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In a recent paper [Phys. Rev. Lett. 91, 064103 (2003)] we described the effects of asymmetric coupling

configurations on the synchronization of spatially extended systems. In this paper, we report the consequences

induced by the presence of asymmetries in the coupling scheme on the synchronization process of a pair of

one-dimensional fields obeying complex Ginzburg-Landau equations. While synchronization always occurs for

large enough coupling strengths, asymmetries have the effect of enhancing synchronization and play a crucial

role in setting the threshold for the appearance of the synchronized dynamics, as well as in selecting the

statistical and dynamical properties of the synchronized motion. We analyze the process of synchronization in

the presence of asymmetries when the dynamics is affected by the presence of phase singularities, and show

that defects tend to anchor one system to the other. In addition, asymmetry controls the number of synchro-

nized defects that are present in the dynamics. Possible consequences of such asymmetry induced effects in

biological and natural systems are discussed.

DOI: 10.1103/PhysRevE.70.036219 PACS number(s): 05.45.Xt, 05.45.Gg, 05.45.Jn

I. INTRODUCTION

The synchronization of coupled chaotic systems has been
a topic of intense study since 1990 [1]. In this context, dif-
ferent type of synchronization have been described: identical
and generalized synchronization, phase synchronization, lag
and intermittent lag synchronization, and anticipating syn-
chronization. Furthermore, synchronization effects have been
explored in natural phenomena and laboratory experiments
[2–5]. Unified approaches to describing and measuring syn-
chronization states have also been proposed [6,7].

Recently, interest has moved to the study of synchroniza-
tion phenomena in space-extended systems, such as large
populations of coupled chaotic units and neural networks [8],
globally or locally coupled map lattices [9–11], coupled map
networks [12] as well as other space-extended systems
[13–19].

In most cases, studies of chaotic synchronization have
mainly considered external forcings, and bidirectional sym-
metric or unidirectional master-slave coupling configura-
tions. In many practical situations, however, one cannot ex-
pect to have purely unidirectional, nor perfectly symmetrical
coupling configurations. As a result, recent interest has fo-
cused on detecting asymmetric coupling configurations [20],
and quantifying asymmetries in the coupling scheme in rel-
evant applications (such as the study of the human cardiores-
piratory system) [21], and then to characterize the effects of
asymmetric coupling on synchronization (for example, be-
tween pairs of one-dimensional space extended chaotic os-
cillators [22]). In particular, Ref. [22] has shown that asym-
metry in the coupling of two one-dimensional fields obeying
complex Ginzburg-Landau equations (CGLE) enhances

complete synchronization, and plays an important role in
controlling the properties of the final synchronized dynam-
ics.

In this paper, we present a detailed characterization of
asymmetric coupling on the synchronization of a pair of non
identical CGLE, for both small and large parameter mis-
matches. We will analyze the type of synchronized dynamics
occurring in the presence of asymmetric coupling in all pos-
sible dynamical states emerging from CGLE, and we will
show (i) that in all cases the threshold for the appearance of
synchronized motion depends non trivially on the asymmetry
in the coupling; (ii) the selection of the dynamics within the
final synchronized manifold is always crucially affected by
the asymmetry; (iii) the process leading to synchronization is
anticipated by defect-defect synchronization, inducing the si-
multaneous appearance in the coupled fields of phase singu-
larities, even in the cases in which the uncoupled dynamics
of both fields does not include the presence of defects.

II. THE MODEL

We will consider a pair of one-dimensional fields obeying
complex Ginzburg-Landau equations. This equation has been
extensively investigated in the context of space-time chaos,
since it describes the universal dynamical features of an ex-
tended system close to a Hopf bifurcation [23], and therefore
it can be considered as a good model equation in many dif-
ferent physical situations, such as occur in laser physics [24],
fluid dynamics [25], chemical turbulence [26], bluff body
wakes [27], or arrays of Josephson’s junctions [28]. A recent
review on the CGLE [29] comprehensively describes the
wide class of physical situations where CGLE represents a
good model equation.

We will consider a pair of complex fields A1,2sx , td
=r1,2sx , tdeif1,2sx,td of amplitudes r1,2sx , td and phases

f1,2sx , td, whose dynamics obeys*Electronic address: jbragard@fisica.unav.es
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Ȧ1,2 = A1,2 + s1 + iad] x
2
A1,2 − s1 + ib1,2duA1,2u2A1,2 +

c

2
s1 7 ud

3sA2,1 − A1,2d . s1d

Here, overdots denote temporal derivatives, ] x
2 stays for

the second derivative with respect to the space variable
0øxøL (L being the system extension), a and b1,2 are suit-
able real parameters, c represents the coupling strength, and
u is a parameter accounting for the asymmetry in the cou-
pling. The case u=0 describes the bidirectional symmetric
coupling configuration, whereas the case u=1 su=−1d recov-

ers the unidirectional master-slave scheme, with the field A1

sA2d driving the response of A2 sA1d.
When c=0 (the uncoupled case), different dynamical re-

gimes occur in Eq. (1) for different choices of the parameters
a ,b [30–32]. The full parameter space for the dynamics of
the CGLE is shown in Fig. 1. In particular, Eq. (1) admits
plane wave solutions (PWS) of the form

Aqsx,td = Î1 − q2eisqx+vtd, − 1 ø q ø 1. s2d

Here, q is the wave number in Fourier space, and the
temporal frequency is given by v=−b− sa−bdq2. The stabil-

ity of such PWS can be analytically studied below the
Benjamin-Feir-Newel (BFN) line (defined by ab=−1 in the
parameter space). Namely, for ab.−1, one can define a
critical wave number,

qc =Î 1 + ab

2s1 + b2d + 1 + ab
, s3d

such that all PWS are linearly stable in the range −qcøq

øqc. Outside this range, PWS become unstable through the
Eckhaus instability [33].

When crossing from below the BFN line in the parameter
space, Eq. (3) shows that qc vanishes and all PWS become
unstable. Above this line, Refs. [30–32] identify different
turbulent regimes, called, respectively, amplitude turbulence
(AT) or defect turbulence, phase turbulence (PT), bi-chaos,

and a spatiotemporal intermittent regime. The borders in pa-
rameter space for each one of these dynamical regimes are
schematically drawn in Fig. 1, together with the BFN line. In
this work, we will mainly concentrate on PT and AT, since
they constitute the fundamental dynamical states for the evo-
lution of the uncoupled fields, and their main properties [34]

have received considerable attention in recent years includ-
ing the definition of suitable order parameters marking the
transition between them [35], as well as the study of nonlin-
ear structures (e.g., Nozaki-Bekki holes, modulated ampli-
tude waves and homoclons) forming the “building blocks” of
the nonlinear dynamics of the CGLE [36,37]. Related studies
of synchronization phenomena in CGLE with bidirectional
symmetrical coupling configurations can be found in Refs.
[17,38–40].

PT is a regime where the chaotic behavior of the field is
mainly dominated by the dynamics of fsx , td, the amplitude

rsx , td changing only smoothly, and being always bounded

away from zero. On the other hand, AT is the dynamical
regime wherein the fluctuations of rsx , td become dominant

over the phase dynamics. Here, the complex field experi-
ences large amplitude oscillations which can (locally and oc-
casionally) cause rsx , td to vanish. As a consequence, at all

those points (hereinafter called space-time defects or phase
singularities) the global phase of the field F
;arctanfImsAd /ResAdg shows a singularity. Phase singulari-

ties have been proved to play a crucial role in the description
of the dynamics of optical [41], fluid [42], and chemical [43]

experiments as well in cosmology [44]. Furthermore, the
2003 Nobel prize for physics has been awarded for re-
searches in the field of superconductors and superfluids, that
can be described phenomenologically with the help of the
CGLE [45].

III. METHODS AND INDICATORS

The purpose of our paper is to report the different syn-
chronization states that are selected when asymmetrically
coupling exists between the two CGLE fields. In order to be
as exhaustive as possible, we will consider different regimes
for the two CGLE. The reference as a starting point is the
case treated in Ref. [22] (i.e., a=2, b1=−0.7, and b2=
−1.05). For this parameter choice, the two fields are origi-
nally prepared to display PT and AT, respectively. As a con-
sequence, hereinafter we will denote this situation as PT-
AT(I). Another possible choice for an initial PT-AT
configuration, whose relevance will be momentarily clear, is
to consider a=2, b1=−0.95, and b2=−1.2 [we will denote
such a situation as PT-AT(II)]. Finally, we will consider also
cases of small parameter mismatch, where the two systems
start from the same initial dynamical state, such as a=2,
b1=−0.75, and b2=−0.9 (denoted by PT-PT) and a=2, b1

=−1.05, and b2=−1.2 (denoted by AT-AT).
In all cases, we consider values of the asymmetry param-

eter uP f−1, +1g, and highlight the effects of asymmetry in

the synchronization properties scÞ0d of system 1. Simula-

tions were performed with a Crank-Nicholson, Adams-
Bashforth scheme (which is second order in space and time
[46]), with a time step dt=10−2 and a grid size dx=0.25, for

FIG. 1. sa ,bd parameter space for Eq. (1) for c=0. The lines

delimit the borders for each one of the dynamical regimes produced

by Eq. (1), and the Benjamin-Feir-Newel line for stability of the

plane wave solutions.
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L=100 (corresponding to 400 grid points) and spatial peri-
odic boundary conditions fA1,2s0, td=A1,2sL , tdg.

A crucial parameter in all our investigations, which dic-
tated the choice of the parameters in the different cases, is
the natural average frequency of the single CGLE. Such a
frequency is calculated from the numerical simulations of a
single CGLE by averaging in space the unfolded phase f
defined in R rather than in f0,2pg. We have

v = lim
t→`

kfsx,tdlx

t
, s4d

where k¯lx represents a spatial average.

Figure 2 shows v vs the parameter b at a=2. In order to
construct Fig. 2, we have integrated the CGLE for a very
long time st f =15 000d after eliminating transient behavior

sT=5000d. Two different initial conditions for each value of

b were chosen in order to measure the sensitivity of v with
respect to selection of different initial conditions. It should
be emphasized that all initial conditions were chosen to have
a zero average phase gradient [35], because the frequency in
the PT regime is highly sensitive to the average phase gradi-
ent as shown by [35].

From Fig. 2 one clearly realizes that v reaches a maxi-
mum for b<−0.98, close to the transition from the PT to the
AT regime. This transition has been extensively studied by
several authors [35,47,48], and it has been shown that it de-
pends on the spatial extension on which Eq. (1) is integrated,
as well as on the average phase gradient. In addition, it is
interesting to notice (see Fig. 2) that on the right-hand side of
the maximum (PT regime) the two different initial conditions
lead to nearly the same value for the averaged frequency,
while on the left-hand side of the maximum (AT regime) the
two initial conditions lead in general to two different values
for v. This fact could serve as an alternative indicator for the
characterization of the PT-AT transition. Furthermore, the
frequency difference between the prediction given by the dis-

persion relation of the PWS (dashed line) and the numerical
simulations can be evaluated quite accurately in the PT re-
gime (right-hand side of the maximum) by using the modi-
fied Kuramoto-Sivashinsky equation [49,50].

Considerations based on Fig. 2 dictate the choice for the
parameters b’s in the rest of the presentation. Indeed, a ques-
tion to be clarified is how crucial is the role of the natural
frequency for the selection of the dynamics for the two
coupled CGLE in the synchronized state. A previous study
with bidirectional symmetrical coupling configuration su
=0d between a PT and a AT regime [17] pointed out that the

final synchronized dynamics occurs in a PT state. The above
result was obtained for a parameter choice for which the
frequency vPT of the initial PT state was smaller than the one
svATd of the initial AT state. This was also the situation of the

case PT-AT(I) treated in Ref. [22] (see Fig. 2). We will show
that, in the absence of asymmetries, the dynamics in the final
synchronized state is always selected to correspond to that
state having an originally smaller value of v. This property
has dictated the choice of parameters for the case PT-AT(II)
considered in the present paper (b1=−0.95 and b2=−1.2). In
this case Fig. 2 shows that vPT.vAT, and we will see that
the synchronized motion at u=0 develops onto a AT regime.

Let us now discuss how to characterize the synchroniza-
tion properties of the coupled fields by means of suitable
indicators [19]. As we are dealing with extended chaotic
fields that may be in defect turbulence, concepts of phase
synchronization may be hindered by the presence of phase
singularities in such regimes, that makes average phases dif-
ficult to be properly defined.

On the other hand, complete synchronization (CS) states
can be detected by the use of Pearson’s coefficient defined as

g =
ksr1 − kr1ldsr2 − kr2ldl

Îksr1 − kr1ld2lÎksr2 − kr2ld2l
, s5d

where k l denotes a full space-time average (in order to
avoid getting spurious values, we allow in general some tran-
sient time T to elapse before evaluating this coefficient). g
measures the degree of cross correlation between the moduli
r1sx , td and r2sx , td: When g=0 the two fields are linearly

uncorrelated; while g=1 marks complete correlation and g
=−1 indicates that the fields are negatively correlated.

Another indicator characterizing the disorder in the sys-
tem is the number of phase singularities (or defects) N. Theo-
retically, a defect is a point sx , td for which rsx , td=0. This

implies that defects are intersections of the 0-level curves in
the sx , td plane of the real and imaginary parts of A1,2sx , td. In

practice, because of the finite size of the mesh and of the
finite resolution of the numerics, we must introduce a
method for the detection of a defect. A reliable criterium is to
count as defects at time t those points xi where the rsxi , td is

smaller than 0.025 and that are furthermore local minima for
the function rsx , td.

It is well known [47,48] that N is an extensive quantity of
both time and space, and therefore it is sometimes conve-
nient to refer to the defect density nD, that is calculated as the
defect number N per unit time and unit space. Anticipating

FIG. 2. Natural averaged frequency v (see text for definition) vs

b for a=2. The filled dots report the values from simulations of Eq.

(1) at c=0. The dashed line v=−b is the prediction given by the

dispersion relation of the plane wave solutions with zero wave

number.
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the results of Sec. VI, it appears that the defects of system 1
and system 2 tend to anchor each other in the synchronized
states.

In the following, we will describe the important effects of
asymmetries in the coupling of system 1, for different values
of the parameters b1 and b2, while a=2 will be hereinafter
fixed.

IV. ASYMMETRY ENHANCED SYNCHRONIZATION

A striking effect of asymmetry in the coupling that has
already been highlighted in our previous analysis for the case
PT-AT (I) [22] is that one can improve dramatically the syn-
chronization threshold by selecting a suitable level of asym-
metry in the coupling. Conversely, one can also achieve de-
synchronization of the two coupled systems by varying the
asymmetry level in the coupling scheme.

A. Large parameter mismatch

By selecting in (1) a sufficiently large parameter mis-
match in the equations for A1,2, one can set the uncoupled
evolutions of A1 and A2 to be in PT and AT, respectively. By
doing that, one still has three possibilities of choosing the
parameters b accordingly to the natural frequencies of the
two separate CGLE.

The first case [PT-AT(I)] corresponds to system 1 in the
PT regime sb1=−0.7 with a lower natural frequency than

system 2 in the AT regime sb2=−1.05d. The natural frequen-

cies are approximately equal to v1<0.7 and v2<0.87.v1

(see Fig. 2). This situation has been extensively studied in
Ref. [22] where both complete and frequency synchroniza-
tion features were discussed and characterized.

The second case [PT-AT(II)] corresponds to preparing
system 1 in the PT regime sb1=−0.95d with a higher natural

frequency than system 2 in the AT regime sb2=−1.2d. The

natural frequencies are approximately equal to v1<0.9 and
v2<0.84,v1 (see Fig. 2). For this case, we will show how
asymmetry enhances the setting of complete synchroniza-
tion.

Notice that a further situation could be studied if the two
systems are prepared in the PT and AT regimes, respectively,
but they have approximatively the same natural frequency.
This more complex case, where one might expect some kind
of resonance coming into play in the process of synchroni-
zation, will be dealt with elsewhere.

Figure 3(a) reports g vs the parameter space sc ,ud for the

PT-AT(II) case, and shows the nontrivial dependence of the
threshold for synchronization on the asymmetry parameter u.
A better way to visualize such a dependence is by making a
cut of the surface at a fixed value of the coupling [e.g., c

=0.25, see Fig. 3(b)]. Both in the PT-AT(II) case and in the
PT-AT(I) case (already reported in Fig. 1b of Ref. [22]), a
better synchronization level is obtained for the unidirectional
configuration where the system in the PT regime is driving
the system in the AT regime su=1d. The surfaces and curves

of Fig. 3(a) and 3(b) have been obtained by making averages
over a time t f =15 000 after a large transitory has elapsed

sT=6000d in order to ensure that we are measuring stationary

synchronization states.

B. Small parameter mismatch

The very same scenario of asymmetry enhanced synchro-
nization occurs when we select small parameter mismatches
in Eq. (1), i.e., we set the parameters so as the two uncoupled
fields are both either in PT or AT, thus confirming that this
feature generally characterizes the emergence of the synchro-
nized motion in our system.

1. AT-AT case

In this case, we set b1=−1.05 and b2=−1.2. Both systems
now are in the AT regime, with system 1 having a natural
frequency higher than the one of system 2.

Figure 4 shows Pearson’s coefficient vs the parameter
space sc ,ud (a), as well as a cut of the g surface at c=0.17

(b), showing that asymmetry in the coupling is still playing
an important role in modifying the level of synchronization
for a fixed value of the coupling strength c. It is not surpris-
ing that the complete synchronization threshold is now lower
compared to the PT-AT cases. This, indeed, is related to the
fact that smaller parameter mismatches induce closer initial
dynamics, which are therefore easier to synchronize.

2. PT-PT case

Finally, in order to complete this first part of the discus-
sion, we examine the PT-PT case. Now, parameters are b1

=−0.75 and b2=−0.9, determining an initial PT state for both

FIG. 3. (a) Pearson’s coefficient g (see text for definition) vs the

parameter space sc ,ud. Other parameters are a=2, b1=−0.95, and

b2=−1.2 [case PT-AT(II)]. (b) Solid line, g vs u [cut of the g

surface in (a)] at c=0.25, highlighting the role of asymmetry in

enhancing synchronization. The dashed line reports the same for the

PT-AT(I) case already studied in Ref. [22].
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uncoupled fields, with system 1 having a lower natural fre-
quency with respect to system 2.

Figures 5(a) and 5(b) describe the behavior of g as a
function of the coupling c and the asymmetry u. Once again,
asymmetry plays a decisive role in enhancing the appearance
of a synchronized motion in system 1. Notice that here the
values of c required for a synchronized motion are smaller
than in any of the previous cases, reflecting the fact that the
present situation corresponds to the smallest parameter mis-
match.

At variance with all the other cases, an interesting feature
of Fig. 5(b) is that an increase in the asymmetry does not
always yield a monotonic increase of g. Anticipating the re-
sults of Sec. VI, this anomalous feature is due to a substantial
number of defects being generated in both systems in the
intermediate stage before synchronization, even if both dy-
namics were in the absence of coupling (at c;0) in the PT
regime.

At this stage, we can already draw some interesting con-
clusions. We have seen that changing asymmetry in the cou-
pling configuration for the same coupling strength has the
effect of enhancing the appearance of a synchronized motion
or destroying synchronization, regardless of the initial un-
coupled state of the dynamics. We conjecture that this may
have relevant consequences in biological systems, where
changes in asymmetry of the interactions could be a way to
efficiently synchronize-desynchronize the dynamics for the
same strength of interaction. Some studies have indeed been

published [5,51,52] indicating different modes of synchroni-
zation for animal populations.

Let us recall that in Eq. (1) the coupling is a mapping of
all the grid points of system 1 on their corresponding grid
points of system 2. We could, in fact, imagine more compli-
cated and probably more realistic configurations where cou-
plings, besides being asymmetric, would be spatially depen-
dent or even asynchronous. While it is likely that real
systems show combinations of asymmetric, asynchronous
and spatially dependent coupling schemes to control and
synchronize in an optimal way their dynamical regimes, here
we only focused on the effects of asymmetries, since the
scenario of emerging dynamics is already extremely rich in
this “simplified” approach.

V. SELECTION OF THE FINAL STATE

Next, we move to describe how asymmetries play a cru-
cial role in setting the state of the dynamics within the syn-
chronized regime, which occur for large values of the cou-
pling strength. Let us recall the methods adopted for our
investigation of the dynamics within the synchronized re-
gime. Initially st=0d we begin a trial simulation of the two

Eqs. (1) connected with a nonzero value of c. We impose
random initial conditions on both systems, which in general
will have different parameters. As a consequence, the dy-
namics usually attains synchronized motion only after a tran-
sient time T. Since we are not here interested in characteriz-
ing the dynamics in the transient stage, we let a certain
transient time T elapse (we have verified that T=6000 is
large enough for reaching such asymptotic state) before start-
ing to calculate the indicators of any asymptotic synchro-

FIG. 4. (a) Pearson’s coefficient g (see text for definition) vs the

parameter space sc ,ud. Parameters are a=2, b1=−1.05, and b2=

−1.2 (AT-AT case). (b) g vs u [cut of the g surface in (a)] at c

=0.17 showing the dependence of the synchronization threshold

with asymmetry. The figure is obtained by using statistics over time

t f =50 000 rather than t f =15 000 (as for the other figures), in order

to have smoother curves.

FIG. 5. (a) Pearson’s coefficient g (see text for definition) vs the

parameter space sc ,ud. Parameters are a=2, b1=−0.75, and b2=

−0.9 (PT-PT case). (b) g vs u [cut of the g surface in (a)] at c

=0.095. In this case a total time t f =15 000 was used for the calcu-

lation of the spatiotemporal averages.
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nized state. In this way, we can measure such indicators
within the statistically stationary state represented by the
asymptotic synchronized motion.

While it is not surprising that when coupling two initially
PT states (AT states) the final synchronized motion will per-
sist in the PT regime (AT regime), a relevant point concerns
what mechanisms control the selection of the synchronized
motion, once the two fields originally start from different
regimes. To address such an issue, we will focus in the
present section on the two PT-AT cases. In these cases, it is
not trivial to predict a priori what will be the resulting dy-
namical state for the synchronized motion.

Figures 6(a) and 6(b) show the total number of defects
counted for a time t f =15 000 in the parameter space sc ,ud
for the PT-AT(II) case. Namely, Fig. 6(a) [Fig. 6(b)] corre-
sponds to the defects appearing in system 1 (in system 2) that
was set initially in the PT regime (in the AT regime) at c

=0. One clearly sees that both systems exhibit a large num-
ber of defects for nonzero coupling. Furthermore, for asymp-
totically large values of the coupling sc<0.5d leading to a

synchronized motion, the asymmetry parameter u plays a
crucial role in setting the synchronized dynamics on either a
PT regime or an AT regime. The defect number vs. the pa-
rameter space for the case PT-AT(I) was already reported by
us in Fig. 2 of Ref. [22], where again was emphasized the
role of the asymmetry in the selection of the synchronized
dynamical regime.

Let us compare and discuss more fully these two cases. In
Sec. III, we have already seen that the main difference be-
tween the cases PT-AT(I) and PT-AT(II) is in terms of the
initial natural frequencies of the two subsystems. Namely, in
the PT-AT(I) [the PT-AT(II)] case the natural frequency of
the subsystem originally set in AT is larger (smaller) than the

one of the subsystem originally set in PT. In Fig. 7 we sum-

marize the result of the comparative study of the two cases.

We choose a sufficiently large value of the coupling strength

so as to ensure a synchronized state, and we have represented

with a dashed region (a blank region) the range of u values

for which the synchronized motion develops into an AT (a

PT) regime.

First of all we observe that at u=0 (i.e., in the bidirec-

tional symmetrical case) the system with a lower natural fre-
quency is the dominant one at the moment of selecting the
final synchronized state. Furthermore, in Fig. 7 we observe a
very different scenario for the two PT-AT cases. In the PT-
AT(I) case a final state in PT is selected for most of the
values of the asymmetry parameter (until u=−0.84, below
which a final state in AT takes over). In contrast, in the PT-
AT(II) case for most of the asymmetry values (up to u
=0.64) the final state is selected in the AT regime.

The conclusion of the present section is that asymmetries
in the coupling configuration play a decisive role in the se-
lection of the dynamics and the statistical properties of the
synchronized state.

VI. DEFECT ANALYSIS

In this last section we finally discuss the role of topologi-
cal defects in the process of synchronization. Let us recall
that a defect is defined as a point in the space-time plot
where the modulus of the complex field is vanishing. In the
present case, the spatial boundary conditions are periodic,
which prevents defects from disappearing at the boundary (as
is the case of rigid boundary condition). Our initial condi-
tions are chosen so as to be free of topological defects. As a
consequence, the constraint of charge conservation for the
defects insures that the total charge stays zero at all subse-
quent times (up to the precision of the numerical calcula-
tions). In the following we analyze in detail the AT-AT and
PT-PT cases.

FIG. 6. Total number of defects counted during a time t f

=15 000 for the PT-AT(II) case. (a) Number of defects appearing in

system 1, that was set initially in the PT regime at c=0; (b) Number

of defects appearing in system 2, that was set initially in the AT

regime at c=0.

FIG. 7. Dynamical states of the synchronized motion (obtained

for large values for the coupling strength c) attained by the two

subsystems in the PT-AT cases. The upper (lower) bar corresponds

to the PT-AT(I) [the PT-AT(II)]. The dashed zone refers to a com-

mon AT regime while the blank zone marks a common PT regime.
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A. PT-PT case

The PT-PT case corresponds to setting systems 1 and 2 in
the PT regime with b1=−0.75 and b2=−0.9. Such a param-
eter choice implies that the natural frequency (at c=0) of
system 1 is lower than the one of system 2. This situation is
particularly relevant because the two uncoupled systems
have initially no defects, and the final synchronized state
develops also in a PT regime without defects. Therefore
one’s intuition might lead one to conclude that the whole
process of synchronization of the two subsystems would not
be affected by the presence of phase singularities.

Figures 8(a) and 8(b) show instead that this is not the
case. In fact a finite number of defects are produced for
intermediate values of the coupling strength. Moreover, such
a feature characterizes the synchronization process in the in-
termediate stages for all values of the asymmetry parameter.
Obviously, when one of the systems does not receive inputs
from the other (as occurs when it is the master in a master-
slave configuration at u= ±1) then no defects are injected
there all throughout the synchronization process. In contrast,
when uÞ ±1, the appearance of defects characterize both
subsystems during the whole process leading to synchroni-
zation.

Figures 8(a) and 8(b) show a further interesting feature of
defect formation in the intermediate stage. Namely, we no-
tice that the maximum number of defects in the subsystem
having an initially lower natural frequency (system 1) is ap-
proximately an order of magnitude higher than the maximum
number of defects in the subsystem having an initially higher
natural frequency (system 2). Eventually, when the two sub-
systems give rise to a synchronized motion for large values
of the coupling sc.0.3d, defects disappear, indicating that

the synchronized dynamics takes place in a PT regime.
For u= ±1, we have a master-slave coupling scheme. In

this condition, the master obviously imposes its dynamics on

the slave subsystem, and it is to be expected that the average
frequency of the synchronized dynamics equals the original
frequency of the master system. However, when uÞ ±1, a
nontrivial point to be discussed concerns the dependence of
the average frequency of the synchronized state on the asym-
metry in the coupling configuration. In order to explore this
feature, we have set a sufficiently large coupling strength
sc=0.5d and we have checked that the frequency of the syn-

chronized dynamics shows an approximately linear depen-
dence in the asymmetry parameter u, starting from the fre-
quency v1 (corresponding to the original frequency of
subsystem 1 at c=0) for u=1 and ending at the frequency v2

(corresponding to the original frequency of subsystem 2 at
c=0) for u=−1. This indicates that for large couplings and
intermediate values of the asymmetry, the synchronization
process corresponds to an adjustment of the two subsystems
onto a common rhythm of oscillation which is intermediate
between the original different rhythms of the two spatial os-
cillators at c=0.

B. AT-AT

We finally consider the AT-AT case, where system 1 is
originally in the AT regime at b1=−1.05 and is characterized
by a natural frequency higher than the one of system 2
(which is also originally in the AT regime at b2=−1.2). In
this situation, a substantial number of phase defects charac-
terizes the initial states of both subsystems, the final synchro-
nized dynamics, as well as all intermediate stages in the pro-
cess of synchronization, which takes place by a mechanism
of anchoring of phase singularities.

As shown in Figs. 9(a) and 9(b), the total number of de-
fects in the two subsystems varies with the coupling and the
asymmetry parameters. In particular, system 1 experiences a

FIG. 8. Total number of defects counted during a time t f

=15 000 for the PT-PT case. (a) corresponds to system 1 with b1

=−0.75; (b) corresponds to system 2 with b2=−0.9.

FIG. 9. Total number of defects counted during a time t f

=50 000 for the AT-AT case. (a) corresponds to system 1 with b1

=−1.05; (b) corresponds to system 2 with b2=−1.2.
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huge increase in its defect number (by nearly an order of
magnitude) for intermediate values of the coupling c<0.18,
when it is slaved by system 2. In contrast, the number of
defects in the system 2 (whose initial natural frequency is
lower) experiences a monotonic decrease when the coupling
strength c increases. For large values of c, the number of
defects in the synchronized state depends almost linearly on
the asymmetry starting from the original value of N1 for
system 1 in the absence of coupling for u=1 and ending to
the original value of N2 for system 2 at u=−1.

In order to visualize the anchoring mechanism of phase
singularities during the process of synchronization, in Figs.
10(a) and 10(b) we report the localization of the defects in
both subsystems at an intermediate value of the coupling
strength sc=0.3d and for u=−0.88, showing that already at

this intermediate stage of synchronization more than half the
defects of system 1 are anchored with corresponding defects
in system 2.

Finally, in Fig. 11 we present the total number of defects
in system 1 (solid line), the total number of defects in system
2 (dashed line) and the total number of synchronized defects
(dotted line) vs the coupling strength c for u=0.88 [Fig.
11(a)] and u=−0.88 [Fig. 11(b)]. The number of synchro-

nized defects (dotted lines in Fig. 11) is defined as the total
number of defects having same localization sx , td in both

subsystems.
From Fig. 11 one can infer that the synchronization pro-

cess is accompanied by a gradual increase of the number of

synchronized defects, reflecting a progressive anchoring of
phase singularities in the two subsystems, as the coupling
strength increases.

VII. CONCLUSIONS

In conclusion, we have reported and discussed several
asymmetry induced effects in the process of synchronization
of a pair of coupled complex space extended fields. While
synchronization always occurs for large enough values of the
coupling strength, the threshold for the setting of synchro-
nized motion crucially depends on the asymmetry in the cou-
pling configuration. Furthermore, the asymmetry controls in
relevant cases the statistical and dynamical properties of the
synchronized motion, as is the case when the coupled sub-
systems start from statistically different dynamical regimes.
In this latter situation we have shown that a bidirectional
symmetrical coupling configuration leads to a synchronized
motion where the statistical properties of the subsystem hav-
ing originally a lower natural frequency prevail, whereas
asymmetries can drastically change such a scenario. Finally,
we have studied the process of synchronization in the pres-
ence of asymmetries when all stages of the dynamics are
affected by the presence of phase singularities, showing that

FIG. 10. Localization of the defects in the space (vertical) time

(horizontal) representation of the modulus of A in the AT-AT case

(b1=−1.05 and b2=−1.2). Other parameters are c=0.3 and u=

−0.88. s indicates defects in system 1 (a) and h indicates defects

in system 2 (b). Only defects for t.300 are displayed. FIG. 11. Total number of defects in the system 1 (solid line),

total number of defects in the system 2 (dashed line), and total

number of synchronized common defects (dotted line) vs c for the

AT-AT case. (a) corresponds to u=0.88; (b) corresponds to u=

−0.88.
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defects tend to anchor from one system to the other, and that

the asymmetry controls the number of synchronized defects

that are present in the motion.

We argue that such features may have relevant conse-

quences in biological and natural systems, where small

changes in the asymmetry of the interactions could be used

as an efficient way to synchronize or desynchronize the dy-

namics, as well as select the main statistical properties of the

synchronized motion in ensembles of interacting complex
units.
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