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This paper reports a detailed numerical study of the synchronization properties of two mutually delay-coupled
semiconductor lasers in the framework of the Lang–Kobayashi model. By computing high-definition stability
diagrams, we predict the complex distribution of periodic and chaotic laser oscillations on the coupling versus
detuning control parameter plane. Such diagrams provide details concerning the behavior of the laser intensities,
quantify objectively the synchronization between their electric fields, and display in-phase and out-of-phase laser
behavior. In addition, we also describe the presence of a conspicuous abrupt change in the optimal shift for the
greatest value of the cross-correlation function when varying the detuning between the optical angular frequencies
of the lasers. © 2016 Optical Society of America
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1. INTRODUCTION

The complex photonics associated with coupled semiconductor
lasers offers several possibilities of technological applications
and rich dynamical behaviors, as shown by a number of
experimental and theoretical studies of phenomena such as
chaos synchronization, quasiperiodicity, spontaneous sym-
metry-breaking of symmetric laser configurations, bubbling,
etc. [1–10].

Synchronization properties between mutually delay-coupled
lasers have also been extensively analyzed. For weak coupling,
Hohl et al. [11] have shown that two nonidentical mutually
delay-coupled semiconductor lasers can present localized syn-
chronization where the amplitude of one of the lasers is signifi-
cantly greater than the other. Symmetry breaking of periodic
solutions at a low coupling rate in perfectly symmetric mutually
delay-coupled lasers was reported by Rogister and Garcia-
Ojalvo [12]. Interesting theoretical and experimental studies
of subnanosecond coupling-induced synchronized chaotic dy-
namics in conjunction with spontaneous symmetry-breaking in
the system have been done by Heil et al. [13]. Chaotic achronal
synchronization for two distant mutually coupled semiconduc-
tor lasers was observed experimentally and theoretically by
Mulet et al. [14]. The potentialities and intricacies of delay
coupled lasers are discussed in a recent and encompassing
survey by Soriano et al. [2]. Despite all these works, little is

currently known about the impact of the simultaneous varia-
tion of multiple control parameters of the lasers on their
synchronization properties.

A recent study [15] of the control parameters of two mu-
tually delay-coupled semiconductor lasers has shown the
disappearance of an abundant type of periodic oscillation called
regular pulse packages (RPPs) [16], characterized by a se-
quence of packages composed of decreasing amplitude pulses,
when the angular frequencies of the lasers contain a very small
frequency detuning δ ≡ ω2 − ω1, of the order of 100 times
smaller than the relaxation frequency of the lasers oscillations.
However, when the detuning δ between the lasers is continu-
ously varied over large ranges, RPPs can periodically recur in
specific windows of δ in control space [15].

In this work, we provide additional information concerning
details of the aforementioned recurrence of RPP windows.
More specifically, we describe how the periodic and chaotic
phases emerge and provide an in-depth analysis of the synchro-
nization properties of the laser modes involved. To this end, we
introduce an indicator that quantifies the synchronization be-
tween the lasers. This indicator is numerically computed for
wide ranges of the frequency detuning and coupling coefficient
between the lasers. In addition, we also calculate the well-
known cross-correlation function between the lasers’ inten-
sities, analyzing its maximum value and optimal shift in order
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to quantify laser performance when laser detuning is varied over
large ranges. Similar procedures have been extensively used in
technological applications such as, for example, optical coher-
ence tomography [17], synchronization of vehicle sensors [18],
and underwater sonar imaging [19].

2. MODEL

The two mutually delay-coupled semiconductor lasers studied
here are governed by the equations [15,20]

_E1 � �1� iα�N 1E1 � ηe−iωτE2�t − τ�; (1)

T _N 1 � P − N 1 − �1� 2N 1�jE1j
2; (2)

_E2 � �1� iα�N 2E2 � ηe−iωτE1�t − τ� � iδE2; (3)

T _N 2 � P − N 2 − �1� 2N 2�jE2j
2: (4)

Here, E1;2�t� are the normalized slowly varying complex elec-
tric fields while N 1;2�t� are the normalized excess carrier num-
bers for lasers 1 and 2, respectively. In these equations, the
optical angular frequency of laser 1 is used as reference, so that
ω � ω1, while the detuning frequency is δ ≡ ω2 − ω1. Time
is normalized to the cavity photon lifetime (∼1 ps), and T is
the ratio of the carrier lifetime (∼1 ns) to the photon life-
time. The delay time τ represents the flying time of the light
between the lasers, η controls the strength of the symmetric
coupling, δ controls the magnitude of the detuning between

the lasers, P is the normalized pump current above threshold,
and α is the linewidth enhancement factor. Param-
eters are fixed at realistic values [15,16,20]: T � 1710,
α � 5, P � 1.155, τ � 10, η � 0.255, ω � −0.01962. As
for initial configurations, we use N 1;2�0��1 and E r

1;2�t
0��

E i
1;2�t

0��1 for −τ≤ t 0≤0, where E1;2�t��E r
1;2�t��iE i

1;2�t�.
The numerical results presented below were obtained by solv-
ing Eqs. (1)–(4) using the standard fourth-order Runge-Kutta
algorithm, with a fixed time step h � 0.005. Ad hoc tests
indicate that, for realistic physical parameters, the final results
are not sensitive to these assumptions. For additional details
concerning the computation of stability diagrams, see
Section 2 of the survey in [21].

3. RESULTS

The behavior of the lasers’ outputs can be classified as a func-
tion of the parameters using the so-called isospike diagrams
[15,22,23]. As exemplified by Figs. 1(a) and 1(c), isospike dia-
grams classify the laser output using 14 colors to represent peri-
odic oscillations, according to their number of peaks (local
maxima) per period. Oscillations having more than 14 peaks
per period are represented by “recycling colors modulo 14,”
i.e., the color index used is obtained as the remainder of the
integer division of the number of peaks by 14. Solutions with
15 peaks per period are marked with the same color associated
with one peak, 16 spikes are marked with same color of two
peaks, and so on. Multiples of 14 were given the index 14.

Fig. 1. Left and right columns contrast two complementary ways of recording periodic and aperiodic phases in parameter space. (a) Isospike
diagram, recording the number of spikes per period of periodic modes. (b) Diagram displaying the synchronization ratio r as a function of the
coupling η and the detuning δ, scaled by the constant delay time τ � 10. Panels (c) and (d) are magnifications of the white boxes in (a) and (b),
respectively. The vertical lines are discussed in Fig. 2. In an accompanying video, we present an animation of similar panels over a wide range of
τ values (Visualization 1).

C66 Vol. 33, No. 7 / July 2016 / Journal of the Optical Society of America B Research Article

https://www.osapublishing.org/josab/viewmedia.cfm?URI=josab-33-7-C65-v001.MP4


In this way, all periodic pulses can be accommodated with
a palette of 14 colors. In addition, non-zero fixed points, rep-
resenting constant output, are plotted in orange, quasiperiodic
solutions are plotted in dark green, lack of numerically detect-
able periodicity is plotted in black, null output is plotted
in white, and divergent solutions are plotted in light red.
These specific solutions are indicated on the bar located below
Fig. 1(a) and next to the isospike color bar. The diagrams
presented in Fig. 1 take laser 1 into account, but laser 2 presents
the same qualitative behavior.

Figure 1(a) illustrates laser behavior as a function of the
coupling strength η and the detuning δ, both scaled by the con-
stant delay time τ. The main dynamical properties of this sys-
tem depend on the emergence of the so-called compound laser
modes (CLMs) [15], which represent CW solutions and de-
pend on the scaled parameters ητ and δτ. The consideration
of scaled parameters avoids an undesired “zoom out” effect
(see [15]) and facilitates comparison between diagrams when
the delay is increased. Figure 1(a) presents a sequence of tri-
angular shaped islands of constant output, placed over a back-
ground of aperiodic solutions (in black). Such islands repeat
horizontally, along the direction of increasing coupling and
no detuning (δ � 0). On the right-hand side of the triangular
islands, we find transitions from CW output (in orange), to
one-peak oscillations (blue), to quasiperiodic oscillations (dark
green), finally reaching the domain of aperiodic oscillations
(black).

Figure 1(a) shows a ητ × δτ diagram for a fixed value of the
delay (τ � 10). In the supplementary material (see
Visualization 1), we show a video detailing how the variation
of the delay over the interval (0, 30) influences the control
plane. Initially, for relatively small delays, one sees a big red
phase of divergent solutions, which disappear toward the right
side of the diagram as τ is increased. For small delays, the phases
of divergent solutions are associated with strong coupling be-
tween the lasers. Note that the axes in the diagrams are scaled
by the delay time, given in each frame of the film. Thus, as we
wanted to keep the product ητ constant for clarity reasons,
smaller delays require bigger couplings. The range of coupling
values covered in the video is so wide that it may contain some
small regions where the laser intensity diverges to infinity. Of
course, this happens because either the rate equation assump-
tions are violated or, for a fixed step size, the accuracy in the
numerical calculations degrades and produces divergent solu-
tions. In this paper, we have not investigated this perhaps very
interesting result and did not focus on whether stable and con-
vergent solutions were possible if the accuracy of the calculation
was increased. Such an investigation would require a previous
experimental validation of the model and a considerable addi-
tional investment of computer resources. As the delay increases,
η becomes small and the divergence region is displaced to in-
creasingly larger values of ητ. Also, a “burst” of periodic solu-
tions is observed over the aperiodic black phase, between the
triangular CW phases. The size of these periodic phases is maxi-
mum for τ ∼ 8.5. In addition, the triangular phases seem to
shrink continuously as the delay increases more and more.

As already mentioned, previous work has shown that the
transition from 0 to very small values of the detuning δ makes

the RPPs disappear [15]. However, over a specific region of the
parameter space, such solutions may reappear for δ ≠ 0, in a
way that a steady increase of the detuning in this region reveals
an alternation between RPPs and aperiodic solutions [15].
Here, the region inside the white box in Fig. 1(a), magnified
in Fig. 1(c), presents such alternation between phases in a more
general and elucidative way. It can be shown that the colored
stripes in Fig. 1(c), representing solutions with more than one
peak per period, are basically related to RPPs phases [examples
of solutions over these phases are shown in Figs. 2(c) and 2(e)].
The complex structure and disposition of the stripes related to
RPPs presented in this diagram evidence that the fairly regular
alternation between RPPs and aperiodic phases results from the
analysis of the variation of a single parameter, which follows
a specific path through the diagram [15]. The 2D approach
presented here greatly complements this earlier analysis, provid-
ing a deeper insight concerning the intricate relation
between laser phases.

For a better understanding of the synchronization properties
of lasers, we calculated a synchronization parameter, defined
by the ratio

r �
hjE1�t� � E2�t�j

2i

2�hjE1�t�j
2i � hjE2�t�j

2i�
; (5)

where h·i denotes time average. In-phase laser fields are char-
acterized by r � 1, while out-of-phase fields imply r � 0.
Figure 1(b) displays the synchronization parameter r for the
same window of ητ and δτ in Fig. 1(a). From the figure, one
sees that “islands” of CW output display an alternation of
in-phase (red) and out-of-phase (blue) oscillations of the laser
fields. Such in- and out-of-phase oscillations were studied
before (see, for example, [24] and [25]). Here, our aim is to
describe their relative abundance and organization in the laser
control space. The regions dominated by aperiodic phases have
r ∼ 0.5 (gray). The region of RPPs, indicated by the white box,
is magnified in Fig. 1(d). It shows a clear alternation of gray
stripes (aperiodic solutions) and green stripes, related to the
RPPs phases. The fact that the RPPs phases present a value
of r smaller than the ones of the aperiodic phases suggest that,
for virtually all RPPs in that windows, the laser fields are slightly
out of phase.

Figure 2 presents details of the lasers outputs on the stripes
presented in Figs. 1(c) and 1(d). Figure 2(a) shows a bifurcation
diagram calculated along the vertical white line in Fig. 1(c). The
local maxima of the lasers’ intensities are presented in green for
laser 1 and in red for laser 2. Despite the fact that both lasers
are identical (have the same pump current and coupling coef-
ficient), the difference in the optical angular frequencies indu-
ces a larger average pulse amplitude for laser 2 over the entire
range of δ. An analogous bifurcation diagram (not shown here)
shows that a larger amplitude of laser 1 is observed when chang-
ing δ by −δ.

As seen in Fig. 1(c), the vertical white line crosses the
stripes alternating aperiodic solutions (black) and RPPs (sev-
eral colors). This alternation is observed in the diagram of
Fig. 2(a) as recurrent windows of periodic solutions inter-
spersed with windows of aperiodic oscillations. The vertical
blue lines (c)–(f ) indicate some of this interspersed windows.
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Figure 2(b) shows the synchronization parameter r calcu-
lated for the same values of δ as in Fig. 1(a). They were obtained
along the vertical red line in Fig. 1(d). An increase in δ along
that line leads to an increase in the synchronization parameter
from r ∼ 0.05, when the lasers’ intensities were constant, until
r ∼ 0.45, where the intercalation between RPPs and aperiodic
outputs takes place. In this last region, r presents small oscil-
lations, small values of r being associated with RPPs, and larger
values with aperiodic oscillations. This feature is evident in the
temporal evolution of the lasers’ intensities calculated for
detunings arbitrarily chosen in this window.

The temporal evolutions presented in Figs. 2(c)–2(f ) are cal-
culated for δ values corresponding to the labeled vertical lines in
the diagrams of Figs. 2(a) and 2(b). For δ � 0.419, Fig. 2(c)
shows the temporal evolution for the laser 1 intensity, in green,
and in red for laser 2. Both intensity profiles are quite similar,
but the periodic sequence of amplitude decaying pulses, char-
acterizing RPPs, are slightly out of phase. In this case, the syn-
chronization parameter is r � 0.430. When the detuning is

increased to δ � 0.429, Fig. 2(d) shows that the solution is
no longer periodic. Although the intensity profiles remain sim-
ilar to the RPPs observed above for δ � 0.419, now the pulse
packages do not repeat in time. Such solutions, with profiles
very similar to RPPs but aperiodic, may be called irregular pulse
packages [26] or “quasi-RPPs” [15,27]. For this aperiodic sol-
ution, we find r � 0.459, slightly greater than what is obtained
for the previous RPPs. By continuously increasing the detun-
ing, a sequential alternation of the two solutions above is ob-
served, as illustrated in Figs. 2(e) and 2(f ). The synchronization
parameter values for RPPs are r ∼ 0.43, while for quasi-RPPs
they are slightly greater, namely r ∼ 0.46.

The above analysis was complemented by evaluating the
cross-correlation function for solutions presented on the dia-
grams of Figs. 2(a) and 2(b). The cross-correlation function
is defined as [1,3]

C�Θ� �
h�I 1�t� − hI 1�t�i��I 2�t � Θ� − hI2�t�i�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h�I 1�t� − hI 1�t�i�
2ih�I 2�t� − hI 2�t�i�

2i
p ; (6)
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Fig. 2. Details of the laser outputs on the stripes presented in Fig. 1. (a) Bifurcation diagram as a function of the detuning δ. (b) Synchronization
parameter r, both calculated along the vertical lines seen in Figs. 1(c) and 1(d), respectively (η � 0.255). Panels (c)–(f ) show temporal evolutions of
the laser intensities for selected values of δ, green for laser 1 and red for laser 2, revealing an alternation between RPPs, in (c) and (e), and aperiodic
solutions, in (d) and (f ).
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where I j�t� � jE j�t�j
2 and Θ is the temporal shift in I 2�t�.

For each solution of Eqs. (1)–(4), we can calculate C�Θ�
and verify what is the optimal temporal shift (ΘM ) to maximize
the correlation between the lasers.

The top panel in Fig. 3 shows the maximum cross-
correlation function C�ΘM �, multiplied by 100 for graphical
clarity, and the optimal temporal shift (ΘM ) for solutions cal-
culated for δ along the vertical lines in Figs. 1(c) and 1(d). This
is an extremely laborious numerical task, given that, for each
value of δ, it is necessary to calculate C�Θ� for several temporal

shifts Θ in order to determine which shift maximizes the cor-
relation. The diagram presented in Fig. 3 (top) was calculated
for 400 values of δ and, for each one of these values, an addi-
tional 40,000 temporal shifts in the interval −100 ≤ Θ ≤ 100
were investigated. The generation of this diagram required
11.4 h of numerical calculation, using 50 fast processors of a
SGI Altix cluster, each one operating at a nominal clock speed
of 2.9 GHz.

Figure 3 shows (black, top row) the maximum cross corre-
lation between the lasers’ intensities. The cross correlation
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Fig. 3. (Top) Maximum cross-correlation function C�ΘM �, multiplied by 100 for graphical reasons, and optimal temporal shift ΘM , calculated as
a function of the detuning. (a) and (b) Cross-correlation function calculated for detuning before and after the abrupt drop in ΘM , evidencing the
change in the position of the global maximum. (c) and (d) Temporal evolution of the intensities of lasers 1 and 2, for detuning before and after the
drop, indicating the optimal temporal shift. (e) and (f ) Same temporal evolutions as (c) and (d), but with the optimal shifts performed.
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cannot be defined for CW outputs (in the initial range
0.300 < δ < 0.309) because for these solutions I 1;2�t� �
hI1;2�t�i [see Eq. (6)]. As the detuning is increased above
δ � 0.309, C�ΘM � decreases continuously but always stays
⪆0.6. The maximum correlation does not drop too much
because the profiles of the RPPs (or “quasi-RPPs”) related to
the intensities of both lasers are similar to each other, making
it possible to match them in a fairly good way.

The top panel of Fig. 3 also shows the optimal time shift
related to the maximum cross-correlation between the inten-
sities. For 0.309 < δ < 0.450, ΘM grows almost linearly from
ΘM ∼ 35 until ΘM ∼ 75. Near δ � 0.45, the optimal shift
sharply drops to ΘM ∼ −13.5, remaining so for additional
detunings. This sudden drop of the optimal shift can be under-
stood analyzing the cross-correlation function for solutions
immediately before and after the drop. Figure 3(a) shows the
cross-correlation function for δ � 0.44, immediately before the
drop. The maximum correlation is C�ΘM � � 0.636, obtained
for a shift ΘM � 72.4. This maximum is indicated by the pur-
ple dashed line (the rightmost dashed line). At this point, it is
important to notice that the second largest value of C�Θ� is
obtained for Θ � −14.2, as indicated by the leftmost vertical
gray dashed line.

Figure 3(b) shows that, by increasing the detuning to
δ � 0.46, the profile of the cross-correlation function is de-
formed in a way that the amplitude of the maximum of C�Θ�
located near Θ ∼ −14 becomes bigger than the one near
Θ ∼ 72. In this case, the optimal shift is ΘM � −13.9, indi-
cated in Fig. 3(b) by the purple dashed line (left). The gray
dashed line (right) indicates the position of the optimal shift
before the drop (Θ � 72.4). To summarize, the continuous
deformation on the intensity profiles of both lasers, driven
by the gradual increase of δ, is manifested by a continuous
deformation of the cross-correlation function. This function
deforms in a way that, for δ ∼ 0.45, the local maximum at
Θ ∼ −14 surpasses the amplitude of the so far global maximum,
located in Θ ∼ 72. This crossover is responsible for the abrupt
drop observed for ΘM in Fig. 3 (top).

Figures 3(c) and 3(d) show the temporal evolution of the
lasers intensities, before and after the drop, respectively. Purple
arrows indicate the shift in jE2�t�j, which corresponds to
the configuration of maximum cross correlation between the
intensities. Right below it, in Figs. 3(e) and 3(f ), the intensities
are plotted with the optimal shift applied in the intensity of
laser 2, manifesting explicitly the optimal configuration for
the correlation.

4. CONCLUSIONS

This paper investigated synchronization properties between
two mutually delay-coupled lasers as a function of the detuning
between the optical angular frequencies of the lasers. The dis-
tribution of periodic and chaotic phases was mapped in detail
on the control parameter plane defined by the coupling coef-
ficient and the detuning (ητ × δτ). Such a plane was found to
display a sequential appearance of self-similar stability islands of
CW output, along the δτ � 0 axis. By considering a synchro-
nization indicator r, we found that the alternation of stability
islands is related to an alternation between in-phase and

out-of-phase oscillations of the lasers fields [25]. In addition,
we showed the recurrent appearance of RPPs near these islands,
interspersed with windows of aperiodic “quasi-RPPs” solutions.
The synchronization parameter r was found to be slightly
smaller inside RPPs windows, suggesting an out-of-phase dis-
position of the laser electric fields. A remarkably abrupt change
in the optimal temporal shift, which maximizes the cross-
correlation function between the laser intensities, was found
for δ ∼ 0.45. Such a jump was shown to be related to continu-
ous deformations of the temporal profile of I 1 and I2 induced
by a continuous increment of δ. We hope our findings motivate
their experimental investigation.
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