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Synchronization of oscillators with long range interaction:
Phase transition and anomalous finite size effects
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2Chaos Group and Quantum Protein Center, Department of Physics, Building 309, Danish Technical University,
DK-2800 Lyngby, Denmark
(Received 21 December 2001; published 25 July 2002

Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-
normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full
locking takes place if the population contains a sufficiently large number of elements. For large number of
oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase
transition separating synchronization from incoherence appears at a decay exponent value equal to the number
of dimensions of the lattice. In contrast with earlier results on similar systems with normalized coupling, we
have indications that for the decay exponent less than the dimensions of the lattice and for large populations,
synchronization is possible even if the coupling is arbitarily weak. This finding suggests that in organisms
interacting through slowly decaying signals such as light or sound, collective oscillations can always be
established if the population is sufficiently large.

DOI: 10.1103/PhysRevE.66.011109 PACS nuner05.40—a, 05.45.Xt

[. INTRODUCTION sented concerning the existence of a critical exponent below

which full synchronization can be achieved. These results

Synchronization is one of the most fascinating nonlinearconsidered a coupling term normalized by the sum of the
phenomena appearing in a wide range of fields. Examplespatial coefficients and the limit of the population size going

cover physical systenm®&etwork of Josephson junctiohs]),  to infinity.

oscillating chemical reaction®], molecular turnover in al- However, in a real system typically the interaction be-

losteric enzymeq3], a variety of biological observations tween two oscillators depends only on the spatial distance

(synchronous flashing of firefliggl], menstrual synchrony and the phase differences and thus there is no normalization
[5], metabolic activity in yeast cell6,7], and other various coefficient. This change, trivial at first sight, introduces a

physiological processgs8]), and social phenomena@hyth-  peculiar dependence of the dynamics on the number of os-

mic applausg9]). cillators, and thus places the studyfufite populations into
Models for rhythmic synchronization use populations ofrelevant context.
nonlinearly coupled oscillatofd0—-12. These models might In this paper synchronization in populations of phase os-

be grouped according to the nature of coupling. For instancegillators with a non-normalized coupling term is studied. Our
for pulsatile interaction integrate-and-fire oscillators provideinvestigations are especially focused on the dependence of
a useful tool of descriptiofiL3] while in the case of continu- full locking and the mean field on the number of oscillators
ous interaction a system of coupled limit cycle oscillators hador different value of the exponent describing the spatial
proved to be a good modg2]. decay of the interactions. The main result of our work is the
An important aspect of synchronizing systems is the spaidentification (through numerical simulations and a simple
tial dependence of the coupling between two oscillators. Twanalytical argumentof critical values ofa below which full
limit cases have been deeply investigatéd: mean field synchronization, or in more general, collective oscillations
(with each pair of oscillators interacting with a given cou- can take place if the population is sufficiently large. We re-
pling strength, independent of their positidi,) oscillators  mark that very few works in our knowledge has approached
on a lattice with interactions only between nearest neighborghe problem of finite size populations.
However, realistic systems are quite different. In many of the The paper is organized as follows. In Sec. Il we summa-
biologically relevant systems the signals carrying informa-rize previous results on the versions of the model of our
tion about the phase of an oscillator decay as a function o$tudies, the Kuramoto model. In Sec. Ill we explore the
the distance slowly. For example, the intensity of the soundoundary of full locking in the plane of the decay exponent
or light signals decays as a power law, in particular, in thea and the numbeN of oscillators, at different coupling val-
three-dimensional case as the inverse of square of the dises. We find that ife is below a critical valuex (K) full
tance from the source. In Refl4] results have been pre- synchronization can be achieved if the system is sufficiently
large, i.e., above a critical siZzd. We argue, however, that
this information is partial for real systems, since bulk oscil-

*Electronic address: marodi@complex.elte.hu lations can take place also if the system is not completely
"Electronic address: dovidio@fysik.dtu.dk locked. We thus study in Sec. IV the behavior of the mean
*Electronic address: vicsek@angel.elte.hu field. It appears then that a phenomenon close to a thermo-
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dynamic phase transition takes place looking at the meaAnother approach to synchronization is the investigation of

field changinge, with a discontinuity developing foN go-  frequency-locked states, i.e., when &|(t) approach as-
ing to infinity and increased fluctuations around the transiymptotically the same value.

tion point. ForK going to zero, analytical arguments and  Two basic setups of the Kuramoto model have been stud-
numerical simulations indicate that the transition point oc-ied extensively so far. First, let us consider the case when
curs ata equal to the number of dimensions of the lattice. To

show the robustness and generality of the result, we finally K
study a system of phase oscillators where the diversity is ()= N sin(¢), ©)]
given by thermal noise. In such system full locking is not

strictly defined, but on the contrary a mean-field approach

can be carried out in the same way as for oscillators withvhich defines amean-field interactionwhereK>0 is the

fixed parameter distribution and the same kind of phase trarF—OUpIing strength. Now the summation in Ed) goes over

sition appears. The system with thermal noise is very simiIaFEe whole Ipfopulatlor_]. Le_t us assume tf;)at thg dlsg|_but|on of
to the Heisenberg model with ferromagnetic interaction. Wet e r_1atura requencies; IS symmetrl_c_a out 0, and Is con-
shall suggest that a thermodynamic formalism may be apygx in that ppmt. Under these conditions tr_]e eX|st_ence of a
plied to study analytically the phenomenon discussed nugnUca} cqupll_ng K was proved, gbove which parﬂa@l'syn—
merically in this paper. chronization is possiblgl8—20. With the above conditions

We remark that the present model has been proposed tdpe frequency of the_ Io<_:keo_| subset is equal to the mean of the
real populations of oscillatoréamong others, specific ex- natural frequency distribution. . o
amples are the above mentioned works on Josephson junc- The other we_II explored case IS when the interaction is
tions[1] and synchronized applaufe]). In these cases, and inherently local, i.e.nearest neighborare coupled. Then the
when spatial dependences are included, our results have dncdel takes the form
rect implications. They suggest that whenever the coupling

signals of these systems decay slower than the number of b= w + K Sin( & — o 4
spatial dimensionfike, for example, light or soundcollec- s 1'62<i> P di) @
tive oscillations always arise if the population is sufficiently

large, however, weak the coupling is where the symbok; _;, denotes summing over all the near-

est neighbors of théth oscillator. Strogatz and Mirollo
proved that the probability of a phase-locked solution tends
Il. THE KURAMOTO MODEL: PREVIOUS RESULTS to zero as the number of oscillators in the system goes to
d infinity [21]. Also, they studied the more general case when
the mean interaction exerted on one oscillator is uniformly
?ounded and the distribution of natural frequencies “suffi-
ciently broadbandedTfor details see Refl21]). For these
é:onditions they showed that in tide— oo limit the probabil-
ity of a phase-locked state is zero.
An interesting situation arises when the interaction decays
in space as a power function,

The original form of the Kuramoto model was introduce
to describe oscillating chemical reactiofik5,16. Later it
proved to be useful in modeling a wide variety of processe
(see, e.g., Ref.17]). The basic concept is a population df
interacting oscillators coupled via nonlinear phase-differenc
minimizing interaction. In general the equation of motion of
the phasep; of theith oscillator is

‘-ﬁi:wi"'; Lij(j— i), (1) ¢i=wi+52 iasin(zﬁj—qﬁi), (5)

7T

wherew; is the natural frequency of th¢h oscillator,I"(¢) Where_rij is the d_lsta_nce betv_ve_en th'é.] andjth oscﬂlat_or

is the two-oscillator interaction and the sum goes over a sitd"d 7 iS & normalization coefficient. It is clear that H§) is

ably defined subset of the population depending on the actugduivalent to the mean-field case wher-=0. Also, when -
model. The system can be further simplified choosing, with-&— = the model becomes the same as in the nearest neigh-

out loss of generality, a frame of reference rotating at th?CrS case. So, changing the exponentone can have a
— ) . continuous transition between the two extremes. Knowing
average natural frequeney = wqy and rescaling the time and

. . .. the result of full synchronization in the global coupling case
the coupling constant by. the Inverse OT thg standard dewa‘uo*br high K, and only local synchronization in the nearest
of the natural frequencies. The distribution of natural fre-

. ) . eighbors coupling for anK, one may expect a critical
3%%2%@:0?”?‘;32%3 then centered in zero and its standard falue of & below which full locking may be achieved. This
. ' . . was shown by Rogers and Wille, who studied E5).setting

Macroscopic states of this system can be characterized b (N-1)12 i : o . Do
}7/:22-=l 1/j¢ in the limit of N going to infinity [14].

a realorder parameter J . . ;
They demonstrated that critical values @fexist depending

on the coupling strengtK. A similar result holds for sine-

circle maps as well22]. It was also recently shown numeri-

. (2 cally that an adequate normalizationremoves the depen-

N

1 A
z<t>=‘ﬁ 3, e
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dency of the exponent and system sizBl on the fraction of 1200 : : : o' Y

oscillators synchronized in frequency in the cased [23]. o
However, in most real systems the coupling between two 1000} °
oscillators does not depend on global information on the °
population, but only on the phases and the distance of the °
) . L 800t o
two oscillators. It is thus realistic for these cases to set the °
normalization coefficient to 1. As an important consequence, °
the behavior of the oscillators then strongly depends on theN soof o
size of the population. °o°
Throughout this paper we study models where 1. Be- 4 S
o . 00} K=0.06 K=0.12
fore describing any numerical results, we remark that an es
timation of a critical point can be obtained looking at E5).
and considering the coupling term. It is then natural to expect 200}
that the pointa=d, whered is the number of dimensions of
the lattice, has to play a special role. In factdt=d the 0 ZBB50000000000000000000%7 .
0.4 05 0.6 0.7 0.8 0.9

[T U UG GG

1.1

coupling term is bounded, for eveN: - : - o
N o
1 . 1 FIG. 1. Boundary of the full locking region in theN(«) plane
;i r_a sin(¢;— ¢i) Sgi r_a<°o (6) for different values oK. The linea=1 is also shown.
ij 1]

However, fora<d, in the limit of largeN the value of the UP t0 Aa=0.01 andAN=1 were used. In all numerical
coupling term may entirely dominate the difference in natu-computations in this paper the natural frequencigsvere

ral frequenciegﬂi . More precise|y, there are regions of the C_hosen from a Gaussian distribution with eXpectation value
phase space where this term may diverge Nogoing to  «;=0 and unit variance. Since the valueNf can, in prin-
infinity, in particular, in those regions where the differenceciple, depend on the position of the natural frequencies on
between phases is large. Hence, we expect thatafed  the lattice, each point has been averaged on several configu-
synchronization is enhanced enlarging the size of the systemations, especially for low values &f. We remark that, set-
independently of thepositive value of the coupling con- ting without loss of generality the main frequenay to
stantK. This property and the effects concerning the popu-zero, the locked state appears as a steady state. To locate it, a
lation size result from setting the coupling without normal- direct integration methotEuler) has been used. This method
ization, and follow directly from the divergence of the upperis simple to implement and reliable, since EH) is clearly

bound in relation(6). nonstiff, but requires a careful setting of the parameters for
computingp: in fact, the lineN. corresponds to bifurcation
IIl. FINITE POPULATION SIZE AND FULL points, where the transient time becomes more than exponen-
SYNCHRONIZATION BOUNDARIES tially long. Other methods, like continuation, could give a

_ ) ) better estimation of the line but may be difficult to apply for
In this section we explore the effect of changing the num-

ber of oscillators in a one-dimensional system, measuring the .
boundary of the full locking region in thea,N) plane, for
differentK values. From the brief discussion in the preceding -9}
section we may expect that for sufficiently low valueskof 0.8k
synchronization can be achieved Nfis sufficiently large,
only if @<1. On the contrary, this should not be possible for 07}
a>1. 06l

In order to identify the exact value af at which the
transition occurs it is helpful to consider the fractipof the 51
oscillators that are locked at the main frequeagy We thus 0.4}
count how many oscillators asymptotically satisfy the condi-
tion,

031

. 0.2}
¢ =wo, (7)

0.1

and we divide this number biy. . Ty

The plane N,a) has been scanned in either vertical or 85 1 15 2 25
horizontal direction, numerically integrating population of
oscillators at those parameter values. The transition pOintS FIG. 2. Time average of the order parameter as a functiam of
were identified as the boundary of the region of full synchro-in d=1. Simulation results folN=50, 100, 200, 500, 1000sym-
nization, i.e., measuring the transigmiaind finding the pa- bols are squares, pluses, diamonds, circles, and down triangles, re-
rameter values wheneis no longer equal to 1. Refinements spectively. The coupling isK=1.0.
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FIG. 3. Space-time plots representing the sine of the phase athhescillator for differente values:(a) «=0.5, (b) a=1.5, (c) «
=1.8, and(d) «=2.5. Gray scale indicates phases gjh(from —1 (white) to 1 (black. Other parameters were set ko=1.0 andN
=200.

large systems, having to deal with matrices of the order of IV. COLLECTIVE OSCILLATIONS
N2,

For high coupling, full synchronization can appear at ev-
ery « values. However, iK is low we expect synchroniza-
tion only for a values below the dimensions of the lattice.

The results of the preceding section may be relevant for
real systems. They suggest that in the case of oscillators
coupled with a slowly decaying signal, full synchronization
- ) ) . can be achieved as soon as the population is sufficiently
Results are plotted in F|g.'1. The reg@*gl 'S OUtS'.de thg large. However, the information that they give, describes
boundary of fuII. syn-chrc_Jnlzann, confirming the dlscussmnOnly partially what may appear macroscopically. In this sec-
of Sec. |. The situation is more complex far1. Here the  yion e propose to approach the problem looking at the be-
effect of reducing the coupling can be indeed compensatefior of the mean field whea is changed. This criterion is
by increasing the number of oscillators, up to a critical valuiess sharp than full synchronization: a transition cannot be
of a. Such critical value, however, seems to be in generakeen for finiteN but, in analogy with thermodynamic phase
different from 1(the number of dimensions of the lattice transitions, looking at discontinuities fd¢ going to infinity.
and depending on the coupling strengthThis is due to the  Nevertheless, as we shall see, the order parameter approach
fact that for smalK values, synchronization is still enhanced provides a robust and meaningful framework for describing
by a larger number of oscillators, although the system is nothe relations between synchronization and the decay of the
completely locked. The following section will investigate coupling. Moreover, it allows to state a result in a simple
this situation, looking at the behavior of the mean field. = way, connecting the critical value of the decaying of interac-

011109-4
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0.9r ]
0.8 ]
0.71 ]
0.6 b
0.5 b
0.4r b
0.3r b
0.2r b

0.1 b

85 1 15 S 25
o

FIG. 4. Mean fieldZ as a function ofx for d=2 for | X| lat- FIG. 6. The fractionp of oscillators locked at the mean fre-
tices.| values are 7squares 10 (pluse3, 15 (diamondg, and 20  quency forkK=1, N=200.
(circles. The coupling constant iK=0.1, and results were aver-
aged over more configurations, especially for low transition. These three regions represent three different mi-
croscopic behaviors corresponding to the different macro-
tion with the number of dimensions of the lattice. scopic stategsee Fig. 3. Whena is low (e.g.,a=0.5) the
Let us consider numerical simulations conducted on onesystem rapidly reaches the state of complete synchronization,

and two-dimensional lattices. We integrated the system ofyhen for all oscillators their frequencies beconfe= w,
coupled differential Eq(5) using the Euler method, time =q. The next two subfigures represent the transitional region
steps varied from 0.01 to 0.0005 relative time uriitsea-  (,=1.51.8). Here one can observe clusters arising first with
sured in comparison with the frequendieshe value of the  jncreasing phase differences, then with synchronization hold-
order parameter is computed calculating at each Wit  ing only for finite times. This phenomenon leads to large
=|1NZ]L,e'% W], discarding the first few thousand steps of fluctuations in the order parameter. Finally, in the unsynchro-
integrations as transient. Averaging this value on a long timeyized region @¢=2.5) there are only local synchronized
(typically, 20000 time stepggives the measure of synchro- groups, and clearly only very close oscillators influence each
nization we useZ=(z(t)). other.

One-dimensional results are plotted in Fig. 2, where one The transition can be observed also in two dimensions
can observe the transition from highly synchronized states gkee Fig. 4. Simulations were conducted on a square lattice
low « values to unsynchronized states. The behavior of thgyith the coupling constant set #=0.1, otherwise all other
system can be divided into three regimes. ket1 the sys-  parameters are the same aslin1. As in the previous case,
tem is fully locked, while fora=2.5 the order paramet& the transition becomes sharper as one increbises
approaches a steady value. In between one finds the region of The phenomenon we present here is reminiscent of ther-

1
0.3f . 0.998F,
0.996
0.25F
0.994[
0.2r 0.992f
o(2) 2
0.15F 0.99}
0.988[
0.1+
0.986}
0.05F 0.984f
»; 0.982}
8% 1 V15 2 25
o 0% s 0.6 0.7 0.8 0.9 1
o
FIG. 5. The standard deviatiom of the order parameter as a
function of thea exponent folK=1. Symbols as in Fig. 2. FIG. 7. Enlargement of Fig. 2. Synchronization region.
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0.5

0.45} :
0.4f :
0.35}
03} ;
Zy.25 1
02} ]

0.15M

01 1

0.05 \*_v\/\_-
0 ) ) N )

2 2.1 22 23 24 25 %5 1 15 > 25
o

FIG. 8. Enlargement of Fig. 2. Incoherence region. FIG. 10. Average of the order parameter as a function é6r
identical oscillators with noise id=1. Simulation results foN

modynamic phase transitions in several features. First, the 50, 100, 200, 500, and 1008ymbols are squares, pluses, dia-
transition from unsynchronized state to a synchronized ongonds, circles, and down triangles, respectivefhe coupling is
breaks the original rotational symmetry of phases. Second, §=1.0.
phenomenon similar to the divergence of fluctuations close
to the transition point can be observed also in this systen@scillators rotate closer to each otliee, with smaller phase
considering the standard deviationof the order parameter differences. We remark that this can happen even if the sys-
time seriegsee Fig. 5. tems is not full locked. The effect oB is the opposite for

It is interesting to compare the behaviordfFig. 2 with  incoherencehigh «). In this case, the decrease in the mean
the plot obtained looking at the fraction of oscillators lockedfield is due to the fact that for higN, statistical fluctuations
at the mean frequenciFig. 6), used in the full locking ap- are reduced when averaging the uncorrelated phases over a
proach. Although in the second case a discontinuity appeatgrger number of the oscillato(&ig. 8).
for finite N, one cannot distinguish between the transiton The dependence @overN is also relevant when looking
region (with some unlocked oscillators but a strong meanfor a phase transition. In fact, it points to a discontinuity in
field) and the region at high (with developed incoherence the plotZ=Z(«) for N going to infinity, as Figs. 2 and 4
and a low mean field suggest. In order to detect the phase transition, we perform

Another effect that was missed looking at full locking Simulations aimed at studying this effect. Results are plotted
only is the dependence of the mean field\inFrom Fig. 7 in Fig. 9. Considering as in Sec. Il the convergence proper-

one can see that at low Z increases withN, since the ties of the coupling term, and callirgthe number of dimen-
sions of the lattice, they can be interpreted as follows.

T T T
>-—v—y—v—vy—v—v-—v-—v-—v—v-v v 0.15

= LR AL ALl A {

0.1

o(2)

0.05f

0.1 &
°'°°"°~‘°-'°"°'-e--o-e-o-e—o--o—e-o-e--e--< b9 ¢
% 1000 2000 3000 4000 5000 6000 85 1 15 2 25
N a
FIG. 9. Size dependence of order parameterdfdselow (con- FIG. 11. Standard deviatiom of the order parameter as a func-

tinuous line,&#=0.9) and abovédashed lineag=1.1) the critical  tion of « for identical oscillators with noise id=1. Symbols are
valuea=d=1. The coupling i = 0.2 (trianglesg and 0.1(circles. the same as in Fig. 10.
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1 g g y g g the above discussed model. However, the realization of this
distribution changes at each instant of time. The equations of
motion for the oscillators thus become

) 1
¢i:wo+K;r—asm(¢,-—¢i)+§i<t>. (10
ij

Our simulations show that the phase transition from syn-
chronized to unsynchronized state described in the preceding
section takes place in this arrangement aBms. 10 and
: 11). Besides the transition, the size effects appear to remain
& | valid in this case. For higl, synchronization does not de-

©- e\el_e -8 g oo e-20.5 oo °’.&‘o o pend on the relation between and the Ia.ttice dimensjon_s
o 1000 2000 3000 4000 5000 5000 (Fig. 12, triangles However, for low coupling there is indi-
N cation that the system synchronizes onlywitd (Fig. 12,

. i ) _circles.
FIG. 12. Size dependence of order parameter for identical oscil-

lators with noise fora below (continuous ling and abovegdashed
line) the c_rltlcal valuew=d=1. The coupling iK= 1.0 (triangles VI. DISCUSSION
and 0.5(circles.

We have considered synchronization of phase oscillators

For a>d the coupling term is bounded fdd going to  ©N @ lattice, looking at critical levels of spatial decay in the

infinity. Hence, forK sufficiently small, the system is inco- interaction. Especially, since the coupling term _conS|dered is
herent and the mean field approaches 0 wheimcreases. Ot normalized, we studied the effect of changing the popu-
For a<1 the coupling term is unbounded fot going to lation size on synchronization. We examined the system by
infinity (i.e., may diverge in some regions of the phaselnvesngatlng full locking and the mean field. The two ap-
spacé. Hence, for any(fixed) K, however small, the mean proaches have appeared to be complementary. The criterion

field asymptotically approaches 1 fbrgoing to infinity. In of full locking allowed to precisely define the boundary of
mathematical terms complete synchronization for finite population sizes. It gives,

however, a very strong condition, requiring all oscillators to
be exactly locked. For small coupling, this condition is not
1 if a=sd, useful. If the coupling constant is small, synchronization can
0 if a>d. ®) still be enhanced, below a critical value, enlarging the size
of the population: but some of the oscillators remain un-
locked. We thus studied the system from a different point of

This double limit gives a compact and meaningful result onview, that is, looking at the behavior of the mean field. In
the synchronization properties of a system in relation to théhat case, a transition point is not strictly defined for finite
decay of the coupling signal. population size. However, in the limit of infinite number of
oscillators one can look, in analogy with thermodynamics, to
the mean field as an order parameter and thus find critical
V. POPULATION OF OSCILLATORS WITH THERMAL values of the parameters where discontinuities appear. As
NOISE one may expect, the value of the decay exponent equal to the
number of lattice dimensions is then a good candidate for a
"ransition point. At that value and below in fact, the coupling
e?erm is unbounded for an infinite size. That was supported by
Sﬁumerical simulations. As we pointed out, this gives a robust
Fesult for real systems: knowing only the number of lattice’s
Yimensions and the decay in space of the coupling signal,
one can predict if enlarging the size of the system eventually
results in synchronization or not, even for arbitarily weak
coupling constant.

()= we+ &(1), 9 We finally considered a system of oscillators in which the
diversity is given not by fixed natural frequencies, but by
noise. The notion of full locking is not useful for this system,

where¢;(t) is the noise term chosen from some distribution. pyt the mean-field approach can be carried out, and suggests
We chooseg(t) as a Gaussian distribution, such tiiatt)  the same features and critical point, at a decay exponent
=0 and§;(t)¢;(t")=2Dg;;o(t—t"). Itis clear that for every equal to the lattice’s number of dimensions. Beside showing
t the natural frequencies; have the same distribution as in the robustness of the result, this last result is promising for

lim Iim Z(a)=
N*}OOK*)()‘F

The analogy with thermodynamic phase transitions ca
actually be developed further. In this section we show that
similar transition takes place when the natural frequenci
are equal, and randomness is introduced with thermal noi
The population of oscillators becomes then very close to
Heisenberg system with given temperature.

We rewrite the natural frequencies in the form

011109-7
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