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Synchronization Through Extended 
KaPman Filtering zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract 

We study the synchronization problem in discrete-time via an extended 
Kalman filter (EKF). That is, synchronization is obtained of transmitter and 
receiver dynamics in case the receiver is given via an extended Kalman filter 
that is driven by a noisy drive signal from the transmitter. Extensive computer 
simulations show that the filter is indeed suitable for synchronization of (noisy) 
chaotic transmitter dynamics. An application to secure communication is also 
given. 

Keywords: Synchronization, Extended Kalman filtering, Secure communication, 
Parameter estimation, Discrete-time systems. 

1991 Mathematics Subject Classification: 65C99, 7OK50,93C55,93E1l7 94A99. 

1 Introduction 

Synchronization is a fascinating phenomenon and has been observed in many diverse 
systems. Synchronization in chaotic systems may bring many interesting possibilities 
in practical applications. For example, it is believed that synchronization plays a 
crucial role in information processing in living organisms and could lead to important 
applications in speech and image processing (Ogorzalek [17]). Another area where 
synchronization may play an important role, is (secure) communication. Due to 
the fact that chaotic signals are noise-like and unpredictable in nature, such signals 
can possibly be used as potential carriers for secure communication ([20], [12], [Ml, 
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[6], [lo]). Moreover, the synchronization property of chaotic circuits has revealed 
potential applications to secure communications (see, e.g., [5], Kocarev et al., [12]; 
Parlitz et al., [Ml; Cuomo et al., [6]; Halle et al., [io]). 

However, the problem of obtaining two chaotic systems oscillating in a synchro- 
nized way is a nontrivial question. This is because any small difference in initial 
conditions would be exponentially amplified and thus the motions of the systems 
rapidly become uncorrelated (Ogorzalek [17]). Despite this fact, Pecora and Carroll 
discovered (see [5], [19]), that in particular cases it is very well possible that synchro- 
nization between a chaotic transmitter and driven receiver is possible. ?duch hrtheï 
work about synchronization can be found in the special issue [24]. 

In this paper we will concentrate on synchronization for systems in discrete time. 
Mostly, synchronization has been studied for systems in continuous time but many 
ideas go through in discrete time. On the other hand, the theory is less far devel- 
oped for discrete time systems -even despite the fact that in many cases the actual 
implementation is done in discrete time. 

Consider an autonomous, discrete-time, dynamical system 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k )  is a n-dimensional vector. The Pecora-Carroll scheme for synchronization 
can be described as follows. Divide the system into two subsystems via x ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

(xi ( k )  , x2 ( /c) )~,  where x1 ( k )  is nl-dimensional and x2 ( k )  is na-dimensional, with 
nl + n2 = n (often nl = 1, see [5], [6], [19]). We refer to x1 ( k )  as the drive signal 
So, the transmitter system (1) can be written as 

where f (x) = (fi (XI, x2) f2 (21, ~2))'. The driven replica subsystem is described by 

.2 ( k  + 1) = f 2  (21 ( k )  , .2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 (4) 

the so-called receiver dynamics. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), xf ( k )  is the response variable and (4) is 
known as the response subsystem. 

The receiver system (4) synchronizes with the transmitter system (2) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 ) ,  if 

no matter which initial values x1 (O), x2 (O) and xf (O) have. 
In the context of communication the drive signal is transmitted from the transmit- 

ter system to the receiver system. The full state x ( k )  of the transmitter is unknown 
at the receiver. By driving with the known signal z1 ( IC)  to a replica response sub- 
system (4), we can then obtain x2 ( k ) ,  if the copy synchronizes with the full system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2)-(3) (according to (5)). 
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In general, no matter if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i  is chaotic or complex, no complete general answer 
exists to the problem whether a replica system (4) would achieve synchronization 
according to (5). For that reason several attempts for achieving synchronization of 
signals like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k )  and xf ( k )  have been proposed. The above idea of synchronization 
by decomposition into subsystems (by using a replica (4)) has first been given in 
Pecora and Carroll [19]; the ocurrence of such synchronization is conditioned on 
whether the conditional Lyapunov exponents for (4) are negative. In such case, 
the system (I) is said to possess a self-synchronizing property. Note however, the 
negativity of the conditional Lyapunov exponents is not a guarantee for the s~ccessfd 
synchronization, cf. Badola et  al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2]. However, recent research has shown, that one 
is not necessarily constrained to the use of a replica (4) when choosing a system 
to achieve synchronization (at least when one is partly free to choose the receiver 
dynamics-driven by the transmitter’s drive signal), i.e., it is also possible if, instead 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4), we utilize a different response system 

This may leads to considerably more flexibility in applications like secure communica- 
tion. This added flexibility may facilitate potential improvement in synchronization, 
e.g., Ding and Ott [8] have obtained synchronization using (6) in case a replica (4) 
does not synchronize. Another adventage of using (6) is to improve the convergence of 
the synchronization. In particular, we like to recall the (reduced) observer viewpoint 
advocated by Nijmeijer and Mareels in [15] which basically admits -under suitable 
assumptions- the construction of dynamics (6) such that (5) holds, whatever initial 
conditions (2), (3) and (6) have. A possible extension of [i51 in discrete time has been 
given by Huijberts et  al. [ill. 

On the other hand, for communication purposes (specifically, additive signal mask- 
ing and recovery), it is required that the synchronization is not affected by some noise 
in the synchronizing drive signal. In other words, the use of synchronized chaotic sys- 
tems for secure communications relies on the robustness of the synchronization to 
perturbations in the drive signal and in the system dynamics, [6], see also [20]. For 
certain synchronized chaotic systems, the ability to synchronize is robust. In the 
Lorenz system, for example, one can observe such property (Cuomo e t  al. [6]) for an 
exact replica (4). 

On the basis of these considerations, we propose a system of the form 

a ( k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ i) = f R  (21 ( k )  , a  (IC)), (7) 

where 21 ( k )  is the drive signal corrupted by noise from the transmitter dynamics i.e., 
21 ( k )  = x1 ( k )  + 2i ( k ) ,  with 2i ( k )  the noise signal, and 2 ( k )  is the state estimate for 
the original system (I), provided by an extended Kalman filter (EKF). In the next 
section, we give the particular equations for the EKF and further background on it. 
Among some advantages of using (7) as receiver/estimator for (i) are: 
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o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe EKF possesses some natural robustness property to additive Gaussian noise 
in the drive signal (see Cuomo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [6]). 

o The EKF is easily implemented. 

o Flexibility in applications since a decomposition into two subsystems (2)-(3) is not 
necessary. 

The idea of using an EKF to estimate the states of a chaotic system is given 
perhaps for the first time by Fowler [SI. Cuomo ei al. [6] shown that the EKF 
estimates of a Lorenz system approach its true states. Recently in [ai], Sobiski and 
Thorp describe a method of synchronizing two chaotic systems by implementing an 
EKF for continuous-time systems. 

Motivated by these papers and by its implication in secure communications, we 
study synchronization between the discrete-time systems (i) and (7) when the EKF is 
used as receiver driven by a noisy drive signal. Besides synchronization per se, we also 
study the utility of using the EKF for reconstruction of a binary message. The idea 
is that some parameter in the transmitter can be used as the (binary signal) message 
carrier. In the EKF we include in this case as extra state a parameter-estimator, see 
also [21] where a similar idea was used in continuous time. At the same time, we 
mention some differences with [21]: 

o The context we use here is discrete-time. This on the one hand makes the presen- 
tation even simpler than in continuous time. On the other hand, to the best of 
our (knowledge) using the EKF for synchronization in discrete time is new. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 By means of extensive simulations we make an attempt to give an evaluation of 
the performance of the EKF by changing filter-parameters (covariance noise, 
initial error, etc.). 

o For the given examples a rigorous result that ensures the local (optimal) conver- 
gence of the EKF is given. 

The organization of this paper is as follows: in Section 2 we present our approach to 
achieve synchronization of discrete-time systems via an extended Kalman filter which 
is driven by a noisy drive signal from the transmitter. By using computer simulations, 
the approach used in this study is illustrated with two examples in Subsection 3.1, 
while in Subsection 3.2 an application of these results to secure communication is 
given. Finally, Section 4 contains some concluding remarks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 An extended Kalrnan filter as receiver 

Briefly, given a stochastic (linear) model description, the Kalman filtering problem is 
to produce an estimate 52 ( I C )  of the state model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( I C ) ,  using measurements till time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso as to minimize the mean-square error between estimate and state. From this 
viewpoint) the Kalman filter is the optimal linear filter since it produces an estimate 
minimizing a mean-square error. For application to nonlinear models, the so-called 
extended Kalman filter is often used in practice, but, in general, no guarantee in 
this case of producing a good (optimal) state estimate can be given. In this case 
the nonlinear system is linearized by employing the best estimates of the state as 
the reference values used at each stage for the linearization) i.e., the EKF consists 
of using the classical Kalman filter equations for the first-order approximation of the 
nonlinear system about the last estimate. As a direct consecpence of t a h g  this 
approximation, the EKF is no longer linear or optimal. For further details we refer 
the reader to Anderson and Moore [i] and references therein. 

We consider transmitter dynamics of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x ( k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ i) = f ( x  ( k ) )  + w ( k )  , x (O) = zo, (8 )  

with transmitted signal 

Y ( k )  = h (x + (kc) * (9) 

Typically, x ( k )  is an n-dimensional vector and y ( k )  is a scalar signal (although much 
of what follows can be extended to a vector signal y (k ) ) .  

In ( 8 )  w ( k )  represents the noise in the dynamics of the transmitter which is 
assumed to be a zero mean noise process with E [w ( k )  wT ( I ) ]  = Q& > O, with Skl the 
Kronecker delta function. Also v ( k )  is a zero mean noise process with E [v ( k )  v ( l ) ]  = 
R S k l  > O ;  v ( k )  and w ( k )  are assumed to be independent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Remark 1 Although it m a y  not  be necessary to introduce the dynamics noise w ( k )  
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S)? we f ind it convenient and more flexible to do so. In f ac t  f r o m  certain perspective 
it can be argued that a n  error free dynamics would be a n  over-idealization, which m a y  
prohibit a successful synchronization through the EKF, see Sorenson [23]. In the 
theoretic developments to follow one might think about the covariance ma t i x  Q as 
being reasonably small, mimicking at least a very accurate modeling. For convenience 
we have assumed in the examples of Section 3 that w ( k )  = O f o r  all k .  

The receiver dynamics we propose is a filter that will produce an estimate for the 
state x ( k )  given the measurements y ( k )  according to (9). The EKF that we use here 
as the receiver dynamics for (8) and (9) is given as follows, cf. [i]. 

i) Measurement update equations: 

2 ( k )  2 X(k /k  - i) i- K?(k) [ y  ( k )  - h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2  ( k / k  - i))] (10) 

the vector 2 ( k )  is referred to as the filtered estimate of the state x ( k ) .  The covariance 
of the error in X ( k )  is given by 

2) Time update equations: 
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The (one-step ahead) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApredictor of x ( k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 ( k  + l / k )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (2  ( k ) )  , (12) 

the covariance matrix of the prediction error is 

where 
K?(k) = P?(k/k  - l ) H Z ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[H?(k)P,(k/k - l )H;(k)  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARI-' (14) 

is known as the Kalman gain matrix, and 

Remark 2 In practice it might be impossible to  determine x ( 0 )  exactly. 
In this case, x ( 0 )  is assumed to be a Gaussian random variable 
of known mean  value E(x (0 ) )  = 8 ( 0 )  and known covariance mat r ix  

E { [x ( O )  - 8 ( O ) ]  [x ( O )  - 8 ( O ) l T }  = P ( O ) ,  and it is independent of w ( k )  and u ( k ) .  

The filter is initialized by setting 2 (O) = 8 0  and P (O) = Po = PT > O. Thus, 
x (O) is given and we choose arbitrarily 80, PO = PT > O. 

The definition of synchronization given in the introduction, i.e., equation (5) , 
can be extended to include approximate or noisy synchronization to accommodate 
inaccurate parameters and non-ideal signal transmission. In this case, the receiver 
(10)-(13) can not synchronize with the transmitter (8) in the way that condition (5) 
is fulfilled so we need to replace it by a weaker condition 

where p should be related to R and is a constant of the synchronization error. If for a 
given p there exists a time instant r (to be called the synchronization time) such that 
condition (17) is fulfilled, then the transmitter (8) and the EKF receiver (10)-(13) are 
approximat el y synchronized. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Remark 3 Also one might consider as a n  adequate condition for  approximate 
synchronization in the noisy context 
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In particular this m a y  be a more relevant requirement i f  w ( k )  is not necessarily 
bounded. Since we will later o n  assume that both u ( k )  and w ( k )  are bounded it 
suffices to  take (1 7) as the definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor approximate synchronization. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We define for ei ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi ( k )  - iii ( k ) ,  i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,2,. . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

q (p )  = min {lei (k) l  < p, k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,  r + i , .  . .} , 
7- 

arid the synchrmizatien time ?y 

r = max ( ~ i )  , i = i, 2, . . . , n. (19) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Remark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 From (17) note that there exists a compromise between the  quantit ies 

p and r,  since i f  p increases then r decreases, and vice versa. 

The EKF is often used to design observers (to deal with state estimation) for forced 
or non forced nonlinear systems. In spite of the fact that only local convergence is 
ensured, this method is widely used in practice and often gives convincing results (for 
a summary of the theory and applications see, e.g. Boutayeb et  al. [4], Baras et  al. 
[3], La Scala et  al. [13], Ljung [14], Song and Grizzle [22] and references therein). 
The convergence aspects of the EKF when it is used as a deterministic observer for 
discrete-time system, are analyzed through a Lyapunov approach in Boutayeb et  al. 
[4], and Song and Grizzle [22]. We follow the approach proposed in La Scala et  al. 
[13], for the establishing the convergence of the EKF when applied to a stochastic, 
discrete-time nonlinear system with a linear output map. To this end, define the error 
in the filtered state as 

e ( k )  x ( k )  - it ( k )  . (20) 
From (10) we have 

e ( k )  = [I - K? ( k )  H, (k)] e ( k / k  - 1) - K? ( k )  u ( k )  , 

where e ( k / k  - 1) x ( k )  -2 ( k / k  - 1) is the error in the predicted state estimate, thus, 

Of is the remainder term from the Taylor series expansion of f ,  i.e., 

So, for the (corrupted) drive signal (9), we have the error dynamics equation 

e ( k )  = [ I  - K? ( k )  H? (k)] F, ( k  - 1) e ( k  - 1) 

+ [ I  - K? ( k )  H? (k)] w ( k  - 1) - Kg ( k )  u ( k )  

(21) 
- [I - K? ( k )  H? ( k ) ]  Of (x ( k  - i) , -e ( k  - i)) 



From the last equation, we see that the dynamics for the filtering error of the EKF 
driven by a noisy drive signal from the transmitter, is composed by the sum of the error 
dynamics for the deterministic case (neglecting linearization errors), and nonlinear 
perturbation terms driven by the noise processes and remainder term from the Taylor 
series expansion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf .  

Consider the time-varying linear system 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF’ ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (af/&) (?,/I ( k )  - 4 ( k ) ) .  Define the observability Gramian of 

along a trajectory { z ( k ) }  of (22) as 

k 

O ( k , M )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABT ( i , k ) H T  ( i ) R - ’ H ( i ) B  ( i , k )  
k k - M  

for some M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O and for all k 2 Ad, where @ (k2, k l )  = F’ (kz - i) 
F, (k2 - 2) - F’ (kl). Similarly, the controllability Gramian of [F’, Q] along a trajec- 
tory { ~ ( k ) }  of (22) as 

k-1 

C ( k ,  M )  = @ ( k ,  i + i) &caT ( k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi + i) .  
k k - M  

A system is said to be controllable (observable) along a trajectory { z  ( k ) }  if there 
exists M such that for all R, > O there exist O < E, < R,, ai (RZ,&,, M )  and 
bi (R,, E,, Ad), i = i, 2, such that for some arbitrary sequence {$ ( k ) } ,  \I$ (k)II 5 R,, 
and for all {$ ( k ) }  such that 114 ( k ) ] ]  5 E, 

b l l  5 O ( k ,  M )  5 b21, o < b’ 5 b2 < 00 (24) 

where these Gramians are evaluated along the trajectory z ( k )  = ?,/I ( k )  - 4 ( k )  of (22). 
The following assumptions are needed, cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[13]: 

i) The transmitted signal (9) is a linear in x, i.e.y 
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From Assumption 2), we can find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,2,3 such that 

for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIlltll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 R, +E,. Furthermore, by the continuity o f f ,  there exists a p4 > O such 
that 

(see, La Scala et  al. [13] ). Let 

1 1 1 2 -1 . 
bl a2 a2 

p = al + -, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = - + b2, s = - + b2 + pisi 

Since P, ( k )  and P, ( k  + l / k )  are defined by means of the linear system (22), we find, 
using [7] the bounds (depending on E,, R, and M )  

I P z ( k )  I P I ,  

4-li I P, ( k +  l / k )  5 S I .  

Eet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

+ {m) 
where O < y < l / s p 2 ,  provided that - l / s p 2  + pip44 llz 
Define a, B > O via 

+ ap/q IIz (Ic)1l4 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-y. 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  

- 

pa'" = (pq$ (1 - ;) 
and consider 

z ( k  + 1) = A ( k )  Z ( k )  + f 2  ( k ,  Z ( k ) )  

where 
A ( k )  = [ I  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Kz ( k  + 1) H ]  fG ( k )  , 

and 
z ( k )  = z ( k )  - z ( k )  1 
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Note that (30) is the linearized, undriven component of the EKF error dynamics, 
neglecting linearization errors. In La Scala zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [13] an explicit expression for an 
upper bound on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 is given as 

and 

Assume there exist 7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> O as defined in (32) and (33) such that 

for all 1I.z (k)II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI E, and for all k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O. 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[EKF Stability] (Ea Scala zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [U]) Consider the  error dy- 
namics  of the EKF given in (21) when the EKF is applied to  a signal model (8)-(25) 
which satisfies the standing assumptions 1)-3). Select M and O < E, < R, such that 
the controllability and observability conditions (23) and (24) are satisfied. T h e n  i f  

P5z + Q! 1, (35) 

(36) Ik (0)II < EZ ( P d - i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

where E ~ ,  Q! and P, 55, 7 , and 5 are given in (28), (29), (31), and (32), and (33), 
respectively, w e  have that the error dynamics satisfies 

(37) 

10 



.for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall O 5 k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< r ,  and 

f o r  all k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 r. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It is interesting to observe that the above theorem implies that under suitable 

technical conditions on the system dynamics f we obtain the ‘practical stability’ 
condition (37)-(38). It is clear that in the given noisy context this is the best we can 
hope kir; cmvergence te zere is obvio~?sIy impossible. ,The constant E, will piay i n  

the next section the approximate synchronization constant, see (17). Similarly the 
synchronization time r in (19) is related to the integer M .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. ,7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Examples 

3.1 Synchronization 

Example 1 (see Badola et al. [2]) 
Consider two coupled logistic maps as the transmitter dynamics 

x1 ( k  + 1) 

x2 ( k  + 1) 

= (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE) px1 (k) (1 - 2 1  ( k ) )  + EX2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k )  , 
(1 - E) pxz (k) (1 - x2 (k)) + EZ1 (k) . 

(39) 
= 

Treating y ( k )  = x2 (k) as the (ideal) drive signal (nl = n2 = i), Badola et  al., in [2] 
investigated the synchronization of x1 (k) and the receiver signal xf (k) of which the 
dynamics were taken as 

xf ( k  + 1) = (1 - €) pxf (k) (1 - x? ( k ) )  + EX2 (k) . (40) 

In Badola et al. [2] it turned out that only for particular initial conditions synchro- 
nization between (39) and (40) occurs. We therefore reconsider (39) in the frame of 
Section 2. To do this, we use an EKF presented in the previous section as receiver 
dynamics for the noisy transmitter 

Z1 ( k  + I) 
Z2 ( k  + 1) 

= (1 - E )  px1 ( k )  (I - Z1 (k)) + EX2 ( k )  + w1 ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

(1 - E) px2 ( k )  (I - x2 (k)) + EX1 ( k )  + w2 ( k )  
(4%) 

= 

and the (corrupted) drive signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y ( k )  = 22 ( k )  + 21 ( k ) .  (42) 

The EKF will yield the state estimates il (k) and 22 ( k )  for the signals z1 (k) and 
x2 (k). The structure of the EKF is given by 

21 ( k  + 1) 

5 2  ( k  + 1) 

= (1 - E) p2.l (k) (1 - i1 (k)) + Ei2 ( k )  

+ k l  ( k )  [Y ( k )  - i 2  @)I 7 

(1 - E) pi2 ( k )  (I - 5 2  ( k ) )  + €51 ( k )  

+ ka ( k )  CY ( k )  - 5 2  @)I 

(43) 

= 

11 



where the gain vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k1 ( k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, k2 ( J c ) ) ~  is given via equations (lO)-(I4). 
We investigate the evolution of the estimation process created by the EKF with 

the assumption that the initial matrix Po is of the form Po = diag{poi>, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1,2.  Also, 
the variance of the noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR was fixed at 0.00005 and poi = pO2 = 100. To simplify 
the presentation we realized the dynamics noise as being identical zero or, which is 
equivalent, the covariance Q of ( w ~ , w Z ) ~  was supposed to be extremely small of the 
form Q = diag{qi}, i = I, 2, with qi = lo-'. 

For the parameter values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = 0.09 and ,!L = 3.7 and initial conditions in [O, 11 x 
[O, i j ,  we have that [ [x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k) i i  5 E, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy/iu for ail k 2 O. Although af ( L L )  /ax is not 
invertible everywhere, it turns out that when initializing (41) at ~ ( 0 )  = (0.4,0.7) 
the Jacobian remained nonsingular along the trajectory. The controllability and 
observability conditions hold for all k 2 1. Finally, we take E, = I, pi = 4.76, 
p2 = p3 = p4 = 3.36 and p5 = 1 to satisfy the Theorem 5. 

Initial conditions x (O) = (0.4,0.7) have been used for the subsequent simulations. 
For the above parameter values of ,!L and E ,  the transmitter (41) is apparently chaotic. 
Following [a ] ,  x1 ( k )  and X? ( k )  do not synchronize for these parameter values and 
initial conditions X? (0) = al (O) = 0.65 while we obtain synchronization (according 
to (17)) using the EKF as receiver. Figure 1 shows the synchronization error between 
transmitter and receiver dynamics. We see that, after some transient behavior, the 
approximate synchronization is clearly visible; according to (19) it is obtained when 
r = 3 when p = 0.04 is considered (see Figure 2). 

o 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O05 - 

0 -  J-.Jb 

= - 0 0 5 -  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-01-  

4 15 - 

-02- 

-0 25 

" Y ,  

-001 

-0 o2 

"-003- 

-0 04 

-005 

-006 

N 

O-- . - - -  

- 

- 

- 

- 

I , 

" Y ,  

-001 

-0 o2 

"-003- 

-0 04 

-005 

-006 

N 

Figure 1: Synchronization errors ei ( k )  = xi ( k )  - Iti ( k )  (i = 1,2)  for transmitter (41) 
and EKF receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(43) for Example 1: e (O) = (-0.25, -0.05), R = 0.00005, p = 3.7, and 
E = 0.09. 

O-- . - - -  

- 

- 
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- 

I , 

To evaluate the performance of the EKF from the point of view of sensitivity 
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O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA04 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o o2 - 

1 r 0 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 0 0 2 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 15 20 
4 04 

O 04 

N O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2: Approximate synchronization when p = 0.04 is considered for Example 1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = 

0.00005, p = 3.7, and E = 0.09. 

to initial errors, twenty different Monte Carlo runs were taken in order to obtain 
root-mean-square error statistics. The results are summarized in Table 1; where sdi 
( i  = 1 ,2 )  is the sum of square errors given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

sdi = (xi  ( k )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi& k = O, 1,. . . , N (44) 
i=l 

where xi ( k )  and ( k )  are the true and estimated states, respectively, and N the 
number of time steps. Thus, the mean square error (MSE) is obtained by 3. With 
the purpose to  know the same statistics, when the transient has died out we define 
the truncated mean-square error as 

N 

T M S E  = 1 ( x  ( i )  - 2 ( i ) )2 
N + l - T .  

2 = 7  

(45) 

The results in Table 1 show the good performance of the EKF for the system (41). 
In particular, it should be observed that even with larger initial errors, the truncated 
mean-square errors remain within similar ranges. 

Example 2 (see Huijberts et al. [li]) Consider the third order transmitter 
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2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) 
(O .4, O. 7) 

(0.39,0.69) 
(O. 3 7,0.67) 
(0.35,0.85) 
(O. 35, O. 90) 
(O .35, O .95) 

(0.35,l) 

(O. 25 ,O .85) 
(0.20,0.85) 
(0.65,0.75) 
(O. 70,O. 75) 
(0.75,0.75) 

(0.30,0.85) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x (o) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2 (O) 

@,O) 
(O .o1 ,o. 01) 
(O. 03, O. 03) 
(0.05 ,-O. 15) 
(O .OS,-0.20) 
(O .OS,-0.25) 
(0.05,-0.30) 

(0.15,-0.15) 
(0.28,-0.15) 
(-(9.25,-0.05) 
(-0.30,-0.05) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/A I A  A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 C )  
\U. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI U,-U. 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 

(-0.35,-0.05) 

sdl 
0.0019 
0.0021 
0.0022 
0.0052 
0.0057 
0.0062 
0.0082 
v.c214 
0.0745 
0.1697 
0.0666 
0.1026 
0.1870 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S d 2  

0.0002 
0.0003 
0.0003 
0.0225 
0.0400 
0.0625 
0.0900 
0.0225 
0.0226 
0.0226 
0.0025 
0.0025 
0.0025 

- 
r 
O 
O 
O 
2 
2 
4 
6 

8 
8 
3 
3 
8 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 
0 

- 

tsdl 
0.0019 
0.0021 
0.0022 
0.0027 
0.0030 
0.0032 
0.0035 
0.0028 
0.0036 
0.0046 
0.0023 
0.0024 
0.0056 

t s d 2  

0.0002 
0.0003 
0.0003 

2.4625e-O5 
2.765Oe-O5 
2.8954e-O5 
3.3452e-O5 

4.3 795e-O5 
5.0678e-05 
2.6513e-O5 
4.1756e-O5 
7.094%-O5 

2.7802e-05 

Table 1: Dependence of the synchronization time on the initial condition and truncated 
mean-square error according to (45) for Example 1: poi = 100, i = 1,2,  R = 0.00005, 
,LL = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.7, E = 0.09, p = 0.04, N = 100. 

as an extension of the system (39). Similarly that the last example we consider the 
noisy transmitter 

x1 ( k  + 1) 

x 2  ( k  + 1) 

2 3  (k + 1) 

= (1 - 6) pxl(-) (1 - x1 ( k ) )  + €22 ( k )  + w1 ( k )  , 
(1 - 6) pxz ( k )  (1 - x2 (W + € 2 3  (k) + w 2  ( k )  i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1 - E )  p x 3  ( k )  (1 - X 3  ( k ) )  + €21 ( k )  + w3 ( k )  , 

(47) 
= 

= 

in this case the (corrupted) drive signal is 

Y ( k )  = x2 ( k )  + 21 ( k )  . 

(1 - €) p21 ( k )  (i - 21 ( k ) )  + €22 (Ik) 

+ kl ( k )  [Y ( k )  - 2 2  @)I 9 

(1 - E )  psz ( k )  (1 - 2 2  ( k ) )  + € 2 3  ( k )  

+ kz [Y ( k )  - 2 2  ( k ) ]  , 
(1 - €) p 2 3  ( k )  (1 - 23 ( k ) )  + €21 ( k )  

+ k 3  ( k )  [Y ( k )  - 2 2  @)I 

(48) 

(49) 

The equations for the EKF (receiver system for (46)) are 

21 ( k  + 1) 

22 ( k  + 1) 

2 3  ( k  + a) 

= 

= 

= 

with gain vector (k1 ( k )  , k2 ( k )  , k 3  (k))' given via equations (10)-(14). 
In the following simulations we take ~ ( 0 )  = (0.2,0.4,0.6), R = 0.0001, Po = 

diag(poi}, poi = 100, i = 1,2,3, p = 3.7, and E = 0.35l have been used. Again, to 

IIn this case, we take this value since estimating the signals z1 ( k )  and z3  ( k )  is more difficult 
because z1 ( k )  is only indirectly influenced via z3 (k) .  
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simplify the presentation we realized the dynamics noise as being identical zero or, 
which is equivalent, the covariance Q of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ~ 1 , 2 0 2 ,  ~ 3 ) ~  was supposed to be extremely 
small of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= diag{qi}, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, 2,3,  qi = IO-'. 

For the above parameter values of E and ,LL and initial condition in [O, 1.21 x [O, 1.21 x 
[O, 1.21, we have that llz (k)II 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, = .\/315 for all k 2 O. Again, we have that 
f(z) /ax is not invertible everywhere, it turns out that when initializing (47) at 
(0.2,0.4,0.6) the Jacobian remained nonsingular along the trajectory. The control- 
lability and observability conditions hold for all k > 1. Finally, we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, = 1.2, 
pi = 5.94, p2 = p3 = p4 = 4.2 and p5 = 1 in order to satisfjj the Theore- 5. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 shows the synchronization error evolution between (47) and (49) for 
5 (O) = (1.3,6.4, O). Notice that we have assumed here a rather large initial error as 
to see the clear effect that the EKF needs more time for approximate synchronization. 
Again, we can see, after some transient behavior, that approximate synchronization 
is achieved; according to (19) it is obtained at r = 8 when p = 0.04 is considered (see 
Figure 4). 

0 5 -  

0- 

4: , - o 5  

-1 

-1 5 

- 

p o 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
: 0 4 L  , , I , I ; , ~ 

O 10 20 30 40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 60 70 80 90 100 
-0 2 

Figure 3: Synchronization errors ei ( k )  = zi ( k )  - &, ( k )  (i = 1,2 ,3)  for transmitter (47) 
and EKF receiver (49) for Example 2: e (O) = (--1.17 -6,0.6), R = 0.0001, p = 3.7, and 
E = 0.35. 

Twenty different Monte Carlo runs were taken in order to obtain root-mean-square 
error statistics. The results are summarized in Table 2 (sdi and r) and Table 3 (Csdi). 

3.2 Secure communication 

Finally, in this subsection, we want to present an illustration of the potential use of 
synchronized systems through the EKF in secure communications. 
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(O. 2, O. 4, O. 6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 

- 
- 

(O. 2,O .2,0.6) 
(0.21,0.21,0.61) 
(O. 22 ,O. 22, O. 62) 
(O. 23, O. 23, O. 63) 
(0.24,0.24,0.64) 
(O. 25 ,O. 25,O .65) 
(0.26,0.26,0.66) 
(0.28,0.28,0.68) 

(O. 3 , O. 3, O. 7) 
(O .4,0.4,0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.8) 

(-0.05,-0.05,0.35) 

(1.1,3.9,0) 
(1.3,6.4,0) 

(1.1,2.2,0.1) 

(1.3,7.4,-0.1) 

(-0.01,-0.01,-0.01) 
(-0.02,-0.02,-0.02) 
(-0.03,-0.03,-0.03) 
(-0.04,-0.04,-0.04) 
(-0.05,-0.05,-0.05) 
(-0.06,-Û.Û6,-0.06) 
(-0.08 ,-O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA08 ,-O. 08) 

(-0.1,-o. 1,-o. 1) 
(-0.2,-0.2,-0.2) 

(O. 25 ,O. 25 ,O. 25) 
(-0.9,- 1.8,O. 5) 
(-0.9,-3.5,0.6) 
(- 1.1 ,-6,0.6) 
(-1.1 ,-7,0.7) 

Sdl 
0.0025 
0.0028 
0.0030 
0.0035 
0.0051 
0.0078 
U.ûl i% 
0.0191 
0.0277 
0.1130 
0.6244 
0.7098 
0.8112 
1.3486 
1.4776 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

sd2 
0.0010 
0.0012 
0.0014 
0.0020 
0.0026 
0.0035 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
û.ûû44 
0.0072 
0.0108 
0.0439 
0.0825 
3.2463 
12.2512 
36.0032 
49.0023 

5d3 
0.0037 
0.0040 
0.0044 
0.0049 
0.0057 
0.0089 
û.ûlû7 
0.0126 
0.0158 
0.1377 
0.3338 
0.3684 
0.3984 
0.4523 
0.7087 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7- - 
0 
0 
0 
0 
3 
3 
5 
5 
5 
10 
17 
6 
6 
8 
11 - 

Table 2: Dependence of the synchronization time on the initial condition for Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: 
poi = 100, i == 1,2,3, R = 0.0001, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 3.7, E = 0.35, p = 0.04, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 100. 

2 (0) 
(O. 2 ,O. 2 ,O .6) 

(0.21,0.21,0.61) 
(O .22 , O. 22 ,O .62) 
(O. 23, O. 23, O. 63) 
(0.24,0.24,0.64) 
(O. 25,0.25 ,O. 65) 
(0.26,0.26,0.66) 
(0.28,0.28,0.68) 

(O. 3, O. 3, O. 7) 
(O .4, O. 4, O. 8) 

(-0.05,-0.05,0.35) 

(1.1,3.9,0) 
(1.3,6.4,0) 

(1.3,7.4,-0.1) 

(1.1,2.2,0.1) 

x (O) - 2 (O) 

(O,O,O) 
(-0. o1 ,-0.01 ,-o. 01) 
(-0.02,-0.02,-0.02) 

(-.03,-.03,-.03) 
(-0.04,-0.04,-0.04) 
(-0.05,-0.05,-0.05) 
(-0.06,-0.06,-0.06) 
(-0.08,-0.08,-0.08) 

(-0.1,-o. 1,-o. 1) 
(-0.2,-0.2,-0.2) 
(0.25,0.25,0.25) 
(-0.9,- 1.8, O. 5) 
(-0.9,-3.5,0.6) 
(- 1.1 ,-6,0.6) 
(-1.1 ,-7,0.7) 

tsdl  
0.0025 
0.0028 
0.0030 
0.0035 
0.0010 
0.0013 
0.0017 
0.0019 
0.0030 
0.0017 
0.0100 
0.0005 
0.0005 
0.0018 
0.0024 

t ~ d 2  
0.0010 
0.0012 
0.0014 
0.0020 
0.0004 
0.0005 
0.0007 
0.0009 
0.0011 
0.0016 
0.0059 
0.0005 
0.0007 
0.0014 
0.0015 

t5d3 
0.0037 
0.0040 
0.0044 
0.0049 
0.0017 
0.0020 
0.0022 
0.0024 
0.0025 
0.0028 
0.0062 
0.00á0 
0.0011 
0.0020 
0.0026 

Table 3: Truncated mean-square error according to (45) for Example 2: poi = 100, i = 
1,2,3, R = 0.0001, p = 3.7, E = 0.35, p = 0.04, N = 100. 
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Figure 4: Approximate synchronization when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.04 is considered for Example 2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR = 
0.0001, p = 3.7, and E = 0.35. 

Parameter switching is the simplest form of chaotic parameter modulation. In 
this method the message s ( k )  is supposed to be binary, and is used to modulate one 
or more parameters of the (switching) transmitter, i.e., s ( k )  controls a switch whose 
action changes the parameter values of the transmitter. Thus, according to the value 
of s ( k )  at any given instant k ,  the transmitter has either the parameter set value p 
or the parameter set value p. 

At the receiver, s ( k )  is decoded by using the synchronization error to decide 
whether the received signal corresponds to one parameter value, or the other (it can 
be interpreted as a zero or one). 

The usefulness of this simple idea has been demonstrated by Parlitz et al. [18] 
and Cuomo et al. [6] for a replica. 

In our case, to transmit s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) via parameter modulation scheme, the EKF is mod- 
ified to estimate the value of this parameter. Thus, a combined state and parameter 
estimation is made by the extension of the state vector with the unknown parameter. 
Let p be the parameter to be modulated in the transmitter dynamics (41) and (47); 
in both examples, the parameter value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 was fixed. If no other apriori information is 
available, an additional state ,u ( k )  is used to extend the original state vector by treat- 
ing ,u as a function of time according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ( k  + 1) = ,u ( k )  . So, the noisy transmitter 
dynamics (41) and (47) become for Example 1: 
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and for Example 2: 

respectively, with the (corrupted) transmitted signal 

We note that both examples satisfy the conditions of Theorem 5; for communica- 
tion purposes we take values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, smaller than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf l  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2/315 for Examples I and 
2, respectively. We use a ‘modulation rule’ to modulate s ( k )  in the parameter p of 
the transmitter (50) and (51). Then the EKF used as receiver maintains synchroniza- 
tion by estimating the changes in the modulated parameter p (while the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E is fixed at the same value as in the transmitter). So, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ( k )  can be recovered by the 
estimation given through the EKF. The modulation rule is given by 

p ( k )  = p + a * s ( k ) ,  f i ( k )  = p + a - S ( k )  (53) 

where a is a constant and S ( k )  is the recovered message. The message is defined as 
follows 

o, 
1, 200 5 k < 400, 

1, 600 k < 800, 1 O, 800 5 k < 1000. 

o 5 k < 200, 

s ( k )  = O, 4 0 0 5  k < 600, 

An illustration for the binary communication of Example 1, via modulation and 
estimation of parameter p with a = 0.08, i.e., when p is switched between ,u (O) = 3.7 
and ,u (1) = 3.78 is shown in Figure 5. 

Figure 6 shows binary communication fer Example 2, via modillation and estima- 
tion of parameter ,u with a = 0.1, i.e., when p is switched between p (O) = 3.7 and 
p (I) = 3.8. 

We have discussed the use (in discrete-time) of an extended Kalman filter (EKF) 
as receiver system for chaotic synchronization purposes. Synchronization is obtained 
between transmitter and receiver dynamics when the EKF is driven by a noisy drive 
signal from the transmitter. 

The computer simulation results presented, show that our chaotic synchronization 
approach is robust to additive Gaussian noise. Besides synchronization per se, we have 
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Figure 5: Estimated and true value p for Example 1: ~ ( 0 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ? ( O )  = (0.4,0.7,3.7), 
R=0.00005, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.08. 

presented the utility of using the EKF for reconstruction of a binary message. In this 
case, by modulating a parameter in the transmitter and estimating this parameter 
via a modified EKF. Thus, we expect that it can be possibly applied to experimental 
systems, especially, for secure communication systems based on signal masking and 
parameter modulation. 

Complementary simulations showed that synchronization and binary communi- 
cation are also possible in case z (O) # i (O). Although, the synchronization time 
depends on the initial conditions and is different to the case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (O) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACc (O). Obviously, 
the synchronization time is smaller for z (O) N 2 (O) and for smaller noise variance. 
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