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The stability of the state of motion in which a collection of coupled oscillators are in identi-
cal synchrony is often a primary and crucial issue. When synchronization stability is needed
for many different configurations of the oscillators the problem can become computationally
intense. In addition, there is often no general guidance on how to change a configuration
to enhance or diminsh stability, depending on the requirements. We have recently intro-
duced a concept called the Master Stability Function that is designed to accomplish two goals:
(1) decrease the numerical load in calculating synchronization stability and (2) provide guid-
ance in designing coupling configurations that conform to the stability required. In doing this,
we develop a very general formulation of the identical synchronization problem, show that
asymptotic results can be derived for very general cases, and demonstrate that simple oscillator
configurations can probe the Master Stability Function.

1. Introduction

The increasing interest in synchronization in
dynamical systems, whether chaotic or periodic,
has led many people to consider the phenomenon
of synchronization in large arrays or networks of
coupled oscillators [Kuramoto, 1975; Fujisaka &
Yamada, 1983; Pikovskii, 1984; Afraimovich et al.,
1986; Kopell & Ermentrout, 1984; Volkovskii &
Rul’kov, 1989; Kowalski et al., 1990; Winful &
Rahman, 1990; Watanabe & Strogatz, 1993;
Ashwin et al., 1994; Heagy et al., 1994a; Heagy
et al., 1994b; Strogatz, 1994a, 1994b; Heagy et al.,
1995; Gauthier & Bienfang, 1996; Wu, 1998a]. A

central dynamical question is, when is such syn-
chronous behavior stable, especially in regard to
coupling strengths and connectivity in the network?
Furthermore, there is increasing interest in study-
ing the effect of varying the configuration and its
effect on the synchronized state and bifurcations
away from the synchronized state [Cuomo, 1993;
Pérez-Villar et al., 1993; Gade et al., 1995; Wu &
Chua, 1995a; Belykh & Verichev, 1996; Gade, 1996;
Kocarev et al., 1996; Wu & Chua, 1996; Dmitriev
et al., 1997; Hu et al., 1998; Wu, 1998b].

Many approaches have been tried in solving the
synchronization problem often with emphasis on a
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particular coupling scheme, but ocassionally with
a view to understanding general patterns of syn-
chronization criteria that could be applied to whole
classes of oscillator networks (see e.g. [Fujisaka
& Yamada, 1983; Golubitsky & Stewart, 1986;
Armbruster & Dangelmayr, 1987; Pérez-Villar
et al., 1993; Heagy et al., 1994b; Wu & Chua, 1994;
Gade et al., 1995; Wu & Chua, 1995b; Gade, 1996;
Wu & Chua, 1996; Hu et al., 1998; Wu, 1998b]).
Most of the networks can be classified as a col-
lection of identical nodes (oscillators) in which the
same component is taken from each node and ap-
plied to other nodes in the network with various
weights which depend on the node pairs that are
coupled. The use of node components can be re-
laxed to a more general usage of a function of the
node dynamical variables as the output of each node
to be fed to the other nodes. The weights are ap-
plied to each output as a whole and are often kept
constant for simplicity.

We have shown that we can solve a very gen-
eral form of the problem of the stability of the syn-
chronized state in oscillators coupled as mentioned
above [Pecora & Carroll, 1998; Fink et al., 1999].
We have solved this problem once and for all for
any set of coupling weights and connections and
any number of coupled oscillators given the par-
ticular oscillator type at each node and the func-
tional form through which the nodes are coupled.
Note: We assume nothing about the motion off the
synchronization manifold since that will not affect
the linear stability analysis. Although the above
description of the system is rather wordy, the equa-
tions of motion and, most importantly, the varia-
tional equations used in the stability analysis have
a compact form that leads quickly to a general so-
lution of the stability problem. We call the gen-
eral solution the master stability function [Pecora
& Carroll, 1998]. It is this master stability function
that our three-oscillator system will probe.

We note that several other works by Hu
et al. [1998], Gade et al. [Gade et al., 1995; Gade,
1996], have used some of the techniques we present
here or similar approaches [Wu, 1998a, 1998b], espe-
cially in the application of eigenvalues of the connec-
tivity matrix to random and star coupling configu-
rations. Especially noteworthy is the application
of graph theory to configurations of oscillators by
Wu [1998a, 1998b] and Wu and Chua [1995b]. Our
work independently developed the master stability
function for the general case and herein we show
how it can be used to predict many of the phe-

nomena and characteristics of dynamics near the
synchronous state.

In the following sections, we derive the varia-
tional problem leading to the master stability func-
tion (MSF) in an extremely general case. We also
show how the asymptotic (large real and imaginary
coupling) form of the MSF can be derived. We go on
to show an experimental investigation of the MSF
for Rössler-like circuits which discloses the stable
regions of the MSF and brings into question the
appropriate stability criterion to use in real sys-
tems. We show that many other synchronization
stability criteria have an associated MSF. Finally,
we show that a properly constructed three-oscillator
system can probe the MSF by simple variation of
the couplings.

2. Stability Analysis

We assume the following: (1) The coupled oscilla-
tors (nodes) are all identical, (2) the synchroniza-
tion manifold is an invariant manifold, (3) the same
function of the components from each oscillator is
used as an output to couple to other oscillators, and
(4) the nodes are coupled in an arbitrary fashion
which is well approximated near the synchronous
state by a linear operator. Numbers (1) and (2)
guarantee the existence of a synchronization hyper-
plane in the phase space and number (3) makes the
stability function (MSF) specific to our choice of
oscillators and the output function. Number (4) is
the choice of many studies of coupled systems, but
note the linear coupling form is necessary only near
the synchronization manifold. It can be arbitrary
elsewhere.

In determining the stability of the synchronous
state various criteria are possible. The weakest is
that the maximum Lyapunov exponent or Floquet
exponent be negative. This is a universal stability
standard, but it does not guarantee that there are
no unstable invariant sets in the synchronous state
[Ashwin et al., 1994] or areas on the attractor that
are locally unstable [Pecora et al., 1995; Gauthier &
Bienfang, 1996; Rulkov & Sushchik, 1997], both of
which can cause attractor bubbling and bursting of
the system away from synchronization when there
is noise or parameter mismatch. The theory we de-
velop below will apply to almost any criterion that
depends on the variational equation of the system.
Each stability criterion will lead to its own master
stability function. For that reason we develop the
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theory in the context of Lyapunov exponents as a
stability criterion and show in the conclusions how
the other criteria can be used.

Let there be N nodes (oscillators). Let xi be
the m-dimensional vector of dynamical variables of
the ith node. Let the dynamics for each node be

ẋi = Fi(xi, H(x)) . (1)

H: Rm → Rm is an arbitrary output func-
tion of each node’s variables that is used in the
coupling. We collect node dynamical variables
in x = (x1, x2, . . . , xN ), and write H(x) =
(H(x1), H(x2), . . . , H(xN )), i.e. H is the same for
all nodes. For example, we may have “y coupling”
of three-dimensional oscillator nodes by choosing H
as a matrix such that H22 = 1 and all otherHij = 0.
In this way the y component for each node is fed into
the vector field for the ith node. At this point the
actual functional dependence of F on the y com-
ponents [H(x)] is left unspecified. It is this latter
functional dependence that defines the connectivity
and coupling strengths of the network.

The N − 1 constraints x1 = x2 = · · · =
xN define the synchronization manifold. To test
the stability of the motion in the synchronous
state we must evaluate the Lyapunov exponents of
directions transverse to the synchronization man-
ifold. We want perturbations in the transverse
directions to damp out (have negative Lyapunov
exponents). This requires sorting out the transverse
directions from the synchronization manifold direc-
tions in the variational equation. We show how this
comes about naturally in our development of a mas-
ter stability function.

The variational equations for the coupled
system are

ξ̇i = J · ξi +
N∑
j=1

DjF
i ·DH · ξj . (2)

where ξj are the (m-dimensional) perturbations of
the jth node, J is the usual Jacobian of any node
(the derivative with respect to the first argument
of Fi, which is the same for all nodes in the syn-
chronous state), DjF

i is the derivative (an m ×m
matrix) with respect to the jth perturbation in the
coupling term H(x) in Fi, and DH is the Jaco-
bian of the coupling function evaluated at each node
(which is the same for all nodes in the synchronous
state).

At this stage we constrain the dependence of Fi

on H(x) to be as follows. Near the synchronization
manifold we want this dependence to be dominated
by linear terms; thus, near synchronization each
DjF

i should approach the form
∑
j GijDH, where

Gij is a constant m×m matrix. We also want the
coupling to give equal weighting to all components
ofDH, that is, DH·ξj is added in Eq. (2) to the sum
using a scalar weight. The latter constraint requires
that Gij be a multiple of the m ×m unit matrix:
Gij = Gij1m. These constraints are quite general
and cover many of the coupling schemes found in
the literature.

With the above constraints we can write Eq. (2)
in a compact form using direct products of matrices,

ξ̇ = [1N ⊗ J + G⊗DH]ξ . (3)

where ξ = (ξ1, ξ2, . . . , ξN ) is the collection of per-
turbations of all the coupled oscillators, G is the
matrix of scalar weights, Gij and 1N is the N ×N
identity matrix. We will refer to G as the connec-
tion matrix.

Note that manifold invariance (requirement (3)
above) requires points (initial conditions) that start
on the manifold to stay on the manifold. Two
nearby points whose difference produces a perturba-
tion vector ξ must stay on the manifold and, hence,
the perturbation ξ must be mapped to a perturba-
tion that is still on the manifold. Vectors on the
synchronization manifold are of the (block) form
(1, 1,. . . , 1). This requires the variational equation
to have the same vector field components for each
block corresponding to a node. That leads to the
requirement that the row-sum of the linear oper-
ator in Eq. (3) be the same for each block. This
leads to

∑
j Gij = c the same number for all blocks

i. The effect of this constraint is to add the same
time-dependent function to the diagonal. This can
be seen by rewriting the variational equation as
follows

ξ̇i = (J + cDH) · ξi +
N∑
j=1

(Gij − cδij) ·DH · ξj . (4)

The diagonal term with the Jacobian J has an
added contribution of cDH and the weights in the
sum (the perenthesis factor) now have row-sum of
zero. We continue to write the variational equation
as Eq. (3) with the understanding that the J term
may also contain a contribution of cDH and the G
matrix has zero row sums.
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In our previous work on the MSF [Pecora, 1998;
Pecora & Carroll, 1998; Pecora et al., 1998] we as-
sumed that G had a zero row sum. We see this
is not necessary. Most coupling schemes studied
in the literature use zero row sum coupling in the
vector field, although we see from above that it is
not necessary to have linear coupling in the vector
field. The main constraints show up in the vari-
ational equation. Nevertheless, for those linear-
coupling schemes we see that we only need the
coupling to have equal row sums. In this case we
actually have a vector field on the synchronization
manifold (s = synchronized state) which has an
added term, viz:

ẋi = F(xi) +
N∑
j=1

GijH(xj),

original equations

ṡ = F(s) + cH(s), equations on
synchronization manifold

(5)

That is, the motion of each node in the synchro-
nized state is given by F + cH, not by F alone.

From the above assumptions, the G matrix is
constant on the synchronization manifold. This
means the matrix S that diagonalizes G is a con-
stant and can be applied directly to the variational
equation, Eq. (3), at all points in the synchroniza-
tion manifold. This gives us a block diagonaliza-
tion of the equations of motion [Heagy et al., 1994b;
Golub & Loan, 1996; Pecora et al., 1997; Pecora &
Carroll, 1998]. The block diagonalization uncouples
the variational equations into blocks (analogous to
a mode analysis) and we are left with variational
equations

ξ̇k = [J + γkDH]ξk , (6)

where γk is the eigenvalue of G for the kth block,
k = 0, 1, 2, . . . , N − 1. For k = 0 we have the vari-
ational equation for the synchronization manifold
(γ0 = 0) which is required by the row sum being
zero as the equations are now set up (

∑
j Gij = 0).

All other k’s correspond to transverse eigenvectors,
so we have succeeded in separating the synchroniza-
tion manifold from the other, transverse directions.
We can think of these as transverse modes.

We now make an important observation: For
each k the form of each block [Eq. (7)] is the same
with only the scalar multiplier γk differing for each.
This leads us to the following formulation of the as-
sociated master stability function (MSF): We calcu-
late the maximum Floquet or Lyapunov exponent

Fig. 1. Master stability function schematic. Here the sta-
ble region is the central valley with the heavy curved line
separating the regions of stable (blue) and unstable (red)
synchronized behavior.

λmax for the generic variational equation

ζ̇k = [J + (α+ iβ)DH]ξk , (7)

as a function of α and β (a point in the complex
plane). This yields the master stability function
λmax as a surface over the complex plane (see Fig. 1
as an example). Complex numbers are used since G
may have complex eigenvalues. Then, given a cou-
pling or connection matrix G we locate the point
γk in the complex plane. The sign of λmax at that
point will reveal the stability of that eigenmode. If
all the eigenmodes are stable, then the synchronous
state is stable for that coupling scheme.

Interpretation of the complex coupling constant
(α + iβ) may seem difficult at first, but it is easy
to associate a coupling scheme each with the real
and imaginary part of the MSF coupling constant.
The real part is related to the symmetric part of
the G connection matrix and the imaginary part
is related to the antisymmetric part of G. The real
part α represents a damping and the imaginary part
β represents a rotation of the system between two
complex conjugate eigenmodes. This is explained
in more detail in [Fink et al., 1999].

3. Asymptotic Coupling Results

Obviously one way to determine the MSF λmax

(α + iβ) is to use traditional numerical techniques
for finding Lyapunov exponents and apply them to
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the generic, master variational equation (7). Here
we introduce techniques that can lead to the deter-
mination of the asymptotic form of λmax for large
(negative) real (α) and large imaginary (β) values.

Large and negative real coupling values in
Eq. (7) can sometimes be treated as follows (we set
β = 0 for now). Assume the case of a constant, di-
agonal DH matrix, i.e. we are only coupling “like”
components, xil to xjl . Then we end up with the
variational equation,

dξ

dt
= [J + α diag{η1, . . . , ηm}] · ξ , (8)

The matrix diag{η1, . . . , ηm} is DH in the form as-
sumed above and we assume the diagonals ηi of DH
are arranged in descending order (η1 > η2 > · · · ).
Obviously we demand that since we are considering
large, negative couplings we must have all ηi ≤ 0.
If all ηi are strictly less than zero, then we auto-
matically have the result that for large, negative
real coupling α the MSF must decrease linearly ση1.
Hence, there would always be stable behavior.

The case when ηj = ηj+1 = ηj+2 = · · · = ηm =
0 for some value of j is more interesting. Then we
have the situation that the first j − 1 perturbation
components (ξ1, ξ2, . . . , ξj−1) damp out quickly to
zero values, but the stability of the last m − j + 1
components is determined by a subblock of the
Jacobian J. That subblock is given by the matrix,

Jjj · · · Jjm
...

...
...

Jmj · · · Jmm

 (9)

This form of the stabilty equation is obtained be-
cause the zero values of (ξ1, ξ2, . . . , ξj−1) mean the
components of J with either index less than j will
not contribute to the vector field of the remaining
(ξj, ξj+1, . . . , ξm) components and the zeroes of the
eigenvalues will eliminate the coupling terms. Now
the question of the asymptotic form of the MSF
along the real axis is answered. It is a constant
for small to moderate β values and its value is the
largest “Lyapunov exponent” of the subblock of J
[Eq. (9)]. We often refer to the subblock Lyapunov
exponents as conditional Lyapunov exponents fol-
lowing our original work [Pecora & Carroll, 1990,
1991; Carroll & Pecora, 1991].

The case of large imaginary coupling is appar-
ently a topic that had not been touched in the lit-
erature until [Fink et al., 1999]. First note that we

simply want β large in either a positive or nega-
tive sense since the MSF must be symmetric about
the real axis. For now set α = 0. As we noted
above imaginary coupling amounts to a rotation.
Then large β can be associated with rapid oscilla-
tions. This association will allow us to get a general
asymptotic result.

We assume DH is a constant, diagonal matrix
with the same notation as above. This gives a vari-
ational equation,

dξ

dt
= [J + iβ diag{η1, . . . , ηm}] · ξ , (10)

Note, such an equation would result if DH had a
2× 2 antisymmetric block structure in some places
along the diagonal and we diagonalized DH. We
assume that for some j ηj = ηj+1 = ηj+2 = · · · =
ηm = 0 whereas ηi 6= 0 for i < j. Since we can
interpret iβ as causing rapid oscillation we assume
a solution in the following form:

ξi = φie
iβηit when i < j

ξi = φi when i ≥ j
(11)

Substitution into Eq. (10) gives the following two
forms of the variational equations:

φ̇i =
m∑
l=1

Jilφ
iβ(ηl−ηi)t
l when i < j (12)

φ̇i =
m∑
l=1

Jilφ
iβηlt
l when i ≥ j . (13)

Recall that β is arbitrarily large. This means the
exponential terms involving β and nonzero diago-
nal component combinations will oscillate arbitrar-
ily fast on the time scale of the variational system.
We invoke the technique of the method of averaging
for differential equations [Sanders & Verhulst, 1985]
in which we can “average” in time over rapidly os-
cillating terms. In this case since the oscillations are
so rapid the other factors are practically constant
during any averaging time window and the averag-
ing will cause any terms with nonzero exponentials
to vanish. For Eq. (12) this means the only terms to
survive in the sums are those for which i = l (we are
assuming no degeneracy of diagonals for now). For
Eq. (13) this means the only terms for which l ≥ j
survive since for those, by assumption, ηl = 0. If we
now allow α to be nonzero, but not large we are left
with the asymptotic block form for the variational
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equations:

φ̇ =



J11 + α 0 · · · 0

0 J22 + α · · · 0 0
...

...
...

...

0 0 · · · Jj−1 j−1 + α

Jjj · · · Jjm

0
...

...
...

Jmj · · · Jmm


φ (14)

where φ = (φ1, φ2, . . . , φm). The upper-left block is
diagonal so the exponents of that block are associ-
ated with j − 1 one-dimensional variational equa-
tions. Those exponents depend on α (which is
negative). The lower-right block is the same as
for the large real coupling case above. In fact, as
α→ −∞ Eq. (14) approaches the same form as for
the real case above since the exponents associated
with the upper-left block will all become large and
negative and only the conditional exponents of the
lower-right block will matter. Thus, the imaginary
asymptotic case transforms smoothly into the real
asymptotic case.

4. An Application of the Master
Stability Function

We show an application of the MSF for the Rössler
system as the node system. Several configuratons
of the nodes are considered, and we show the con-
sequences of each with regard to synchronization
stability can easily be seen in the MSF.

dx

dt
= −(y + z)

dy

dt
= x+ ay (15)

dz

dt
= b+ z(x− c)

where we choose a = b = 0.2 and c = 7.0, a chaotic
regime of behavior. Suppose we choose to couple
our nodes using the x component. Then

H = DH =

1 0 0

0 0 0

0 0 0

 (16)

Figure 2 shows a contour plot of the master
stability function for this oscillator. We see that

there is a region (valley) of stability defined by a
roughly circular shape. The plot is symmetric in
the imaginary directions about the real axis. At
α = β = 0 λmax > 0 since this is just the case of
isolated, chaotic Rössler systems. As α increases
(with β = 0) λmax crosses a threshold and becomes
negative (see the cross-section of Fig. 2 in Fig. 3).
Further increase in α reveals another threshold as
λmax crosses over to become positive again. This
implies that if the coupling is too strong the syn-
chronous state will not be stable. This latter situa-
tion is explained by the asymptotic analysis above.
When the x coupling is very strong the stability of
the synchronous state will depend on the stability of
the remaining y–z block (subsystem) which is easily
seen to be unstable.

If α is set to be in the stable range and β is
increased, then λmax can also cross a threshold and
become positive, implying that a large imaginary
coupling can destabilize the system. The reason
for this is again given by the asymptotic analysis
wherein the large imaginary coupling leaves the un-
stable y–z subsystem controlling the synchroniza-
tion stability.

Diffusive coupling in a circular array adds
x-coupling terms like α(xi+1 + xi−1 − 2xi) to each
node’s x ODE. The connection G matrix for this is,

G1 =



−2 1 0 · · · 1

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

...
...

1 0 · · · 1 −2

 (17)

and this gives eigenvalues of γk = 4 sin2(πk/N),
each twice degenerate. The eigenmodes are dis-
crete sine and cosine functions of the node indices i
[Armbruster & Dangelmayr, 1987; Heagy et al.,
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Fig. 2. Master stability function for Rössler nodes with x coupling. The stable region is the central (blue) valley, the heavy
curved line is the zero Lyapunov exponent line, and the unstable (red) surrounding region.

Fig. 3. Cross-section of the master stability function for x-coupled Rösslers. The blue line shows the stable region (the valley
in Fig. 2) and the red line shows the unstable region.
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1994b]. For a particular coupling strength σ we
show the points σγk in Fig. 4 for an array of
10 Rösslers. The array has a stable synchronous
state. As the coupling σ increases from 0, the
first mode to become stable is the shortest spatial-
frequency mode; the last mode to become stable
is the longest spatial-frequency mode. Thus, in a
stable, synchronous state, decreasing σ will cause a
desynchronization with the long wavelength mode
going unstable first, a long wavelength bifurcation
(LWB). Increasing σ causes the shortest wavelength
to become unstable, a short wavelength bifurcation
(SWB) [Heagy et al., 1994b; Heagy et al., 1995]
shown in the inset of Fig. 4. In this way we see that
the analysis of mode stability also exposes which
spatial patterns will emerge when the synchronized
state loses stability in the array [Pecora, 1998].

Note, as more oscillators are added to the ar-
ray, more transverse modes are created and the dis-
tance (along the real axis α) between the longest
and shortest wavelength modes increases. Eventu-
ally, the system will reach a point at which we will
increase σ to stabilize the long wavelength mode
only to have the short wavelength mode become
unstable at the same time. There will be an up-
per limit on the size of a stable, synchronous array
of chaotic Rössler oscillators [Heagy et al., 1994b;
Heagy et al., 1995]. Such a size limit will always ex-
ist in arrays of chaotic oscillators with such limited
stable regimes. Such a size limit will not exist if the
oscillators are limit cycle, but the stable range of σ
will be compressed down toward the origin as more
oscillators are added to the array.

In all-to-all coupling schemes (see the connec-
tion matrix G3 below) the transverse eigenvalues
are all the same, γk = −σN . The all-to-all scheme
can support synchronous chaos for the Rössler oscil-
lator example for the right σ. Unlike diffusive cou-
pling, all modes become unstable when the thresh-
old is crossed. See Fig. 5.

G3 =



−N + 1 1 1 · · · 1

1 −N + 1 1 · · · 1

1 1 −N + 1 · · · 1
...

...
...

...
...

1 1 · · · 1 −N + 1


(18)

Star coupling [Eq. (19)] results in two trans-
verse eigenvalues, γk = −σ and γk = −σN . This
yields two points on the master stability surface (see
Fig. 6 for seven oscillators) beside the synchroniza-

tion eigenvalue. If we decrease σ, we get a desyn-
chronizing bifurcation in which sinusoidal modes
that are on the spokes of the star become unstable
and grow. If we increase σ, we get an interesting
desynchronization bifurcation where the nodes on
the spokes remain synchronous, but the hub node
begins to develop motions of opposite sign to the
former. We call this a drum-head bifurcation (see
the inset in Fig. 6). There is also a size limit for
the star configuration. For the x-coupled Rössler
example the maximum number of synchronized os-
cillators is 45.

Gstar =



−N + 1 1 1 · · · 1

1 −1 0 · · · 0

1 0 −1 · · · 0
...

...
...

...
...

1 0 · · · 0 −1

 (19)

We now consider a more complex coupling
scheme with asymmetric nearest neighbor coupling.
To get the asymmetry we add an antisymmetric
connection to the symmetric G1:

G2 =



0 −1 0 · · · 1

1 0 −1 · · · 0

0 1 0 · · · 0
...

...
...

...
...

1 0 · · · 1 0

 (20)

We also add all-to-all coupling, G3. The “x” cou-
pling term in the Rössler example becomes (cs −
cu)x

i+1 + (cs + cu)x
i−1 − 2csx

i + ca
∑
j(x

j − xi).
This is the sum of G1, G2 and G3. With each ma-
trix is associated a coupling strength, cs, cu and ca,
respectively. The matrices are simultaneously diag-
onalizable using sinusoidal modes. The eigenvalues
are complex (due to the antisymmetric part), γk =
−2cs[1−cos(2πk/N)]+2cui sin(2πk/N)−caN , and
they must lie on an ellipse centered at −2cs − caN
(see Fig. 7). We can always adjust the coupling
strengths so all transverse eigenvalues lie in the sta-
ble region. Increasing cs will elongate the ellipse
along the real axis. Depending on where the ellipse
is centered this can cause either a LWB or a SWB.
Increasing cu can cause an intermediate wavelength
bifurcation (IWB) for the Rössler situation since
the ellipse can elongate in the imaginary direction
causing the intermediate wavelengths to become un-
stable (IWB).
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Fig. 4. Master stability function showing eigenvalue placement in the complex plane for diffusive coupling where the coupling
strength is set to have all the transverse modes stable. The remaining mode at α = β = 0 is the eigenvalue for the
synchronization manifold. The inset shows the onset of a short wavelength bifurcation as the coupling strength is increased.

Fig. 5. Master stability function showing eigenvalue placement in the complex plane for all-to-all coupling where the coupling
strength is set to have all the transverse modes which have equal eigenvalues stable. In the inset, all modes go unstable at
once as the coupling strength is increased.
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Fig. 6. Master stability function and eigenvalues for star coupling where the coupling strength is set to have all the transverse
modes stable. In the inset, the coupling strength is increased to make the larger eigenvalue go unstable and the pattern that
emerges is a growing “drum-head” mode.

Fig. 7. Master stability function showing eigenvalue placement in the complex plane for asymmetric diffusive coupling where
the coupling strength is set to have all the transverse modes stable. The inset shows the onset of an intermediate wavelength
bifurcation as the imaginary (antisymmetric) coupling strength is increased.
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(a)

(b)

Fig. 8. (a) Plot of experimental results for asymmetrically
coupled Rössler-like circuits showing the classes of desyn-
chronizing bifurcations that occur when the symmetric (cs)
or antisymmetric (cu) part of the coupling is changed from
a synchronous state to a state in which the theory predicts
that one of the eigenmodes should be unstable. The labeling
scheme is = synchronous mode, = long wavelength

(mode 1), = intermediate wavelength (mode 2), =
intermediate wavelength (mode 3), and = short wave-
length (mode 4). (b) Similar plot of theoretical prediction of
which modes are least stable.

We experimentally tested the dependence of bi-
furcation type (LWB, IWB or SWB) as a function
of couplings cs and cu using a set of eight coupled
Rössler-like circuits [Heagy et al., 1994a] which have
individual attractors with the same topology as the
Rössler system in the chaotic regime. We initially
set cs = 0.2, cu = 0, and ca = 0.1 so that the
Rössler circuits were in the synchronous state. We
controlled the coupling constants cs and cu using
a digital-to-analog convertor in a computer. The
circuits were started in the synchronous state and
then the coupling was instantaneously reset to new
values of cs and cu. At the same time, we recorded
the x signals from all eight oscillators simultane-
ously with a 12-bit eight channel digitizer card. We
arbitrarily chose the threshold of the sum of modes
1–4 exceeding 5% of the synchronous mode to de-
termine when the oscillators were not in sync.

After we switched the coupling constants cs and
cu from the synchronous state to a nonsynchronous
state, we fit the transient portion of each mode-
amplitude time series to an exponential function to
find a growth rate λ for each mode. We recorded
the mode with the largest λ as being the most un-
stable mode. Figure 8(a) shows the experimen-
tal results. In Fig. 8(b) we plot the least stable
eigenmode found from the master stability func-
tion. Theory and experiment compare well. The
synchronous region has a similar shape, including
the sharp peak just before the SWB region. Other
bifurcation regions agree reasonably well, including
the small mode 3 region near the peak of the sync
region.

5. The Three-Oscillator
Universal Probe

We can calculate the MSF numerically for a great
many systems so long as we have a good model for
the dynamics. However, it is sometimes easier or
faster to vary experimental parameters than numer-
ical ones and in some cases the numerical model
may not be accurate. In the cases where we can
construct a network of the nodes we are interested
in and we can control the coupling weights to each
node, we now show that there is a simple configura-
tion of three nodes that will allow us to completely
probe the MSF over the entire complex plane.

Consider the following setup of three coupled
oscillators (we consider only additive coupling for
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now for simplicity):

dxi

dt
= F(xi) +

ε

3
[H(xi+1) + H(xi−1)− 2H(xi)]

+
δ√
3

[H(xi+1)−H(xi−1)]

i = 1, 2, 3 cyclically (21)

where we have added factors of 3 and
√

3 to sim-
plify later equations. The first term is a symmet-
ric coupling and the second term an antisymmetric
coupling. The variational equation is

dξ

dt
=

J 0 0

0 J 0

0 0 J

 ξ

+



−2
ε

3

ε

3
+

δ√
3

ε

3
− δ√

3

ε

3
− δ√

3
−2

ε

3

ε

3
+

δ√
3

ε

3
+

δ√
3

ε

3
− δ√

3
−2

ε

3


⊗DH · ξ . (22)

And diagonalizing the second term connection
matrix (G) gives:

dψ

dt
=

J 0 0

0 J 0

0 0 J

ψ

+

0 0 0

0 (ε+ iδ)DH 0

0 0 (ε− iδ)DH

ψ, (23)

where ψ is ξ transformed to the eigencoordinates.
For the MSF, we are only interested in the

lower-right 2 × 2 block. Because of the symme-
try of the MSF about the real axis we only need
one subblock, say for the ε + iδ block, to get the
stability of the system. But we see that by
varying ε and δ we can cover the entire com-
plex plane. Hence, we can probe the entire
MSF using only a three-oscillator system. For
that reason we call our coupling scheme involv-
ing the three oscillators a universal probe of the
master stability function [Fink et al., 1999]. It
means given the node (the vector field F) and

the coupling function (H) to apply to each node,
the three-oscillator system above can probe the
stability of any other configuration (G) of those
oscillators.

In the next section we apply the universal,
three-oscillator probe to a circuit version of the
Rössler system comparing the experimental probe
of the MSF with the numerical results.

6. Application of Three-Oscillator
Probe to Circuit-Rössler System

6.1. Three-oscillator coupling

To rigorously demonstrate the practical usefulness
of the three-oscillator universal probe of the MSF,
we apply the above concepts to a physical system, a
system complete with inherent parameter mismatch
and noise.

As our chaotic oscillators, we chose to use
piecewise-linear Rössler circuits as above. On the
complex plane for the MSF the requirement for syn-
chronization, the greatest Lyapunov exponent less
than zero, defines a line or border. What we need
now is a method to examine the stability and per-
formance of synchronized systems on both sides of
the “threshold of synchronization.” The chaotic na-
ture of these systems makes demonstration of a syn-
chronization threshold in a noisy physical system a
particularly important step in the development of
a robust theory, and yields an interesting deviation
from that theory, which will be discussed later.

We construct a ring of three oscillators. In the
electronic implementation of the universal system
of Sec. 5, voltage coupling is accomplished by a se-
ries of operational amplifiers. First, the signal from
each oscillator’s x output is routed to an operational
amplifier buffer; this assures that our coupling tap
does not affect the operation of the running oscil-
lators. Then, each signal is routed to three of six
operational amplifier adding arrays. The first three
of the six generate the (xj+1 + xj−1 − 2xj) compo-
nent, while the latter three subtract (xj+1 − xj−1).
A similar scheme is used for y coupling with yj re-
placing xj . Finally, each signal is then multiplied
by δ or ε respectively, by using an analogue multi-
plier IC. The time delay caused by this process is
negligibly short in relation to the time scale of our
oscillators.
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Thus we have our fully coupled circuit
equations

dxj

dt
= F(xj) + A(xj+1 + xj−1 − 2xj)

+ B(xj+1 − xj−1) (24)

along with their respective variational equations

dξj

dt
= J(xj) · ξj + A(ξj+1 + ξj−1 − 2ξj)

+ B(ξj+1 − ξj−1) , (25)

where F is the vector field given by Eq. (21) and J
is the Jacobian of Eq. (21). The matrices A and B
are the symmetric and antisymmetric parts of the
coupling, respectively, and are analogous to the ε
and δ contributions, respectively, to Eq. (21). For
x coupling the matrices A and B become

A =

 ε 0 0

0 0 0

0 0 0

 , B =

 δ 0 0

0 0 0

0 0 0

 (26)

and for y coupling

A =

0 0 0

0 ε 0

0 0 0

 , B =

0 0 0

0 δ 0

0 0 0

 , (27)

which, except for the factors of 3, is equivalent to
the G matrix of Eq. (22) when

H =

1 0 0

0 0 0

0 0 0

 (28)

for x coupling and

H =

0 0 0

0 1 0

0 0 0

 (29)

for y coupling.

6.2. Experimental setup

Observing the stability of the circuits in the compo-
nent in which we are coupling would not give a true
picture of what is happening, so data must be taken
from a component other than the one by which the
circuits are coupled. This allows us to see any pro-
nounced bursting or other desynchronization effects

which would be surpressed from observation in the
coupled component since the coupling tends to slave
its components to each other, regardless of what the
uncoupled compenents are doing. Thus, if the un-
coupled component appears to be synchronized, we
can be certain that the synchronization in rest of
the circuit is stable as well. We will observe the
behavior of just the y component when coupling x,
and observe just x when coupling y.

Observations, both in numeric simulation and
in physical experiment, are made in orthogonal
bases perpendicular to the plane of synchroniza-
tion. We have shown that the transverse directions
can be given by complex numbers as in Eq. (25),
but for the experiment we need real numbers so we
choose two directions in real phase space that are
transverse to the synchronization manifold. These
are easy to find. All components are equal on the
synchronization manifold which can be treated as a
“vector” along the “diagonal” in phase space,
namely [1, 1, 1]. Two vectors orthogonal to this
diagonal, and, therefore, spanning the transverse
directions, are [2, −1, −1] and [0, −1, 1]. Thus in
numeric simulation for x coupling, we recorded

SeparationTheoretical

=
√

(2y1 − y2 − y3)2 + (y3 − y2)2 (30)

In the experiment, the separation between cir-
cuits was found by capturing only two streams of
data, recording (x1 − x2) as channel 1 (Ch1) and
(x1 − x3) as channel 2 (Ch2). Substituting the ex-
pressions for the two channels into Eq. (30) gives,

SeparationExperimental

=
√

(Ch1 + Ch2)2 + (Ch1 − Ch2)2 (31)

Similar results are obtained for y coupling with xj

replacing yj.
The experiment was controlled and automated

by a LabWindows based computer program, and
proceeded as follows: An 8-bit digital-to-analog
converter, controlled by the computer, supplied DC
voltages to the two sets of multiplier chips: one
for ε, one for δ. An optimal ε and δ, determined
in advance, were switched on and held for 0.1 sec
(approximantely 100 cycles) insuring initial syn-
chronization of the three oscillators. At the com-
pletion of this cycle, the voltages were simulta-
neously changed to new variable ε’s and δs. A
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Fig. 9. Contour plot of experimental probe of the MSF (x coupling) using the synchronization distance measurement of
Eq. (31). In the stable (red) region the distances were below the threshold for synchronization. In the unstable (blue) region
the distances were beyond the threshold for synchronization.

few cycles later, (10−2s), a 12-bit analog-to-digital
converter began to record the separation of the os-
cillators, as described in the paragraph above, for
approximately 400 cycles. The results were then av-
eraged, yielding a single value for the separation of
the oscillators at that particular combination of δs
and ε’s.

6.3. x coupling

Coupling the oscillators by their x compontents, we
observed the output of the y components. Figure 2
shows a map of the maximum Lyapunov exponents
as predicted by computer simulation. It suggests
a elliptical shape for the stable region, always with
increased stability along the real line where there is
no antisymmetry.

Figure 9 presents the experimental version of
the probe of the MSF using Eq. (31) with the same

coupling scheme (x) used in the circuits. There is
no empirical link between the voltage scaling in the-
ory and experiment, so that the scales of each may
differ greatly. Within reasonable magnitudes, the
shape and topology of the theory and experiment
match well. Thus, we have experimentally verified
the shape of the stable region of the MSF.

6.4. y coupling

The above process was repeated, coupling the cir-
cuits via their y components, observing the outputs
of the respective x components. Figures 10 and
11 show theory and experiment respectively. As
in the case of x-coupling case, the topologies and
shapes generally agree with each other, but here
the curvature in the synchronization threshold re-
veals a weakness in using the Lyapunov exponents
as a measure of synchronization stability.
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Fig. 10. The master stability function for y coupling in the
Rössler circuit.

The theoretical (Lyapunov exponent) thresh-
old in the MSF runs almost vertically, parallel to
the imaginary axis. The experimental threshold fol-
lows a parabolic shape. In the theoretical MSF such
parabolic shapes occur in the contours at λmax val-
ues that are negative. This would imply that in
the experiment the y-coupling arrangement needs
greater stability to cause robust synchronization.
We take up this subject in the conclusions.

7. Conclusions

The stability of various configurations of coupled
systems can now be investigated easily. The only
requirement is that the variational equation (not
necessarily the original evolution equations) be of
the form of a “Jacobian” plus a weighted linear com-
bination of the coupling functions to other nodes.

Here we use the word “Jacobian” to also include
the extra terms added to each node’s variational
equation by the coupling.

We have shown that the form of the variational
equation also allows one to probe the master sta-
bility function with a simple three-oscillator array
whose coupling is linear and can be varied as to its
symmetric and antisymmetric weights. This allows
for experimental probes of the MSF giving direct
contact with what would otherwise be an abstract
mathematical entity.

In the experimental study when we used y cou-
pling we saw a discrepancy between the theory and
experiment. In explaining that difference here we
open up new possibilities for other master stabil-
ity functions, each depending on the synchroniza-
tion criterion one chooses. Several other criteria
for synchronization thresholds have been suggested.
These are (1) the maximum Lyapunov exponent
or Floquet multiplier for the least stable invari-
ant set [Ashwin et al., 1994; Rulkov & Sushchik,
1997], e.g. an unstable periodic orbit in a chaotic
attractor, (2) the average of the nonconstant part
of the Jacobian and coupling compared to the lin-
ear parts [Brown & Rulkov, 1997], (3) the max-
imum (supremum) of the real part of the eigen-
values of the (instantaneous) Jacobian (including
the coupling terms) at all points or some repre-
sentative set of points on the attractor [Pecora
et al., 1995], e.g. when negative, this function
guarantees ultimate transverse-direction contrac-
tion everywhere on the attractor, and (4) the maxi-
mum eigenvalue of the (instantaneous) symmetrized
Jacobian (including the coupling terms) at all
points or some representative set of points on the
attractor [Gauthier & Bienfang, 1996], e.g. this
guarantees monotone damping of transverse pertur-
bations [Kapitaniak, 1996].

All criteria (1)–(4) require calculation of quan-
tities from the same variational equation as that
used here for the maximum Lyapunov exponent
criterion. Hence, the same techniques that led to
the block structure of the Jacobian and coupling
components that we developed here will work with
(1)–(4). Thus, for each criterion there is a master
stability function and coupling changes will man-
ifest themselves as motion of the eigenvalues on
the complex plane just as above. Furthermore, for
each criterion the analysis using the three-oscillator
universal probe also holds. In this way the three-
oscillator probe can be a good test for which cri-
teria is best applicable to a particular system by
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Fig. 11. Experimental probe of the MSF (y coupling) similar to Fig. 9. (Note: Scales are not the same as Fig. 10).

comparing the experiment with the master stability
function for each criterion.
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