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Abstract. This paper studies synchronization via pinning control on general complex dynamical
networks, such as strongly connected networks, networks with a directed spanning tree, weakly con-
nected networks, and directed forests. A criterion for ensuring network synchronization on strongly
connected networks is given. It is found that the vertices with very small in-degrees should be pinned
first. In addition, it is shown that the original condition with controllers can be reformulated such
that it does not depend on the form of the chosen controllers, which implies that the vertices with
very large out-degrees may be pinned. Then, a criterion for achieving synchronization on networks
with a directed spanning tree, which can be composed of many strongly connected components, is
derived. It is found that the strongly connected components with very few connections from other
components should be controlled and the components with many connections from other components
can achieve synchronization even without controls. Moreover, a simple but effective pinning algo-
rithm for reaching synchronization on a general complex dynamical network is proposed. Finally,
some simulation examples are given to verify the proposed pinning scheme.
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1. Introduction. Collective behaviors in complex networks and systems [3, 10,
11, 28, 35, 39] have attracted increasing attention in recent years due to their wide
applications in physics, mathematics, engineering, biology, etc. Synchronization, sim-
ilarly consensus, is a typical collective behavior in complex dynamical networks and
systems. Since the pioneering work of Pecora and Carroll [24], chaos synchronization
[2] has received a great deal of attention due to its potential applications in secure
communications, biological neural networks [47], genetic regulatory networks [57],
parameter estimation, and so on. In nature, there are large numbers of vertices in
real-world complex networks, so it is of great interest to study network synchronization
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1396 WENWU YU, GUANHONG CHEN, JINHU LÜ, AND JÜRGEN KURTHS

[1, 8, 18, 19, 36, 37, 48, 49, 56, 58, 60, 61] and consensus [6, 51, 52, 53, 55, 59, 64]
in very large-scale complex networks. First, local synchronization, meaning that syn-
chronization can be reached within a certain region, was studied by the transverse
stability to the synchronization manifold [36, 37]. Further study about local syn-
chronization in time-varying complex networks was also reported [19]. For the global
behavior, a distance function from the collective states of the network vertices to the
synchronization manifold was used [40, 44] to study global synchronization of coupled
networks and systems [18, 48, 49]. By designing some adaptive laws on the weights
and coupling strength, synchronization in adaptive networks was shown [8, 60, 61].

In addition to the commonly studied undirected networks [18, 19, 36, 37, 38, 45,
46, 48, 49, 61, 62], directed networks are also used to represent the interactive topol-
ogy between the vertices. Actually, many real-world networks are directed, such as
communication networks, the World Wide Web, email networks, and electrical power
grids, to name just a few. Theoretically, the convergence analysis of synchronization
for directed complex networks is more challenging than for undirected ones [41]. One
contribution of this paper is that the convergence of a synchronization problem via
pinning control on directed networks is theoretically analyzed, yielding some useful
criteria for future applications.

In the case where the whole network can not synchronize by its intrinsic structure,
some controllers may be designed and applied to drive the network to synchroniza-
tion. However, it is literally impossible to add controllers to all vertices in a large-scale
network. To reduce the number of controlled vertices, some local feedback injections
may be applied to a fraction of network vertices, which is known as pinning control
[7, 9, 12, 15, 16, 17, 25, 26, 32, 33, 34, 38, 42, 43, 45, 46, 54, 62, 63]. For example, in
the leader-follower control or distributed tracking problem, a group of mobile agents
can coordinate so that they can track the leader [13, 50, 55]. The key issue is to design
the appropriate control input where only a small fraction of agents can measure the
leader’s information. The main objective in pinning control is to apply controllers on
a fraction of all the vertices such that the whole network can reach synchronization.
Earlier, pinning control of spatiotemporal chaos was studied on a coupled map lat-
tice [12]. As a result of the broad studies about complex networks, both specific and
random pinning schemes were applied on complex networks to achieve an equilibrium
point [16, 38], where the specific pinning of the vertices with large degrees was shown
to require a smaller number of controlled vertices than the random pinning scheme.
Later, a virtual vertex was introduced in the network, and pinning controllability of
complex networks could be transformed to synchronization of the augmented com-
plex networks [33, 34]. It was shown that if the coupling strength is sufficiently large,
the network can achieve synchronization by pinning only one vertex in the network
[7]. The pinning-controllability problem of the undirected complex networks was re-
formulated as a global asymptotic stability problem [25, 26], and some new criteria
concerning the selection of pinned vertices and effects of network topology have been
discussed. As for adaptive complex networks, it was found that a network under a
typical framework can realize synchronization subject to any linear feedback pinning
scheme by using adaptive tuning of the coupling strength [7, 54]. Some distributed
adaptive laws based on the information of the neighbors were designed on the coupling
strength of complex networks for reaching synchronization [17]. Interestingly, it was
shown that the vertices with very small degrees should be pinned first when the cou-
pling strength is small [15, 54] and that the derived pinning condition with controllers
given in a high-dimensional matrix criterion can be reduced to a low-dimensional
matrix criterion without any pinning controllers involved [54, 63].
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SYNCHRONIZATION VIA PINNING CONTROL 1397

Nowadays, it is still quite challenging to consider the pinning scheme on a gen-
eral complex network. Recently, pinning synchronization on directed networks was
discussed [32, 62]. However, the derived conditions were based on the sum of the
Laplacian matrix and its transpose which may have some eigenvalues with negative
real parts. Then, by choosing a standard Lyapunov function, the derivative of this
function along the trajectory of the system might be positive such that the whole
system can not converge. Therefore, these conditions lack the structural information
of the network, and the key factor needed for reaching network synchronization is not
revealed. By considering the control signal as the state of a virtual system, the au-
thors of [42, 43] gave a general pinning scheme in directed networks based on network
structure and algebraic graph.

The main contribution of this paper is that it further addresses the problem of
pinning synchronization based on the more detailed structural information of general
complex dynamical networks, particularly strongly connected networks, networks with
a directed spanning tree, weakly connected networks, and directed forests. (A simpli-
fied version of pinning synchronization for complex networks with strongly connected
topologies was reported in [56].) We offer some new findings. First, it is found that
the vertices with very small in-degrees should be pinned first. Second, the condition
for reaching synchronization with controllers is shown to be equivalent to a simple
condition without control, which implies that the vertices with very large out-degrees
should also be pinned. Third, a criterion for achieving synchronization on networks
with a directed spanning tree, which can be composed of many strongly connected
components, is derived. It is found that the components with very few connections
coming from other components should be controlled, and the components with many
connections coming from other components can achieve synchronization even with-
out control. Finally, an effective pinning algorithm for reaching synchronization on a
general complex dynamical network is proposed.

The rest of the paper is organized as follows. In section 2, some preliminar-
ies about model formulation and graph theory are briefly outlined. Some pinning
synchronization criteria on strongly connected networks, networks with a directed
spanning tree, and general complex dynamical networks are given in sections 3–5. In
section 6, the pinning scheme on a representative network is simulated to illustrate
the theoretical analysis. Conclusions are drawn in section 7.

2. Preliminaries. Consider a complex dynamical network consisting of N iden-
tical vertices with linearly diffusive coupling [18, 19, 36, 37, 44, 49, 61], described by

ẋi(t) = f(xi(t), t) + c

N∑
j=1,j �=i

GijΓ(xj(t)− xi(t)), i = 1, 2, . . . , N,(2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of the ith vertex,

f : Rn ×R+ −→ Rn is a continuously differentiable vector function, c is the coupling
strength, Γ ∈ Rn×n is the inner coupling matrix, and G = (Gij)N×N is the coupling
configuration matrix representing the topological structure of the network. Gij are
defined as follows: if there exists a connection from vertex j to vertex i, then Gij > 0;
if there exists a connection from vertex i to vertex j, then Gji > 0; otherwise, Gij =
0 (j �= i); and the diagonal elements of matrix G are defined by

Gii = −
N∑

j=1,j �=i

Gij ,(2.2)
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1398 WENWU YU, GUANHONG CHEN, JINHU LÜ, AND JÜRGEN KURTHS

which ensures the diffusion
∑N

j=1 Gij = 0. Equivalently, due to the diffusion, network
(2.1) can be rewritten in a simpler form as follows:

ẋi(t) = f(xi(t), t) + c

N∑
j=1

GijΓxj(t), i = 1, 2, . . . , N.(2.3)

Consider also a solution s(t) of an isolated vertex, satisfying

ṡ(t) = f(s(t), t).(2.4)

Here, s(t) may be an equilibrium point, a periodic orbit, or even a chaotic solution,
which can be viewed as the state of the reference vertex, or as the virtual leader in
multi-agent dynamical systems [23].

The pinning strategy is applied on a small fraction δ (0 < δ < 1) of vertices
in the network [7, 54, 38]. Suppose that the vertices q1, q2, . . . , ql are selected to be
pinned, where l = �δN� represents the integer part of the real number δN . Then, the
controlled complex network can be conveniently described by

ẋqi(t) = f(xqi(t), t) + c

N∑
j=1

GqijΓxj(t) + uqi , i = 1, 2, . . . , l,

ẋqi(t) = f(xqi(t), t) + c

N∑
j=1

GqijΓxj(t), i = l + 1, l + 2, . . . , N,(2.5)

where

uqi(t) = −cdqiΓ(xqi(t)− s(t)) ∈ R
n, i = 1, 2, . . . , l,(2.6)

are n-dimensional linear feedback controllers with all the control gains dqi > 0 to be
designed.

The objective of control here is to find some appropriate controllers (2.6) such that
the solutions of the controlled network (2.5) globally synchronize with the solution of
(2.4), in the sense that

lim
t→∞ ‖xi(t)− s(t)‖ = 0, i = 1, 2, . . . , N,(2.7)

for any initial conditions. When the controlled complex network (2.5) achieves syn-
chronization, the coupling terms and control inputs will automatically vanish due
to the diffusive condition

∑N
j=1 Gij = 0, i = 1, 2, . . . , N , which indicates that any

solution xi(t) of a single vertex is also a solution of the synchronized coupled network.
Throughout the rest of the paper, the following assumption is needed.
Assumption 1. There exists a constant matrix K such that

(x− y)T (f(x, t) − f(y, t)) ≤ (x − y)TKΓ(x− y) ∀x, y ∈ R
n.(2.8)

Note that Assumption 1 is very mild and that many systems, for example, Lorenz
system [7], Chen system [54], Lü system [62], recurrent neural networks [49], Chua’s
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SYNCHRONIZATION VIA PINNING CONTROL 1399

circuit [7], linear systems, and piecewise linear systems, satisfy this condition if
∂fi/∂xj (i, j = 1, 2, . . . , n) are uniformly bounded and Γ is positive definite. Generally
speaking, any function in the system satisfying the Lipschitz condition can guarantee
Assumption 1. In order to derive the main results, some basic notions and properties
from graph theory are introduced.

Let G = (V , E , G) be a weighted directed network of order N , with the set of
vertices V = {v1, v2, . . . , vN}, the set of directed edges E ⊆ V × V , and a weighted
adjacency matrix G = (Gij)N×N . A directed edge Eij in network G is denoted by the
ordered pair of vertices (vi, vj), where vi and vj are called the terminal and initial
vertices, respectively.

Definition 2.1 (see [14]). A network G is undirected if there is a connection
between vertices i and j in G; then Gij = Gji > 0; otherwise, Gij = Gji = 0
(i �= j, i, j = 1, 2, . . . , N). A network G is directed if there is a connection from vertex
j to i in G; then Gij > 0; otherwise Gij = 0.

Definition 2.2. The in-degree of vertex i is defined by kini =
∑N

j=1,j �=i Gij , which
is the total weight from all the other vertices to vertex i. Similarly, the out-degree of
vertex i is defined by kouti =

∑N
j=1,j �=i Gji, which is the total weight from vertex i to

all the other vertices.
Note that the pinning synchronization over undirected networks considered [54] is

a special case of the directed networks in this paper if Gij = Gji for i, j = 1, 2, . . . , N .
Definition 2.3 (see [14]). A directed (undirected) path from vertex vj to vi

is a sequence of edges (vi, vi1), (vi1 , vi2), . . . , (vil , vj) in the directed (undirected) net-
work with distinct vertices vik , k = 1, 2, . . . , l. A directed (undirected) network G
is strongly connected (connected) if between any pair of distinct vertices vi and vj
(i, j = 1, 2, . . . , N) in G there is a directed (undirected) path from vi to vj. A di-
rected network G is weakly connected if the direction of the network is ignored and the
connectivity is defined as if the network is undirected.

Definition 2.4 (see [14]). The weighted adjacency matrix G in a directed (undi-
rected) network G is reducible if there is a permutation matrix P ∈ RN×N and an
integer m with 1 ≤ m ≤ N − 1, such that

PTGP =

(
G̃11 0

G̃21 G̃22

)
,

where G̃11 ∈ R
m×m, G̃21 ∈ R

(N−m)×m, and G̃22 ∈ R
(N−m)×(N−m). If G is not

reducible, then G is called irreducible.
Obviously, a nonzero matrix G of order 1 is irreducible. Next, a lemma is given

to show the relation between an irreducible matrix and the corresponding strong
connectivity in the network.

Lemma 2.5 (Theorem 3.2.1 of [5]; Theorem 6.2.24 of [14]). A matrix G is irre-
ducible if and only if its corresponding network G is strongly connected.

Lemma 2.5 is very easy to understand. For a strongly connected network, G can
not be permutated in the form of the matrix detailed in Definition 2.4, where the 0
matrix denotes that there are no connections from one component to another in the
network. Therefore, G is irreducible if the network is strongly connected. Note that
strongly connected networks are often used in this paper, and Definition 2.4 provides
a theoretical way to justify the strongly connected networks.
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Definition 2.6 (see [5]). An undirected network is called a tree if it is connected
and has no cycles. A directed network is called a directed tree if the underlying network
(the direction of the network is ignored as an undirected network) is a tree. A directed
tree with a root is a directed network with a vertex r having the property that for
each vertex v different from r, there is a unique directed path from r to v. A directed
spanning tree of a network G is a directed tree, containing all the vertices in G, with a
root. A directed forest is a directed network consisting of more directed trees, no two
of which have a vertex in common.

Let S, P , W , and F denote the sets of all the strongly connected networks,
networks with a directed spanning tree, weakly connected networks, and directed
forests, respectively. Then, one has S ⊆ P ⊆ W ⊆ F . For undirected networks,
S = P = W . So, clearly the study of pinning synchronization on undirected networks
is much easier than that on directed networks.

Let ρ(A) be the spectral radius of matrix A, λmax(F ) be the largest eigenvalue
of matrix F , FT be the transpose of matrix F , IN be the N -dimensional identity
matrix, and 1N ∈ RN be a vector with each entry being 1. For matrices Ã and B̃
with the same order, Ã > B̃ denotes that Ã − B̃ is a positive definite matrix. A
matrix G ∈ RN×N is nonnegative if every entry Gij ≥ 0 (1 ≤ i, j ≤ N), and a vector
x ∈ RN is positive if every entry xi > 0 (1 ≤ i ≤ N).

Matrix G in this paper is a singular and irreducible Metzler matrix [31]. In this
paper, we focus on algebraic graph theory based on network topology and try to
understand the basic principles for synchronization in directed complex networks.

Lemma 2.7 (see [7]). If G is irreducible, Gij = Gji ≥ 0 for i �= j, and
∑N

j=1 Gij =
0 for all i = 1, 2, . . . , N , then all eigenvalues of the matrix⎛⎜⎜⎜⎝

G11 − ε G12 . . . G1N

G21 G22 . . . G2N

...
...

. . .
...

GN1 GN2 . . . GNN

⎞⎟⎟⎟⎠
are negative for any positive constant ε.

Lemma 2.8 (Theorem 8.4.4 of [14]). Suppose that A is irreducible and nonneg-
ative. Then, ρ(A) is an eigenvalue of A and there is a positive vector x such that
Ax = ρ(A)x.

Lemma 2.9 (Lemma 8.1.21 of [14]). Suppose that A is nonnegative. If the row
sums of A are constant, then ρ(A) = ‖A‖∞.

Lemma 2.10. For a strongly connected directed network G in the form of (2.2),

where
∑N

j=1 Gij = 0 with Gij ≥ 0 (i �= j), the eigenvalues of G satisfy 0 = λ1(G) >
R(λ2(G)) ≥ · · · ≥ R(λN (G)), where λi(G) is the ith eigenvalue of G and R(λi(G))
denotes the real part of eigenvalue λi(G), i = 1, 2, . . . , N .

Proof. From the Gersgorin theorem, all the eigenvalues of G are located in the
union of N discs given by

N⋃
i=1

⎧⎨⎩λ ∈ C : ‖λ−Gii‖C ≤
N∑

j=1,j �=i

Gij

⎫⎬⎭ ,

where C is the complex plane and ‖ · ‖C is the Euclidean norm of complex numbers.

Since
∑N

j=1 Gij = 0, it is easy to see that R(λ) ≤ 0 for all i = 1, 2, . . . , N . For

D
ow

nl
oa

de
d 

04
/0

5/
13

 to
 1

44
.2

14
.7

4.
19

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SYNCHRONIZATION VIA PINNING CONTROL 1401

a strongly connected directed network, G has one eigenvalue 0 with multiplicity 1
[22].

For an undirected or a balanced network, it is well known that 1N is not only
the left eigenvector but also the right eigenvector of G associated with eigenvalue
0 [29, 30], that is, G1N = 0N and 1TNG = 0TN . However, for a general directed
network, 1N is not the left eigenvector of G associated with eigenvalue 0. Since the
left eigenvector is very important in determining the final asymptotic states [27], the
following property is derived.

Lemma 2.11. Suppose that G is irreducible and satisfies
∑N

j=1 Gij = 0 with

Gij ≥ 0 (i �= j). Then, there is a positive vector x such that GTx = 0.
Proof. Choose a positive integer l such that l + λN (G) > 0 and l + Gii > 0

for all i = 1, 2, . . . , N . Then, the matrix G + lIN is nonnegative, and by Lemma
2.9, ρ(G + lIN ) = l. The matrix (G + lIN )T = GT + lIN is also nonnegative and
ρ(GT + lIN) = l. By Lemma 2.8, there is a positive vector x such that (GT + lIN)x =
lx, and thus GTx = 0.

Lemma 2.12. Suppose that G is irreducible and satisfies
∑N

j=1 Gij = 0 with Gij ≥
0 (i �= j). Then there exists a positive definite diagonal matrix Ξ = diag(ξ1, ξ2, . . . , ξN )

such that Ĝ = 1
2 (ΞG + GTΞ) is symmetric and

∑N
j=1 Ĝij =

∑N
j=1 Ĝji = 0 for all

i = 1, 2, . . . , N .
Proof. It is clear that Ĝ is symmetric, namely, Ĝij = Ĝji for all i, j = 1, 2, . . . , N .

From Lemma 2.11, there is a positive vector ξ = (ξ1, ξ2, . . . , ξN )T such that GT ξ = 0.
One has ξ = Ξ1N and thus GTΞ1N = 0. Therefore, GTΞ is a matrix, with the sum
of the entries in each row being zero. Since

∑N
j=1 Gij = 0, one has ΞG1N = 0, and

the sum of the entries in each row of ΞG is also zero. Consequently, the sum of the
entries in each row of matrix Ĝ is zero. In addition, since Ĝ is symmetric, the sum of
the entries in each column of matrix Ĝ is also zero.

Lemma 2.13 (Schur complement [4]). The linear matrix inequality (LMI)( Q(x) S(x)
S(x)T R(x)

)
> 0,

where Q(x) = Q(x)T ,R(x) = R(x)T is equivalent to one of the following conditions:
(i) Q(x) > 0, R(x) − S(x)TQ(x)−1S(x) > 0;
(ii) R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0.
In algebraic graph theory, the lemmas given above are very helpful for deriving

synchronization conditions via pinning control on networks, as shown in the following
section.

3. Synchronization criteria via pinning control on strongly connected
networks. In this section, some general pinning synchronization criteria on strongly
connected complex networks are derived. Without loss of generality, we rearrange the
order of the vertices in the network so that the first l vertices are controlled.

Then, subtracting (2.4) from (2.5) yields the following error dynamical network:

ėi(t) = f(xi(t), t)− f(s(t), t) + c

N∑
j=1

GijΓej(t)− cdiΓei(t), i = 1, 2, . . . , l,

ėi(t) = f(xi(t), t)− f(s(t), t) + c
N∑
j=1

GijΓej(t), i = l + 1, 2, . . . , N,(3.1)

where ei(t) = xi(t)− s(t), i = 1, 2, . . . , N .
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Theorem 3.1. Suppose that Assumption 1 holds. The controlled strongly con-
nected network (2.5) is globally synchronized if the following condition is satisfied:

Ξ⊗ (KΓ + ΓTKT )/2 + cĜ⊗ (Γ + ΓT )/2− c(ΞD)⊗ (Γ + ΓT )/2 < 0,(3.2)

where ⊗ is the Kronecker product,

D = diag(d1, . . . , dl︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
N−l

),

Ξ is a positive definite diagonal matrix obtained by Lemma 2.12, and Ĝ = 1
2 (ΞG +

GTΞ).
Proof. Consider the Lyapunov functional candidate

V (t) =
1

2

N∑
i=1

eTi (t)ξiei(t),(3.3)

where Ξ = diag(ξ1, ξ2, . . . , ξN ) is a positive definite matrix obtained by Lemma 2.12.
Taking the derivative of V (t) along the trajectories of (3.1) gives

(3.4)

V̇ =

N∑
i=1

eTi (t)ξiėi(t)

=

N∑
i=1

eTi (t)ξi

[
f(xi(t), t)− f(s(t), t) + c

N∑
j=1

GijΓej(t)

⎤⎦ − c

l∑
i=1

diξie
T
i (t)Γei(t)

≤
N∑
i=1

eTi (t)ξi

⎡⎣KΓei(t) + c

N∑
j=1

GijΓej(t)

⎤⎦− c

l∑
i=1

diξie
T
i (t)Γei(t)

= eT (t)
[
Ξ⊗ (KΓ) + c(Ĝ− ΞD)⊗ Γ

]
e(t),

where e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N(t))T .

From (3.4), if condition (3.2) is satisfied, the directed network (2.5) is globally
synchronized under the given linear feedback pinning controllers.

Assume that K and Γ are commutable, and let

θ = λmax

(
K +KT

2

)
.(3.5)

Note that the above assumption is very reasonable. Γ is the inner coupling matrix in
(2.1), and K is defined in Assumption 1 to represent the Lipschitz condition. For a
positive definite matrix Γ, one can choose a large θ such that

(x − y)T (f(x, t)− f(y, t)) ≤ θ(x− y)TΓ(x− y) ∀x, y ∈ R
n.

Here, only θ ≥ 0 is considered for simplicity; otherwise, the network is synchronized
even without pinning control [54]. The above assumptions are used throughout the
paper.
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Corollary 3.2. Suppose that Assumption 1 holds and Γ is a positive definite
matrix. The controlled strongly connected network (2.5) is globally synchronized if the
following condition is satisfied:

C ≡ θΞ + c(Ĝ− ΞD) < 0,(3.6)

where Ξ is a positive definite diagonal matrix obtained by Lemma 2.12, and Ĝ =
1
2 (ΞG+GTΞ).

Proof. From (3.5) and the fact that Γ is positive definite, it can be easily verified
that

Ξ⊗ (KΓ + ΓTKT )/2 + cĜ⊗ (Γ + ΓT )/2− c(ΞD)⊗ (Γ + ΓT )/2

≤ Ξ⊗ (K +KT )/2Γ + cĜ⊗ Γ− c(ΞD)⊗ Γ

≤ (θΞ + cĜ− cΞD)⊗ Γ.(3.7)

If θΞ + c(Ĝ − ΞD) < 0 and Γ > 0, then it follows that condition (3.2) is satisfied
[20].

Let

C = θΞ + c(Ĝ− ΞD) =

(
C11 − D̃ C12

CT
12 C̃

)
,

where C11 and C12 are matrices with appropriate dimensions, D̃ = diag(ξ1d1, . . . , ξldl),

and C̃ is obtained by removing the 1, 2, . . . , l row-column pairs of matrix C or θΞ+cĜ.
Corollary 3.3. Suppose that Assumption 1 holds and Γ is a positive definite

matrix. The controlled strongly connected network (2.5) is globally synchronized if one
of the following conditions are satisfied:

(i)

c >
λmax(θΞ)

|λmax(Ĝ− ΞD)| ,(3.8)

where Ξ is a positive definite diagonal matrix obtained by Lemma 2.12, and Ĝ =
1
2 (ΞG+GTΞ);

(ii)

C̃ < 0,(3.9)

where the control gain matrix is chosen by D̃ > λmax(C11 − C12C̃
−1CT

12)Il.

Proof. By Lemma 2.12, one knows that Ĝij = Ĝji for i �= j and
∑N

j=1 Ĝij = 0.

Since ξ is positive, by Lemma 2.7, it is easy to see that Ĝ−ΞD∗ is negative definite,
where D∗ corresponds to having only one controller, i.e., l = 1. Then one obtains
λmax(Ĝ − ΞD) ≤ λmax(Ĝ − ΞD∗) < 0. From (3.8), one has θΞ + c(Ĝ − ΞD) ≤
λmax(θΞ) + cλmax(Ĝ − ΞD) < 0, so (3.6) is satisfied. The proof of (i) is completed.
Condition (ii) can be proved by using Lemma 2.13, as in [54].

Normally, the theoretical coupling strength and control gain matrix given in (3.8)
and (3.9) are very conservative—usually much larger than the needed values. The
adaptive technique [7, 47, 57, 61] can be used here to choose smaller coupling strength
and control gain. Detailed results can be found in [54] and thus are omitted here.
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Remark 1. In Corollary 3.3, condition (i) provides a way to choose the coupling
strength when the network structure and the pinning scheme are given; condition (ii)
shows that synchronization can be reached in a lower-dimensional setting by appropri-
ately choosing the control gain matrix when the network structure and the coupling
strength are fixed. If the coupling strength is very large and satisfies condition (3.8),
then by controlling very few vertices, the network can achieve synchronization. In ad-
dition, note that C̃ is obtained by removing the 1, 2, . . . , l row-column pairs of matrix
θΞ + cĜ, which is independent of matrix D. Therefore, the pinning controllers are
not involved in (3.9), which provides some guidance for choosing appropriate pinning

schemes. After choosing the positive definite matrix C̃, one can design the control gain
matrix such that D̃ > λmax(C11−C12C̃

−1CT
12)Il. From (3.9), it is easy to see that the

network more likely can reach synchronization if the vertices with large out-degrees
are pinned, which means that there are many nonzero entries in CT

12.
Let C = (Cij)N×N in (3.6). Then, one has

Cij = c
ξiGij + ξjGji

2
(i �= j),

Cii = θξi − cξik
in
i − cξidi (1 ≤ i ≤ l), and Cii = θξi − cξik

in
i (l + 1 ≤ i ≤ N).

Corollary 3.4. Suppose that Assumption 1 holds and Γ is a positive definite
matrix. To satisfy condition (3.6), it is necessary that

di >
θ

c
− kini , 1 ≤ i ≤ l,

kini >
θ

c
, l+ 1 ≤ i ≤ N.(3.10)

Proof. To ensure C < 0 in (3.6), it is necessary that Cii < 0.
Remark 2. In Corollary 3.4, the in-degree of vertex i without control should

be greater than a critical value, that is, kini > θ
c . Therefore, it is easy to see that

under condition (3.6), the vertices with very small in-degrees less than θ/c should be
controlled first, where condition (3.10) is not satisfied. Note that some vertices with
very small in-degrees receive very little information from all the other vertices, and
therefore it is inadequate to drive these small in-degree vertices in order to achieve
network synchronization. Condition (3.6) in Corollary 3.2 is very simple; however, how
to choose the minimal number of pinning controllers under a fixed network structure
with a fixed coupling strength is still a challenging research problem.

4. Synchronization criteria via pinning control on networks with a di-
rected spanning tree. In the previous section, pinning synchronization on strongly
connected networks was studied. Considering the reference vertex with state s(t) in
(2.4) as a virtual leader in the network, now we will change our focus to pinning
synchronization on each strongly connected component of a general network, where
the network contains a directed spanning tree with the virtual leader as the root.

The dynamics of (2.4) and (2.5) can be rewritten in compact form as follows:

ẏi(t) = f(yi(t), t) + c

N∑
j=1

G̃ijΓyj(t), i = 1, l + 1, 2, . . . , N + 1,(4.1)

where y1 = s, yi+1 = xi for i = 1, 2, . . . , N ,

G̃ =

(
0 O
d G−D

)
,
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O is a 0 matrix with appropriate dimensions, and

d = (d1, . . . , dl︸ ︷︷ ︸
l

, 0, . . . , 0︸ ︷︷ ︸
N−l

)T .

In the following, suppose that the controllers are added to the q1, q2, . . . , ql ver-
tices, and so

G̃ =

(
0 O

d̃ G− D̃

)
,

where

d̃ = (. . . , d1︸︷︷︸
q1

, 0, . . . , 0, d2︸︷︷︸
q2

, 0, . . . , 0, dl︸︷︷︸
ql

, . . .)T

and D̃ is a diagonal matrix with diagonal elements D̃ii = d̃i, i = 1, 2, . . . , N .
Since the matrix G is irreducible, as discussed in the previous section, the network

structure G̃ has a directed spanning tree as long as at least one vertex is controlled
by the leader s, which is a root in the directed spanning tree [34]. In order to derive
the main result, the following Frobenius normal form is needed.

Lemma 4.1 (see [5]). Let G̃ be a matrix of order N + 1. Then, there exists a
permutation matrix P of order N + 1 and an integer m ≥ 1, such that

PT G̃P =

⎛⎜⎜⎜⎝
G̃1 O · · · O

G̃21 G̃2 · · · O
...

...
. . . O

G̃m1 G̃m2 · · · G̃m

⎞⎟⎟⎟⎠ ,(4.2)

where G̃1 ∈ Rp1×p1 , G̃2 ∈ Rp2×p2 , . . . , G̃m ∈ Rpm×pm are square irreducible matrices
which are uniquely determined to within simultaneous permutation of their lines, but
their ordering is not necessarily unique.

Definition 4.2 (see [5]). Let G̃ be a directed network and G̃1, G̃2, . . . , G̃m be the

strongly connected components of G̃ with connection matrices G̃1, G̃2, . . . , G̃m. Then
G̃∗ is a condensation network of G̃ if there is a connection from a vertex in V(G̃j)

to a vertex in V(G̃i) (i �= j), and then the weight G̃∗
ij > 0; otherwise, G̃∗

ij = 0 for

i, j = 1, 2, . . . ,m, where G̃∗
ii = 0 for i = 1, 2, . . . ,m.

Note that the condensation network G̃∗ of any directed network G̃ has no closed
directed walks [5], where a directed (undirected) walk from vertex vj to vi is a se-
quence of edges (vi, vi1), (vi1 , vi2), . . . , (vil , vj) in the directed (undirected) network
with vertices vik , k = 1, 2, . . . , l.

Lemma 4.3 (see [41]). For every i = 2, 3, . . . ,m, there is an integer j < i such

that G̃∗
ij > 0 if and only if the directed network G̃ contains a directed spanning tree.

One can change the ordering of the vertices to obtain the Frobenius normal form
(4.1). Without loss of generality, assume G is in the Frobenius normal form. Then

G̃1 = 0 because the virtual reference agent is not influenced by any agent of the net-
work. Let G̃j = Aj+Bj , where Aj is a zero row-sums matrix and Bj ≤ 0 is a diagonal
matrix. By Lemma 2.11, there exists a positive vector Πj = (Πj1,Πj2, . . . ,Πjpj ) with
appropriate dimensions such that ΠT

j Aj = 0. Let e = (ẽT2 , ẽ
T
3 , . . . , ẽ

T
m−1)

T , where

ẽj ∈ Rpj×1 for j = 2, . . . ,m.
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Lemma 4.4. Let

G =

⎛⎜⎜⎜⎝
G̃2 O · · · O

G̃32 G̃3 · · · O
...

...
. . . O

G̃m2 G̃m3 · · · G̃m

⎞⎟⎟⎟⎠ .(4.3)

If there exist positive definite diagonal matrices Π̃j = diag(Πj1,Πj2, . . . ,Πjpj ) for
j = 2, . . . ,m, such that

Π̃jG̃j + G̃T
j Π̃j < 0,(4.4)

then there exists a positive definite diagonal matrix Δ = diag(Δ2Ip2 , . . . ,ΔmIpm),
such that

ΔΠ̃G+G
T
Π̃Δ < 0,(4.5)

where Π̃ = diag(Π̃2, . . . , Π̃m) and Δj are positive constants for j = 2, . . . ,m.
Proof. Let Qi be of the form

(4.6)

Qi =

⎛⎜⎜⎜⎝
Δ2(Π̃2G̃2 + G̃T

2 Π̃2) Δ3Π̃3G̃32 · · · ΔiΠ̃iG̃i2

Δ3Π̃3G̃32 Δ3(Π̃3G̃3 + G̃T
3 Π̃3) · · · ΔiΠ̃iG̃i3

...
...

. . .
...

ΔiΠ̃iG̃i2 ΔiΠ̃iG̃i3 · · · Δi(Π̃iG̃i + G̃T
i Π̃i)

⎞⎟⎟⎟⎠ .

Then, Qm = ΔΠ̃G + G
T
Π̃Δ. From (4.4), it is easy to see that Q2 < 0. Next, the

lemma is proved by induction. Suppose that Qi < 0. We need to show that Qi+1 < 0.

By Lemma 2.13, Qi+1 < 0 is equivalent to Π̃i+1G̃i+1 + G̃T
i+1Π̃i+1 < 0, and we have

Qi −Δi+1Q̃i+1(Π̃i+1G̃i+1 + G̃T
i+1Π̃i+1)

−1Q̃T
i+1 < 0,(4.7)

where Q̃T
i+1 = Π̃i+1(G̃(i+1)2, G̃(i+1)3, . . . , G̃(i+1)i). If Δi+1 is sufficiently smaller than

Δj for j < i + 1, then (4.7) can be satisfied. Therefore, by choosing Δi+1 to be
sufficiently smaller than Δj for j < i + 1, condition (4.7) can be satisfied.

Theorem 4.5. Suppose that Assumption 1 holds and Γ is a positive definite ma-
trix. The controlled network with a directed spanning tree (2.5) is globally synchronized
if the following condition is satisfied:

2θΠ̃j + c(Π̃jG̃j + G̃T
j Π̃j) < 0, j = 2, . . . ,m.(4.8)

Proof. Consider the Lyapunov functional candidate

V (t) =

m∑
i=2

Δiẽ
T
i (t)Π̃iẽi(t),(4.9)

where Π̃i = diag(Πi1,Πi2, . . . ,Πipi) and Δi are positive constants for j = 2, . . . ,m.
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Taking the derivative of V (t) gives

V̇ = 2

m∑
i=2

Δiẽ
T
i (t)Π̃i

˙̃ei(t)

≤ 2

m∑
i=2

Δiẽ
T
i (t)Π̃i

[
θ(Ipi ⊗ Γ)ẽi(t) + c

i−1∑
j=1

(G̃ij ⊗ Γ)ẽj(t) + c(G̃i ⊗ Γ)ẽi(t)

⎤⎦
= eT (t)

[
(2θΔΠ̃)⊗ Γ− c(ΔΠ̃G+G

T
Π̃Δ)⊗ Γ

]
e(t)

= eT (t)

{[
ΔΠ̃(cG+ θIN ) + (cG++θIN )T Π̃Δ

]
⊗ Γ

}
e(t),

(4.10)

where e(t) = (ẽT2 (t), ẽ
T
3 (t), . . . , ẽ

T
m(t))T . By Lemma 4.4 and (4.8), the proof is com-

pleted.
Remark 3. The condition (4.8) is very simple, where the study of the whole

network synchronization is reduced to the investigation of the strongly connected
components in the network.

Let r1 = 0, rj =
∑j

k=2 pk, Aj = (Ajko)pj×pj , and Bj = diag(Bj1, . . . , Bjpj ) for

j = 2, . . . ,m; k, o = 1, . . . , pj . Then, one has Bjk = −∑rj−1

s=1 G(rj−1+k)s − d̃rj−1+k for
k = 1, . . . , pj; j = 2, . . . ,m.

Definition 4.6. Let Cjk ≡ ∑rj−1

s=1 G(rj−1+k)s be the total weights from the
other strongly connected components to the kth vertex in the jth component for j =
2, . . . ,m, k = 1, . . . , pj. Let Ajkk ≡ ∑rj

s=rj−1+1 G(rj−1+k)s be the total weights from
the other vertices in the jth component to the kth vertex in the jth component for
j = 2, . . . ,m, k = 1, . . . , pj. Cjk and Ajkk are called the outer in-degree and in-

ner in-degree of the kth vertex in the jth component, respectively. Similarly, Ĉj ≡∑pj

k=1

∑rj−1

s=1 G(rj−1+k)s and Âj ≡ ∑pj

k=1

∑rj
s=rj−1+1 G(rj−1+k)s are called the outer

in-degree and inner in-degree of the jth component, respectively.

Let Aj =
1
2 (Π̃jAj+AT

j Π̃j), Dj = diag(d̃rj−1+1, . . . , d̃rj ), Cj = diag(Cj1, . . . , Cjpj )
for j = 2, 3, . . . ,m.

Corollary 4.7. Suppose that Assumption 1 holds and Γ is a positive definite
matrix. The controlled network with a directed spanning tree (2.5) is globally synchro-
nized if the following condition is satisfied:

θΠ̃j + c(Aj − Π̃jCj − Π̃jDj) < 0, j = 2, . . . ,m.(4.11)

Remark 4. Aj is a zero row-column-sum symmetric matrix. By Lemma 2.7,

Aj − Π̃jCj − Π̃jDj < 0 if and only if Cj �= 0 or Dj �= 0, which means that if there are
no connections from all the other strongly connected components and the leader to a
particular strongly connected component, then synchronization in this component can
not be achieved. This result is easy to understand since the vertices in this component
can not receive any information from the leader.

Remark 5. If Dj = 0 for some 2 ≤ j ≤ m, then in order to reach synchronization,

one must have Cj �= 0 and θΠ̃j + c(Aj − Π̃jCj) < 0, which implies that if the outer
in-degree of a strongly connected component is very high, then synchronization can
be easily achieved in this component. If Cj = 0 for some 2 ≤ j ≤ m, then the
jth strongly connected component must be controlled in order to achieve network
synchronization.
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Assumption 2. Each strongly connected component, to which there are no con-
nections from all the other strongly connected components, is under the control of
pinning controllers (2.6).

Corollary 4.8. Suppose that Assumptions 1 and 2 hold and that Γ is a positive
definite matrix. The controlled network with a directed spanning tree (2.5) is globally
synchronized if one of the following conditions is satisfied:

(i)

c > max
2≤j≤m

λmax(θΠ̃j)

|λmax(Aj − Π̃jCj − Π̃jDj)|
,(4.12)

(ii) there exist some controllers with large gains, such that

Ωj < 0,(4.13)

where Ωj is obtained by removing the row-column pairs of the controlled vertices in

matrix θΠ̃j + c(Aj − Π̃jCj − Π̃jDj).
The proof can be completed by the same approach as in Corollary 3.3.
Corollary 4.9. Suppose that Assumption 1 holds and Γ is a positive definite

matrix. The first i strongly connected components of the controlled network with
a directed spanning tree (2.5) are globally synchronized if the following condition is
satisfied:

2θΠ̃j + c(Π̃jG̃j + G̃T
j Π̃j) < 0, j ≤ i, i = 1, 2, . . . , N.

The derived condition in Corollary 4.9 can be used to study partial synchroniza-
tion [48] of the whole network.

5. Synchronization criteria via pinning control on general complex net-
works. This section proposes an algorithm for pinning synchronization on general
complex networks, including weakly connected networks and directed forests, as fol-
lows.

Pinning scheme algorithm.
(1) Reorder the vertices to obtain the Frobenius normal form (4.3). Initially, let

j = 2 and then go to step (2).
(2) If (4.11) is satisfied when Dj = 0, the jth strongly connected component

can achieve synchronization without control. If so, go to step (6); otherwise, turn to
step (3).

(3) If the outer in-degree of every vertex in the jth strongly connected component
is 0, i.e., Cj = 0, then this jth component must be controlled through the gain matrix
Dj . Then, go to step (4); otherwise, turn to step (6).

(4) For the ith vertex in the jth strongly connected component, if its in-degree
kinrj−1+i ≤ θ

c , then this vertex must be controlled. Then, go to step (5).

(5) Find the controllers such that (4.13) can be satisfied as discussed in sections 3
and 4, and then go to step (6).

(6) If j < m, then set j = j + 1 and go to step (2); otherwise, stop.
Remark 6. If (4.11) is satisfied without control, then this strongly connected

component can achieve synchronization. Suppose that a strongly connected compo-
nent does not receive information from all the other strongly connected components.
By Lemma 4.3, this component must be controlled so as to form a spanning tree as
shown in step (3). Note that the directed network G in (4.3) contains a directed
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spanning tree if and only if, for each j, Cj �= 0 or Dj �= 0, which means that there
are connections from all the other strongly connected components or the leader to the
jth strongly connected component. Steps (4) and (5) are the pinning control schemes
on the jth strongly connected component, which was discussed in section 3.

In this section, an algorithm for studying the pinning synchronization on general
complex networks is proposed. Note that a general complex network can be composed
of many strongly connected components. If there are no connections from all the other
strongly connected components to a particular strongly connected component, then
this component must be controlled. After that, it is easy to see that the whole network
forms a directed spanning tree with the leader being the root. Then each vertex in the
network can receive information from the root and synchronization may be achieved
in a successive way.

6. Simulation examples. In order to clearly show the theoretical results in
this paper, synchronization via pinning control on a small-size network is first given
in this section. Then, to verify the proposed algorithm in this paper, synchronization
via pinning control on a large-size scale-free network is performed.

Consider a complex network (2.3) that consists of N identical Chen systems [54],
described by

ẋi(t) = f(xi(t), t) + c
N∑
j=1

GijΓxj(t),

i = 1, 2, . . . , N,(6.1)

where

f(xi, t) =

⎧⎨⎩
35(xi2 − xi1),
−7xi1 − xi1xi3 + 28xi2,
xi1xi2 − 3xi3,

(6.2)

and θ = 31 [54].

6.1. Synchronization via pinning control on a simple toy network. Choose
Γ = diag(1, 2, 1), c = 12, and N = 10. The network structure is shown in Figure 6.1.
The vertices of the network are ordered from 1 to 10, with a virtual leader s, and
the network is composed of 5 strongly connected components as shown in Figure 6.1.
From Figure 6.1, one has

G̃ =

(
0 O

d̃ G

)
,

and it is easy to see that the matrix G in (4.3) is already in the Frobenius normal

form, with G̃2 = 0,

G̃3 =

⎛⎜⎜⎝
−3 0 0 3
6 −6 0 0
6 2 −8 0
0 0 6 −6

⎞⎟⎟⎠, G̃4 =

( −7 4
4 −8

)
, G̃5 =

⎛⎝ −5 0 3
2 −2 0
0 2 −5

⎞⎠,

G̃43 =

(
0 0 3 0
0 0 0 4

)
, G̃52 =

⎛⎝ 0
0
3

⎞⎠, and G̃53 =

⎛⎝ 2 0 0 0
0 0 0 0
0 0 0 0

⎞⎠ .
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Fig. 6.1. Structure of a small network. The vertices in the big circles are in the same strongly
connected components. The dashed and white vertices are the leader and uncontrolled vertices,
respectively. The solid vertices are the pinned vertices.

The outer in-degrees of strongly connected components 2 and 3 are zero. So these
two components must be controlled, as illustrated in Figure 6.1.

For j = 2, one has C2 = A2 = 0. From (4.11), if d1 > θ/c ≈ 2.5833, then the
second strongly connected component can reach synchronization.

For j = 3, by simple computation, one obtains C3 = 0, Π̃3 = diag(8, 1, 3, 4), and

A3 =

⎛⎜⎜⎝
−24 3 9 12
3 −6 3 0
9 3 −24 12
12 0 12 −24

⎞⎟⎟⎠ .

Thus, condition (4.11) is⎛⎜⎜⎝
−24 + 8θ/c 3 9 12

3 −6 + θ/c 3 0
9 3 −24 + 3θ/c 12
12 0 12 −24 + 4θ/c

⎞⎟⎟⎠− Π̃3D3 < 0.

Since ⎛⎝ −6 + θ/c 3 0
3 −24 + 3θ/c 12
0 12 −24 + 4θ/c

⎞⎠ < 0,D
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by (4.13), the third strongly connected component can achieve synchronization if
vertex 2 is controlled. By Lemma 2.13, one has d2 > 18.2667.

For j = 4, one obtains Π̃4 = I2 and C4 = diag(3, 4). If D4 = 0, then θ/c +
A4 − C4 < 0. Thus, the condition (4.11) is satisfied without control, and the fourth
strongly connected component can reach synchronization without control.

For j = 5, by simple computation, one obtains C5 = diag(2, 0, 3), Π̃5 = diag(2, 3, 3),
and

A5 =

⎛⎝ −6 3 3
3 −6 3
3 3 −6

⎞⎠ .

Thus, condition (4.11) is⎛⎝ −10 + 2θ/c 3 3
3 −6 + 3θ/c 3
3 3 −15 + 3θ/c

⎞⎠− Π̃3D3 < 0.

By Corollary 3.4, one has kin9 = 2 < θ/c; thus −6 + 3θ/c > 0, which implies that
vertex 9 must be controlled. Since( −10 + 2θ/c 3

3 −15 + 3θ/c

)
< 0,

if vertex 9 is controlled and one chooses d9 > 2.665, from (4.13) and by Lemma 2.13,
(4.11) is satisfied. So synchronization can be reached on the fifth strongly connected
component.

Therefore, in the network (6.1), if three vertices, 1, 2, and 9 (solid vertices in
Figure 6.1) are controlled with control gains d1 > 2.5833, d2 > 18.2667, and d9 >
2.665, then the synchronization can be achieved on the whole network, as illustrated
in Figure 6.2.

Remark 7. Suppose that a network is composed of some strongly connected
components as in (4.2). If the outer in-degrees of all the vertices in some strongly
connected components are zero, then these components must be controlled since they
do not receive any information from other components, and therefore synchronization
can not be reached without control. In the above example, for this reason, the second
and third strongly connected components must be controlled. Vertex 2 in the third
strongly connected component should be controlled since it transmits a large amount
of information to the other vertices. So, by Corollary 3.4, synchronization can be
easily achieved if such vertices with large out-degrees are controlled. If a strongly
connected component, for example, the fourth strongly component in Figure 6.1,
receives a large amount of information from the other components, then it can reach
synchronization even without control. Though a strongly connected component, like
the fifth strongly component in Figure 6.1, receives a lot of information from the other
strongly connected components, it can not achieve synchronization if vertex 9 is not
controlled. Vertex 9 receives very little information from the other vertices, and hence
it is difficult or inadequate to drive vertex 9 to synchronize with other vertices, and
thus it must be controlled. Therefore, in order to reach network synchronization, the
vertices with large out-degree or small in-degree should be controlled.
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Fig. 6.2. Error states ei(t) of the complex network with regard to time t in the example in
subsection 6.1, i = 1, 2, . . . , 11. The whole network is globally synchronized as the error states
asymptotically approach zero.

6.2. Synchronization via pinning control on a large-scale complex net-
work. Choose Γ = diag(1, 2, 1), c = 28, di = 30, and N = 100. The simulation is
performed on a scale-free complex network [3], where the direction for each edge is
randomly chosen. The initial number of vertices is 5, and in each time step, a new
vertex is connected to 5 vertices with directed links according to preferential attach-
ment. The designed directed scale-free network is disconnected into several strongly
connected components. By using the algorithm in section 5 with the designed pinning
schemes, a small fraction of all the vertices is controlled. The initial conditions are
randomly chosen from [−1, 1] in each simulation, and synchronization can be reached
in the whole network as shown in Figure 6.3, which is performed on 30 networks
on average in each data. It is found that the percentage for the pinning controlled
vertices becomes smaller as the network size becomes larger.
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Fig. 6.3. Percentage δ of the controlled vertices of the complex network in the example in
subsection 6.2 based on the network size N with logarithmic axis.

7. Conclusions. In this paper, pinning synchronization of general complex dy-
namical networks, including strongly connected networks, networks with a directed
spanning tree, weakly connected networks, and directed forests, has been discussed.
A criterion for ensuring network synchronization on strongly connected networks was
given. It was found that the vertices with very small in-degrees should be pinned first.
In addition, it was shown that the original condition with controllers can be refor-
mulated such that it does not depend on the form of the chosen controllers. Then, a
criterion for achieving network synchronization on networks with a directed spanning
tree, possibly composed of many strongly connected components, was derived. It was
found that the components with very few connections from other components should
be controlled, and the components with many connections from other components
can achieve synchronization even without controls. Moreover, an effective pinning
algorithm for reaching synchronization on a general complex dynamical network was
proposed.

It is still a quite difficult problem to quantify at least how many vertices should
be pinned and to determine what are the most important factors for a given com-
plex network to realize synchronization. In addition, an involved complex network
in nature is usually time-varying. Therefore, pinning schemes for synchronization in
time-varying dynamical complex networks are more challenging nowadays. Moreover,
it could be interesting to see how the proposed algorithm scales up as the number of
vertices increases. Nevertheless, pinning synchronization on general complex dynam-
ical networks is a very interesting topic with wide potential applications and deserves
further investigation in the future.
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