchip lasers subjected to self-
mixing feedback. A transition from an asynchronous state
to synchronized chaos via a phase-squeezing state has
been found by amplitude and phase correlation analysis
of long-term experimental time series. Theoretical model
equations of coupled laser arrays with frequency-shifted

feedback have been proposed and a key feature of the ex-
perimental results has been reproduced numerically.
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