
Synchronization of sampling in distributed signal processing systems

Károly Molnár, László Sujbert, Gábor Péceli
Department of Measurement and Information Systems, Budapest University of Technology and Economics, and

Embedded Information Technology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
Phone: +36 1 463-4114, fax: +36 1 463-4112, e-mail: sujbert@mit.bme.hu

Abstract – In distributed signal processing systems, every node
samples analog signals by its own AD converter. Sampling
is controlled by autonomous clocks, that are generally not
synchronizable. In order to ensure synchronized operation among
the different nodes of the distributed system, both the drift of these
clocks, and the jitter of the sampling must be handled. This problem
is investigated in this paper, and signal processing methods are
proposed to guarantee the synchronized operation and to reduce
the effect of the jitter. The proposed solution is based on low-level
interpolation and resampling of the sampled signals. A realization
of this method is demonstrated on a test-system.

Keywords – Digital Signal Processing, Distributed Systems, Sam-
pling

I. INTRODUCTION

A distributed signal processing system comprises numerous
processor nodes (mostly based on DSPs) which are interacting
with each other to perform real-time data acquisition and
signal processing. An overview of this system is presented
in Fig. 1. Such systems are also known as intelligent sensor
networks, where processing units are placed near to the
sensors. Distributed DSP systems are used, e.g., in seismic
wave measurements.

In DSP-based systems, the nodes are performing online
signal processing, i.e., the DSP algorithm is executed sample-
by-sample. The input data for this algorithm are digital
samples of a discrete signal, usually sampled at the clock rate
of the DSP algorithm. The algorithm calculates the samples of
the output signal in this pace, so the output signal (which is also
a discrete digital signal) is available with the same sampling
frequency.

Distributed processors and data acquisition units have
separate clocks, that may hurt data consistency constraints, due
to their jitter and drift [1]. This problem is investigated in
this paper. In distributed embedded systems, data consistency
asks for synchronous data acquisition and representation. This
problem does not exist in centralized one-processor systems,
as generally these have only one master sampling clock that
schedules all the sampling processes.

In distributed systems, this phenomenon leads to more
serious problems due to the online signal processing. As
normally the DSP algorithm is the most important task, all
the other tasks (e.g. communication) are synchronized to this.
The slight drift of the different sampling clocks therefore is
a serious problem if the synchronized operation of DSPs is
required. The timing jitter of sampling and communication
also have to be examined, as these effects are combined with
the drift.

The field of distributed signal-processing is not a well
explored area, so after the examination of this complex
problem, widely utilizable solutions are proposed. These
are low-level signal processing methods that assure the
synchronized sampling of the different DSP nodes, enabling
distributed operation.

Fig. 1. Distributed DSP system

In the following section, the problem of distributed
sampling is investigated in detail. In Section III a truly
software solution is proposed for this problem, that uses digital
signal processing algorithms, namely interpolation in order to
make the asynchronously sampled real-time data of different
sources consistent. In Section IV a test system is presented,
that is used to implement the previously exposed methods. Test
results, and interesting aspects of the implementation are also
presented. In the last section, the conclusions are stated.



0 1 2 3 4 5

x 10
4

−100

0

100

200

300

400

500

600

700

800

900

1000

Samples [Ts] 

T
im

e 
[T

cl
k]

Fig. 2. Time difference between the ticks of the sampling clocks

II. PROBLEMS OF DISTRIBUTED SAMPLING

In distributed DSP systems, a problem arises when
two or more DSP nodes having asynchronous clocks are
communicating by sending samples of real-time discrete
signals.

Consider the case, when the input signal of a certain node
(Drain) is the output signal of another node (Source). This
kind of real-time communication presumes that the sample
rate of the data is the same at both nodes. The sampling is
usually controlled by crystal oscillators, where the frequency
deviation is typically 50 ppm. The problem arises as the
DSP algorithm of the Drain is scheduled by its own crystal
oscillator, but the input samples are sampled by the AD of the
Source. These sampling frequencies are not exactly the same
at the nodes, as the two crystals are not identical. Therefore
the data representation of the nodes is not consistent, as during
a certain period of time the Source produces different number
of samples than the number of samples expected by the Drain.

Additionally, if we suppose that the communication is
packet-based, and one sample is sent in one packet, then due
to this difference, sometimes two or zero packets arrive during
the period when the Drain expects exactly one packet. In this
case, data packets are lost. The jitter of the sampling and the
communication worsens this effect, as numerous packet are
lost with a certain probability when the sampling moments of
the nodes are close in time.

This phenomenon is shown on Fig. 2., 3. and 4. In the
figures, the time periods between the arrival of the samples
from the Source and the ticks of the sampling clock of the
Drain is plotted (Time [Tclk]). This time period is measured
by the internal timer of the Drain, therefore the resolution of
the measurement is 1 Tclk.

Fig. 2. is an illustrative figure of the whole process, while
Fig. 3. and 4. are real measurement results obtained by the

0 50 100 150 200 250 300 350
15

16

17

18

19

20

21

22

23

24

25

Samples [Ts]

T
im

e 
[T

cl
k]

 

Fig. 3. Time difference between the ticks of the sampling clocks,
during the normal period

0 50 100 150 200 250 300 350
−100

0

100

200

300

400

500

600

700

800

900

1000

Sample [Ts]

T
im

e 
[T

cl
k]

Fig. 4. Time difference between the ticks of the sampling clocks,
during the transient period

Measurement System described in Section IV. In Fig. 2. the
effect of the drift can be examined, the ticks of the two
sampling clocks get closer and closer with every sample.
When this difference is close to zero, the actual order of
the two events is stochastic. The length of this ”transient”
period is proportional to the jitter of the sampling and the
communication.

Fig. 3. and 4. are zoomed parts of Fig. 2. Fig. 3. shows
a section of the normal descending curve. The jitter can be
examined on the curve, as the values are not monotonic. In
Fig. 4, the ”transient” period can be seen, where the tick of the
faster clock outstrips the slower, causing a step in the measured
time period. It can be seen, that due to the jitter, this happens
several times, as the order of the events are stochastic during
this transient period.

The problems due to the asynchronous sample clocks are



summarized in the following:

1. The drift causes a constant error in the frequency of the
real-time signal.

2. During the transient period packets (containing samples)
are lost, as with a certain probability zero or two samples
arrive when exactly one packet is expected.

These problems cannot be solved by buffering or by sending
more samples together. This would only cause bigger delay in
the overall process, but does not help the fact that the Source
produces different number of samples than the Drain expects.

III. PROPOSED SOLUTION

Any solution of this problem has to ensure that the samples
of the different input data streams of a certain DSP node are
available with the same sampling frequency. In the above
shown example, the data stream (samples of discrete signal)
from the Source is expected with the sampling frequency of
the AD of the Drain.

An obvious hardware solution is to synchronize the
sampling clocks of the ADs by e.g. a PLL. However, this
requires a strict hardware connection between the nodes,
that is not always available in distributed systems, as the
nodes usually communicate via some standard communication
channel.

We propose a software solution for this problem, that does
not influence the hardware layers of the DSP node, so the
sampling process of the different nodes remain asynchronous.
The solution is based on the concept that the synchronization
of the signal processing nodes and the sampling has to be
separated.

The solution is presented in detail for two communicating
nodes in the following. One of the two nodes has to perform
a transformation on the digital signal, namely the signal has to
be resampled. In detail, the signal sampled by the clock of the
Source has to be interpolated and resampled with the clock of
the Drain. This is illustrated in Fig. 5.

Fig. 5. Resampling

Fig. 6. Interpolation at the Drain

Fig. 7. Interpolation at the Source

The interpolation can be performed at both DSP nodes, and
both possibilities should be considered.

1. Interpolation at the Drain - The Source sends the data
packets with is own sampling frequency (fS), the Drain
registers the exact arrival time of the packets and performs
the interpolation calculation on these received data to
evaluate the values of the analog signal at its own
sampling moments. This solution is illustrated at Fig. 6.

2. Interpolation at the Source - A trigger signal is sent to
the Source when the Drain exactly performs the sampling
(t1). The Source measures the time elapsed from its last
sample to this trigger event (tx). Then the interpolation
can be performed, namely f(t1) is calculated. Then this
data is sent to the Drain. So this packet is sent after each
trigger, with the frequency of the Drain. This solution is
illustrated at Fig. 7.

The two solutions have the same result theoretically,
therefore interpolation should be done by that node which has
more free capacity.

In a typical distributed DSP system, there are more than
two nodes, and normally a node is both receiving and sending
real-time data. However, the communication flow in the whole
system can be dissolved to point-to-point communications,
where the Drains and the Sources can be identified. The first
approach, when the interpolation is performed at the Drain, can
be adequate if there are many nodes in the distributed system,
as this solution ensures that every node prepares the different
data streams for itself.

The second solution, when the interpolation is performed at



t k

Sampl es from the AD

Requested value

x

n

n+1yk
x

Fig. 8. Linear interpolation

the Source, is more close to a Master-Slave kind of approach,
as the Source (Slave) preprocesses the data for the Drain
(Master), so the Source is in-fact scheduled by the sampling
clock of the Drain. This approach is useful in smaller systems,
and in case there is a two-way data-stream between a node pair.

There are numerous possibilities to realize the interpolation.
Namely:

1. Interpolation filtering [2], [3] - As the algorithm is
realized by a DSP, the first solution that comes to mind is
the interpolation filtering. This is the well-known method
used to increase the sampling frequency of discrete
signals. This practically means an implementation of a
linear-phase FIR filter with a known delay: tint = (N/2)∗
tS , where N is the order of the filter. The precision of the
calculation is proportional to the order of the filter. The
delay and the computation demand is also growing with
the order.

2. Linear interpolation - The linear interpolation is
calculated the following way:

yk = xn +
tk(xn+1 − xn)

Ts
(1)

where xn are the values of the analog signal at tn, and
yk are the interpolated values at tk. This is a more
simple approach(equivalent to an interpolation filter with
N = 2), that requires minimal calculation. However, the
accuracy is limited. See Fig. 8.

3. Prediction - If the delay has to be smaller than TS , the
value f(tk) can be calculated immediately after the tk

is available. However, the effectiveness of this solution
highly depends on the signal processing problem to be
solved.

Fig. 9. The built test system

IV. REALIZATION AND TEST RESULTS

In order to examine the stated problem and to implement the
proposed solutions, a test system has been built. This system
comprises of two identical DSP nodes, that are communicating
via a general purpose synchronous serial port. The DSPs are
Analog Devices ADSP 21061’s [4], the AD/DA converters are
realized by AD1847 codecs [5]. (The ADSP-21061 SHARC
EZ-KIT Lite evaluation Board is used [6].) This system is
shown in Fig. 9.

The test system realizes the ”Interpolation at the Source”
solution, which was proposed in section III. The Drain DSP
signals to the Source at every tick of the sample clock (trigger).
The Source is sampling a sinusoid signal by its AD, and
performs the interpolation on the sampled data, in order to
calculate the value of the signal in the triggered moment. This
value is than sent to the Drain. The communication flow is the
same to the one illustrated at Fig. 7.

If the sinusoid signal is restored from the samples without
interpolation at the Drain, then it is distorted and contains
transients due to the problems shown in Section II. In
order to measure the quality of the interpolated signal, an
Adaptive Fourier Analyzer (AFA) ([7],[8]) is realized on the
Drain. This is a DSP application that can be used (apart
from other purposes) for precise frequency measurement of
periodic signals. We used the AFA to measure the frequency
of the interpolated signal. The measurement setup is shown in
Fig. 10. The generator was a high precision Bruel and Kjaer
Sine Generator Type 1051.

On the test system, the interpolation calculation was
realized three different ways: linear interpolation, interpolation
filtering and interpolation filtering combined with linear
interpolation.

The signal calculated by linear interpolation is quite stable,



DSP
(AFA )

AD/DA

Drain

DSP
(Inter)

AD

Source

Oscilloscope
Signal

generator

Fig. 10. Measurement setup

and the frequency is much more accurate than the frequency of
the signal without interpolation. See Table. I.

Without interpolation 1.1164 · 10−5

Linear interpolation 0.2580 · 10−5

Table I. Frequency measurement results

The values in Table. I. are the relative error versus the
correct frequency value. These errors are calculated from
frequency values obtained by the AFA. The frequency of the
sinusoid that is directly sampled by the AD of the Drain was
considered to be the true value, while the frequency of the
sinusoid arriving from the Source was the measured value.

However, the linear interpolation can only be used in a
limited frequency range, as the interpolated sinusoid has an
amplitude deviation at higher frequencies. This error is due to
the fact, that the Eq.(1) equation realizes a 2-tap FIR filter with
the coefficients a1 and a2, where:

a1 =
Ts − t

Ts
, a2 =

t

Ts
(2)

The frequency characteristics are shown for a few values
in Fig. 11. The coefficients vary with t value, which is the
difference between the ticks of the two sampling clocks, so
it is periodically (the value shown on Fig. 2) changing. This
results an amplitude deviation of the interpolated signal, as the
frequency spectra follows this change.

The amplitude variation limits the use of the linear
interpolation. This effect is totally avoided if the interpolation
is performed by filtering. However, the interpolation filtering
method requires more calculation capacity and has a bigger
delay.

The accuracy of the calculated sample is limited by the
spectra of the interpolation filter. In order to calculate accurate

0 0.5
10

−1

10
0

Frequency [f/fs]

|A
|

t = 0.5 T 

t = 0.6 T 

t = 0.7 T 

t = 0.8 T 

t = 0.9 T 

Fig. 11. Frequency characteristics of the linear interpolation

samples, a long FIR filter is needed, which causes bigger
delay, and requires increasing calculation capacity. As a trade-
off, the filtering is combined with the linear interpolation.
This solution calculates the sample in two steps. First, 8
times interpolation filtering is performed, which generates the
discrete signal with a sample rate 8 times higher than the
original sample rate. In the second step, linear interpolation
is performed between the two samples nearest to the requested
value. This is illustrated in Fig. 12. This solution provides an
acceptable delay, and stable signal with reasonable calculation
requirements.

t x

Sampl es from the AD

Samples calculated by
the interpolation filter

Requested value

Fig. 12. Interpolation filtering combined with linear interpolation

The calculation requirements of the interpolation filtering
is considerably reduced in the DSP implementation, as the
samples not needed for the linear interpolation are not
evaluated.



The correct implementation of the above presented methods
require the accurate measurement of t, the time period between
the latest tick of the sampling clock and the trigger signal at
the Drain. Normally a timer is started and stopped when these
events happen. Care should be taken that these actions are
performed as close to the event as possible, because due to e.g.
interrupt nesting these action can suffer random delay, causing
a jitter-like error in the measurement of t. To avoid this, the
priority levels of the ITs of these hardware units have to be
high enough to ensure the immediate action.

V. CONCLUSIONS

In our paper a typical problem of distributed signal
processing is considered. The drift between two autonomous
real-time clocks is a well-known problem in the field of
embedded systems. A similar effect is present in distributed
signal processing systems, as there is drift between the
two sampling clocks of the AD converters of two different
nodes. This effect, combined with the jitter of the sampling,
can preclude the synchronized operation of the distributed
system. To solve these problems, signal processing methods
are proposed, and the different possibilities of the realization
are examined. A test system is also described, which was
built in order to perform measurements and to implement the
proposed solution.

As the problems of distributed signal-processing is not a
well explored field in the literature, a general signal processing
solution is proposed, that is utilizable in a wide range of
applications.

In the future, research should be extended to the field of
prediction mentioned in Section III. In this case, interpolation
and the signal processing task can be jointly handled. For
processing of periodic signals, the Adaptive Fourier Analyzer
can be modified such a way, that it can perform the resampling
and the signal analysis simultaneously.

REFERENCES

[1] Hermann Kopetz, Real-Time Systems, Design Principles for Distributed
Embedded Applications, Kluwer Academic Publishers, 1997.

[2] R. E. Crocherie and L. R. Rabiner, Multirate Digital Signal Processing,
Englewood Cliffs, NJ: Prentice Hall, 1983.

[3] P.P. Vaidyanathan, “Multirate digital filters, filter banks, polyphase
networks, and applications: a tutorial,” Proceedings of the IEEE, vol.
78, no. 1., January 1990.

[4] Analog Devices, Inc., ADSP-2106x SHARC User’s Manual, second
edition edition, 1997.

[5] Analog Devices, Inc., Serial-Port 16-Bit SoundPort Stereo Codec
AD1847, 1996.

[6] Analog Devices, Inc., ADSP-2106x SHARC EZ-KIT Lite Reference
Manual, 1997.

[7] Gábor Péceli, “A common structure for recursive discrete transforms,”
IEEE Trans. on Circuits and Systems, vol. CAS-33, pp. 1035–36, October
1986.

[8] Ferenc Nagy, “Measurement of signal parameters using nonlinear
observers,” IEEE Trans. on Instrumentation and Measurement, vol. IM-
41, pp. 152–155, February 1992.


