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Synchronization of oscillators with long range interaction:
Phase transition and anomalous finite size effects

Máté Maródi,1,* Francesco d’Ovidio,2,† and Tama´s Vicsek1,‡

1Department of Biological Physics, Eo¨tvös University, Pa´zmány Péter Sétány 1A, Budapest, 1117 Hungary
2Chaos Group and Quantum Protein Center, Department of Physics, Building 309, Danish Technical University,

DK-2800 Lyngby, Denmark
~Received 21 December 2001; published 25 July 2002!

Synchronization in a lattice of a finite population of phase oscillators with algebraically decaying, non-
normalized coupling is studied by numerical simulations. A critical level of decay is found, below which full
locking takes place if the population contains a sufficiently large number of elements. For large number of
oscillators and small coupling constant, numerical simulations and analytical arguments indicate that a phase
transition separating synchronization from incoherence appears at a decay exponent value equal to the number
of dimensions of the lattice. In contrast with earlier results on similar systems with normalized coupling, we
have indications that for the decay exponent less than the dimensions of the lattice and for large populations,
synchronization is possible even if the coupling is arbitarily weak. This finding suggests that in organisms
interacting through slowly decaying signals such as light or sound, collective oscillations can always be
established if the population is sufficiently large.

DOI: 10.1103/PhysRevE.66.011109 PACS number~s!: 05.40.2a, 05.45.Xt
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I. INTRODUCTION

Synchronization is one of the most fascinating nonlin
phenomena appearing in a wide range of fields. Exam
cover physical systems~network of Josephson junctions@1#!,
oscillating chemical reactions@2#, molecular turnover in al-
losteric enzymes@3#, a variety of biological observation
~synchronous flashing of fireflies@4#, menstrual synchrony
@5#, metabolic activity in yeast cells@6,7#, and other various
physiological processes@8#!, and social phenomena~rhyth-
mic applause@9#!.

Models for rhythmic synchronization use populations
nonlinearly coupled oscillators@10–12#. These models migh
be grouped according to the nature of coupling. For instan
for pulsatile interaction integrate-and-fire oscillators prov
a useful tool of description@13# while in the case of continu
ous interaction a system of coupled limit cycle oscillators h
proved to be a good model@2#.

An important aspect of synchronizing systems is the s
tial dependence of the coupling between two oscillators. T
limit cases have been deeply investigated:~i! mean field
~with each pair of oscillators interacting with a given co
pling strength, independent of their position,~ii ! oscillators
on a lattice with interactions only between nearest neighb
However, realistic systems are quite different. In many of
biologically relevant systems the signals carrying inform
tion about the phase of an oscillator decay as a function
the distance slowly. For example, the intensity of the sou
or light signals decays as a power law, in particular, in
three-dimensional case as the inverse of square of the
tance from the source. In Ref.@14# results have been pre
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sented concerning the existence of a critical exponent be
which full synchronization can be achieved. These res
considered a coupling term normalized by the sum of
spatial coefficients and the limit of the population size goi
to infinity.

However, in a real system typically the interaction b
tween two oscillators depends only on the spatial dista
and the phase differences and thus there is no normaliza
coefficient. This change, trivial at first sight, introduces
peculiar dependence of the dynamics on the number of
cillators, and thus places the study offinite populations into
relevant context.

In this paper synchronization in populations of phase
cillators with a non-normalized coupling term is studied. O
investigations are especially focused on the dependenc
full locking and the mean field on the number of oscillato
for different value of the exponenta describing the spatia
decay of the interactions. The main result of our work is t
identification ~through numerical simulations and a simp
analytical argument! of critical values ofa below which full
synchronization, or in more general, collective oscillatio
can take place if the population is sufficiently large. We
mark that very few works in our knowledge has approach
the problem of finite size populations.

The paper is organized as follows. In Sec. II we summ
rize previous results on the versions of the model of o
studies, the Kuramoto model. In Sec. III we explore t
boundary of full locking in the plane of the decay expone
a and the numberN of oscillators, at different coupling val
ues. We find that ifa is below a critical valueac(K) full
synchronization can be achieved if the system is sufficien
large, i.e., above a critical sizeN. We argue, however, tha
this information is partial for real systems, since bulk osc
lations can take place also if the system is not comple
locked. We thus study in Sec. IV the behavior of the me
field. It appears then that a phenomenon close to a ther
©2002 The American Physical Society09-1
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MÁTÉ MARÓDI, FRANCESCO d’OVIDIO, AND TAMÁS VICSEK PHYSICAL REVIEW E66, 011109 ~2002!
dynamic phase transition takes place looking at the m
field changinga, with a discontinuity developing forN go-
ing to infinity and increased fluctuations around the tran
tion point. For K going to zero, analytical arguments an
numerical simulations indicate that the transition point o
curs ata equal to the number of dimensions of the lattice.
show the robustness and generality of the result, we fin
study a system of phase oscillators where the diversity
given by thermal noise. In such system full locking is n
strictly defined, but on the contrary a mean-field approa
can be carried out in the same way as for oscillators w
fixed parameter distribution and the same kind of phase t
sition appears. The system with thermal noise is very sim
to the Heisenberg model with ferromagnetic interaction.
shall suggest that a thermodynamic formalism may be
plied to study analytically the phenomenon discussed
merically in this paper.

We remark that the present model has been proposed
real populations of oscillators~among others, specific ex
amples are the above mentioned works on Josephson j
tions @1# and synchronized applause@9#!. In these cases, an
when spatial dependences are included, our results hav
rect implications. They suggest that whenever the coup
signals of these systems decay slower than the numbe
spatial dimensions~like, for example, light or sound!, collec-
tive oscillations always arise if the population is sufficien
large, however, weak the coupling is.

II. THE KURAMOTO MODEL: PREVIOUS RESULTS

The original form of the Kuramoto model was introduce
to describe oscillating chemical reactions@15,16#. Later it
proved to be useful in modeling a wide variety of proces
~see, e.g., Ref.@17#!. The basic concept is a population ofN
interacting oscillators coupled via nonlinear phase-differe
minimizing interaction. In general the equation of motion
the phasef i of the i th oscillator is

ḟ i5v i1(
j

G i j ~f j2f i !, ~1!

wherev i is the natural frequency of thei th oscillator,G(f)
is the two-oscillator interaction and the sum goes over a s
ably defined subset of the population depending on the ac
model. The system can be further simplified choosing, w
out loss of generality, a frame of reference rotating at
average natural frequencyv̄ i5v0 and rescaling the time an
the coupling constant by the inverse of the standard devia
of the natural frequencies. The distribution of natural f
quencies becomes then centered in zero and its standar
viation normalized.

Macroscopic states of this system can be characterize
a realorder parameter:

z~ t !5U1

N (
j 51

N

eif j (t)U. ~2!
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Another approach to synchronization is the investigation
frequency-locked states, i.e., when allḟ i(t) approach as-
ymptotically the same value.

Two basic setups of the Kuramoto model have been s
ied extensively so far. First, let us consider the case whe

G i j ~f!5
K

N
sin~f!, ~3!

which defines amean-field interaction, whereK.0 is the
coupling strength. Now the summation in Eq.~1! goes over
the whole population. Let us assume that the distribution
the natural frequenciesv i is symmetric about 0, and is con
vex in that point. Under these conditions the existence o
critical coupling Kc was proved, above which partial syn
chronization is possible@18–20#. With the above conditions
the frequency of the locked subset is equal to the mean of
natural frequency distribution.

The other well explored case is when the interaction
inherently local, i.e.,nearest neighborsare coupled. Then the
model takes the form

ḟ i5v i1K (
j P^ i &

sin~f j2f i !, ~4!

where the symbol( j P^ i & denotes summing over all the nea
est neighbors of thei th oscillator. Strogatz and Mirollo
proved that the probability of a phase-locked solution ten
to zero as the number of oscillators in the system goes
infinity @21#. Also, they studied the more general case wh
the mean interaction exerted on one oscillator is uniform
bounded and the distribution of natural frequencies ‘‘su
ciently broadbanded’’~for details see Ref.@21#!. For these
conditions they showed that in theN→` limit the probabil-
ity of a phase-locked state is zero.

An interesting situation arises when the interaction dec
in space as a power function,

ḟ i5v i1
K

h (
j Þ i

1

r i j
a

sin~f j2f i !, ~5!

where r i j is the distance between thei th and j th oscillator
andh is a normalization coefficient. It is clear that Eq.~5! is
equivalent to the mean-field case whena50. Also, when
a→`, the model becomes the same as in the nearest ne
bors case. So, changing the exponenta, one can have a
continuous transition between the two extremes. Know
the result of full synchronization in the global coupling ca
for high K, and only local synchronization in the neare
neighbors coupling for anyK, one may expect a critica
value ofa below which full locking may be achieved. Thi
was shown by Rogers and Wille, who studied Eq.~5! setting
h52( j 51

(N21)/21/j a in the limit of N going to infinity @14#.
They demonstrated that critical values ofa exist depending
on the coupling strengthK. A similar result holds for sine-
circle maps as well@22#. It was also recently shown numer
cally that an adequate normalizationh removes the depen
9-2
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SYNCHRONIZATION OF OSCILLATORS WITH LONG . . . PHYSICAL REVIEW E66, 011109 ~2002!
dency of the exponenta and system sizeN on the fraction of
oscillators synchronized in frequency in the casea,d @23#.

However, in most real systems the coupling between
oscillators does not depend on global information on
population, but only on the phases and the distance of
two oscillators. It is thus realistic for these cases to set
normalization coefficient to 1. As an important consequen
the behavior of the oscillators then strongly depends on
size of the population.

Throughout this paper we study models whereh51. Be-
fore describing any numerical results, we remark that an
timation of a critical point can be obtained looking at Eq.~5!
and considering the coupling term. It is then natural to exp
that the pointa5d, whered is the number of dimensions o
the lattice, has to play a special role. In fact ifa>d the
coupling term is bounded, for everyN:

U(
j Þ i

N
1

r i j
a

sin~f j2f i !U<(
j Þ i

`
1

r i j
a

,`. ~6!

However, fora<d, in the limit of largeN the value of the
coupling term may entirely dominate the difference in na
ral frequenciesv i . More precisely, there are regions of th
phase space where this term may diverge forN going to
infinity, in particular, in those regions where the differen
between phases is large. Hence, we expect that fora<d
synchronization is enhanced enlarging the size of the sys
independently of the~positive! value of the coupling con-
stantK. This property and the effects concerning the pop
lation size result from setting the coupling without norm
ization, and follow directly from the divergence of the upp
bound in relation~6!.

III. FINITE POPULATION SIZE AND FULL
SYNCHRONIZATION BOUNDARIES

In this section we explore the effect of changing the nu
ber of oscillators in a one-dimensional system, measuring
boundary of the full locking region in the (a,N) plane, for
differentK values. From the brief discussion in the preced
section we may expect that for sufficiently low values ofK
synchronization can be achieved ifN is sufficiently large,
only if a,1. On the contrary, this should not be possible
a.1.

In order to identify the exact value ofa at which the
transition occurs it is helpful to consider the fractionp of the
oscillators that are locked at the main frequencyv0. We thus
count how many oscillators asymptotically satisfy the con
tion,

ḟ i5v0 , ~7!

and we divide this number byN.
The plane (N,a) has been scanned in either vertical

horizontal direction, numerically integrating population
oscillators at those parameter values. The transition po
were identified as the boundary of the region of full synch
nization, i.e., measuring the transientp and finding the pa-
rameter values wherep is no longer equal to 1. Refinemen
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up to Da50.01 andDN51 were used. In all numerica
computations in this paper the natural frequenciesv i were
chosen from a Gaussian distribution with expectation va
v̄ i50 and unit variance. Since the value ofNc can, in prin-
ciple, depend on the position of the natural frequencies
the lattice, each point has been averaged on several con
rations, especially for low values ofN. We remark that, set-
ting without loss of generality the main frequencyv0 to
zero, the locked state appears as a steady state. To locat
direct integration method~Euler! has been used. This metho
is simple to implement and reliable, since Eq.~5! is clearly
nonstiff, but requires a careful setting of the parameters
computingp: in fact, the lineNc corresponds to bifurcation
points, where the transient time becomes more than expo
tially long. Other methods, like continuation, could give
better estimation of the line but may be difficult to apply f

FIG. 1. Boundary of the full locking region in the (N,a) plane
for different values ofK. The linea51 is also shown.

FIG. 2. Time average of the order parameter as a function oa
in d51. Simulation results forN550, 100, 200, 500, 1000~sym-
bols are squares, pluses, diamonds, circles, and down triangle
spectively!. The coupling isK51.0.
9-3
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FIG. 3. Space-time plots representing the sine of the phase of thei th oscillator for differenta values:~a! a50.5, ~b! a51.5, ~c! a
51.8, and~d! a52.5. Gray scale indicates phases sin(fi) from 21 ~white! to 1 ~black!. Other parameters were set toK51.0 andN
5200.
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large systems, having to deal with matrices of the order
N2d.

For high coupling, full synchronization can appear at e
ery a values. However, ifK is low we expect synchroniza
tion only for a values below the dimensions of the lattic
Results are plotted in Fig. 1. The regiona.1 is outside the
boundary of full synchronization, confirming the discussi
of Sec. I. The situation is more complex fora,1. Here the
effect of reducing the coupling can be indeed compensa
by increasing the number of oscillators, up to a critical va
of a. Such critical value, however, seems to be in gene
different from 1 ~the number of dimensions of the lattice!,
and depending on the coupling strengthK. This is due to the
fact that for smallK values, synchronization is still enhance
by a larger number of oscillators, although the system is
completely locked. The following section will investiga
this situation, looking at the behavior of the mean field.
01110
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IV. COLLECTIVE OSCILLATIONS

The results of the preceding section may be relevant
real systems. They suggest that in the case of oscilla
coupled with a slowly decaying signal, full synchronizatio
can be achieved as soon as the population is sufficie
large. However, the information that they give, describ
only partially what may appear macroscopically. In this se
tion we propose to approach the problem looking at the
havior of the mean field whena is changed. This criterion is
less sharp than full synchronization: a transition cannot
seen for finiteN but, in analogy with thermodynamic phas
transitions, looking at discontinuities forN going to infinity.
Nevertheless, as we shall see, the order parameter appr
provides a robust and meaningful framework for describ
the relations between synchronization and the decay of
coupling. Moreover, it allows to state a result in a simp
way, connecting the critical value of the decaying of intera
9-4
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SYNCHRONIZATION OF OSCILLATORS WITH LONG . . . PHYSICAL REVIEW E66, 011109 ~2002!
tion with the number of dimensions of the lattice.
Let us consider numerical simulations conducted on o

and two-dimensional lattices. We integrated the system
coupled differential Eq.~5! using the Euler method, time
steps varied from 0.01 to 0.0005 relative time units~mea-
sured in comparison with the frequencies!. The value of the
order parameter is computed calculating at each timez(t)
5u1/N( j 51

N eif j (t)u, discarding the first few thousand steps
integrations as transient. Averaging this value on a long t
~typically, 20 000 time steps! gives the measure of synchro
nization we use,Z5^z(t)&.

One-dimensional results are plotted in Fig. 2, where o
can observe the transition from highly synchronized state
low a values to unsynchronized states. The behavior of
system can be divided into three regimes. Fora&1 the sys-
tem is fully locked, while fora*2.5 the order parameterZ
approaches a steady value. In between one finds the regi

FIG. 4. Mean fieldZ as a function ofa for d52 for l 3 l lat-
tices. l values are 7~squares!, 10 ~pluses!, 15 ~diamonds!, and 20
~circles!. The coupling constant isK50.1, and results were aver
aged over more configurations, especially for lowl.

FIG. 5. The standard deviations of the order parameter as
function of thea exponent forK51. Symbols as in Fig. 2.
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transition. These three regions represent three different
croscopic behaviors corresponding to the different mac
scopic states~see Fig. 3!. Whena is low ~e.g.,a50.5) the
system rapidly reaches the state of complete synchroniza
when for all oscillators their frequencies becomeḟ i5v0
50. The next two subfigures represent the transitional reg
(a51.5,1.8). Here one can observe clusters arising first w
increasing phase differences, then with synchronization h
ing only for finite times. This phenomenon leads to lar
fluctuations in the order parameter. Finally, in the unsynch
nized region (a52.5) there are only local synchronize
groups, and clearly only very close oscillators influence e
other.

The transition can be observed also in two dimensio
~see Fig. 4!. Simulations were conducted on a square latt
with the coupling constant set toK50.1, otherwise all other
parameters are the same as ind51. As in the previous case
the transition becomes sharper as one increasesN.

The phenomenon we present here is reminiscent of t

FIG. 6. The fractionp of oscillators locked at the mean fre
quency forK51, N5200.

FIG. 7. Enlargement of Fig. 2. Synchronization region.
9-5
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modynamic phase transitions in several features. First,
transition from unsynchronized state to a synchronized
breaks the original rotational symmetry of phases. Secon
phenomenon similar to the divergence of fluctuations cl
to the transition point can be observed also in this syst
considering the standard deviations of the order paramete
time series~see Fig. 5!.

It is interesting to compare the behavior ofZ ~Fig. 2! with
the plot obtained looking at the fraction of oscillators lock
at the mean frequency~Fig. 6!, used in the full locking ap-
proach. Although in the second case a discontinuity app
for finite N, one cannot distinguish between the transiti
region ~with some unlocked oscillators but a strong me
field! and the region at higha ~with developed incoherenc
and a low mean field!.

Another effect that was missed looking at full lockin
only is the dependence of the mean field onN. From Fig. 7
one can see that at lowa Z increases withN, since the

FIG. 8. Enlargement of Fig. 2. Incoherence region.

FIG. 9. Size dependence of order parameter fora below ~con-
tinuous line,a50.9) and above~dashed line,a51.1) the critical
valuea5d51. The coupling isK50.2 ~triangles! and 0.1~circles!.
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oscillators rotate closer to each other~i.e, with smaller phase
differences!. We remark that this can happen even if the s
tems is not full locked. The effect onZ is the opposite for
incoherence~high a). In this case, the decrease in the me
field is due to the fact that for highN, statistical fluctuations
are reduced when averaging the uncorrelated phases o
larger number of the oscillators~Fig. 8!.

The dependence ofZ overN is also relevant when looking
for a phase transition. In fact, it points to a discontinuity
the plot Z5Z(a) for N going to infinity, as Figs. 2 and 4
suggest. In order to detect the phase transition, we perf
simulations aimed at studying this effect. Results are plot
in Fig. 9. Considering as in Sec. II the convergence prop
ties of the coupling term, and callingd the number of dimen-
sions of the lattice, they can be interpreted as follows.

FIG. 10. Average of the order parameter as a function ofa for
identical oscillators with noise ind51. Simulation results forN
550, 100, 200, 500, and 1000~symbols are squares, pluses, di
monds, circles, and down triangles, respectively!. The coupling is
K51.0.

FIG. 11. Standard deviations of the order parameter as a func
tion of a for identical oscillators with noise ind51. Symbols are
the same as in Fig. 10.
9-6
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SYNCHRONIZATION OF OSCILLATORS WITH LONG . . . PHYSICAL REVIEW E66, 011109 ~2002!
For a.d the coupling term is bounded forN going to
infinity. Hence, forK sufficiently small, the system is inco
herent and the mean field approaches 0 whenN increases.
For a<1 the coupling term is unbounded forN going to
infinity ~i.e., may diverge in some regions of the pha
space!. Hence, for any~fixed! K, however small, the mea
field asymptotically approaches 1 forN going to infinity. In
mathematical terms

lim
N→`

lim
K→01

Z~a!5H 1 if a<d,

0 if a.d.
~8!

This double limit gives a compact and meaningful result
the synchronization properties of a system in relation to
decay of the coupling signal.

V. POPULATION OF OSCILLATORS WITH THERMAL
NOISE

The analogy with thermodynamic phase transitions
actually be developed further. In this section we show tha
similar transition takes place when the natural frequenc
are equal, and randomness is introduced with thermal no
The population of oscillators becomes then very close t
Heisenberg system with given temperature.

We rewrite the natural frequencies in the form

v i~ t !5v01j i~ t !, ~9!

wherej i(t) is the noise term chosen from some distributio
We choosej i(t) as a Gaussian distribution, such thatj i(t)
50 andj i(t)j j (t8)52Dd i j d(t2t8). It is clear that for every
t the natural frequenciesv i have the same distribution as

FIG. 12. Size dependence of order parameter for identical o
lators with noise fora below ~continuous line! and above~dashed
line! the critical valuea5d51. The coupling isK51.0 ~triangles!
and 0.5~circles!.
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the above discussed model. However, the realization of
distribution changes at each instant of time. The equation
motion for the oscillators thus become

ḟ i5v01K(
j Þ i

1

r i j
a

sin~f j2f i !1j i~ t !. ~10!

Our simulations show that the phase transition from s
chronized to unsynchronized state described in the prece
section takes place in this arrangement also~Figs. 10 and
11!. Besides the transition, the size effects appear to rem
valid in this case. For highK, synchronization does not de
pend on the relation betweena and the lattice dimension
~Fig. 12, triangles!. However, for low coupling there is indi
cation that the system synchronizes only ifa<d ~Fig. 12,
circles!.

VI. DISCUSSION

We have considered synchronization of phase oscilla
on a lattice, looking at critical levels of spatial decay in t
interaction. Especially, since the coupling term considere
not normalized, we studied the effect of changing the po
lation size on synchronization. We examined the system
investigating full locking and the mean field. The two a
proaches have appeared to be complementary. The crite
of full locking allowed to precisely define the boundary
complete synchronization for finite population sizes. It giv
however, a very strong condition, requiring all oscillators
be exactly locked. For small coupling, this condition is n
useful. If the coupling constant is small, synchronization c
still be enhanced, below a criticala value, enlarging the size
of the population: but some of the oscillators remain u
locked. We thus studied the system from a different point
view, that is, looking at the behavior of the mean field.
that case, a transition point is not strictly defined for fin
population size. However, in the limit of infinite number o
oscillators one can look, in analogy with thermodynamics
the mean field as an order parameter and thus find crit
values of the parameters where discontinuities appear
one may expect, the value of the decay exponent equal to
number of lattice dimensions is then a good candidate fo
transition point. At that value and below in fact, the coupli
term is unbounded for an infinite size. That was supported
numerical simulations. As we pointed out, this gives a rob
result for real systems: knowing only the number of lattic
dimensions and the decay in space of the coupling sig
one can predict if enlarging the size of the system eventu
results in synchronization or not, even for arbitarily we
coupling constant.

We finally considered a system of oscillators in which t
diversity is given not by fixed natural frequencies, but
noise. The notion of full locking is not useful for this system
but the mean-field approach can be carried out, and sugg
the same features and critical point, at a decay expon
equal to the lattice’s number of dimensions. Beside show
the robustness of the result, this last result is promising

il-
9-7



em
W
n
u
a
en
b

e

rt

par-

MÁTÉ MARÓDI, FRANCESCO d’OVIDIO, AND TAMÁS VICSEK PHYSICAL REVIEW E66, 011109 ~2002!
an analytical treatment of the problem. In fact, the syst
with thermal noise is close to a Heisenberg spin system.
remark that an analytical investigation would be importa
In fact, simulations are very time consuming, and allowed
to have indications of the phenomenon in a relatively sm
parameter region. Especially, the analysis of higher dim
sional lattices, as well as lower coupling strength, would
interesting.
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