
Synchronization Without Contention

John M. Mellor-Crummey*

(johnrncQrice. edu)

Center for Research on Parallel Computation

Rice University, P.O. Box 1892

Houston, TX 77251-1892

Abstract

Conventional wisdom holds that contention due to busy-wait

synchronization is a major obstacle to scalability and accept-

able performance in large shared-memory multiprocessors.

We argue the contrary, and present fast, simple algorithms for

cent ent ion-free mutual exclusion, reader-writer cent rol, and

barrier synchronization. These algorithms, based on widely

available fetch.and.rf? instructions, exploit local access to

shared memory to avoid contention. We compare our algo-

rithms to previous approaches in both qualitative and quan-

titative terms, presenting their performance on the Sequent

Symmetry and BBN Butterfly multiprocessors. Our results

highlight the importance of local access to shared memory,

provide a case against the construction of so-called “dance

hall” machines, and suggest that special-purpose hardware

support for synchronization is unlikely to be cost effective on

machines with sequentially consistent memory.

1 Introduction

Busy-waiting synchronization, including locks and barriers,

is fundamental to parallel programming on shared-memory

multiprocessors. Busy waiting is preferred over scheduler-

based blocking when scheduling overhead exceeds expected

wait time, when processor resources are not needed for other

tasks (so that the lower wake-up latency of busy waiting need

not be balanced against an opportunity cost), or in the im-

plementation of an operating system kernel where scheduler-

based blocking is inappropriate or impossible.

Because busy-wait mechanisms are often used to protect

“Supported in part by tbe National Science Foundation uuder Co-

operative Agreement number CCR-9045252.

tsupported in part by the National Science Foundation under Insti-

tutional Infrastructure grant CDA-8822724.

Permission to copy without fee all or part of this material is

grented provided that the copies are not mede or distributed for

direct commercial advantage, the ACM copyright notice end the

title of the publication and its date appear, and notice is given

thet copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

e 1991 ACM 0-89791-380-9/91 10003-0269...$1,50

Michael L. Scottt

(scott@ca .rochester. edu)

Computer Science Department

University of Rochester

Rochester, NY 14627

or separate very small critical sections, their performance

is a matter of paramount importance. Unfortunately, typ-

ical implementations of busy waiting tend to produce large

amounts of memory and interconnection network contention,

introducing performance bottlenecks that become markedly

more pronounced in larger machines and applications. When

many processors busy-wait on a single synchronization vari-

able, they create a hot spot that gets a disproportionate share

of the network traffic. Pfister and Norton [22] showed that the

presence of hot spots can severely degrade performance for all

traffic in multistage interconnection networks, not jest traf-

fic due to synchronizing processors. Agarwal and Cherian [2]

found that references to synchronization variables on cache-

coherent multiprocessors cause cache line invalidations much

more often than non-synchronization references. They also

observed that synchronization accounted for as much as 49%

of network traflic in simulations of a 64-processor “dance hall”

machine, in which each access to a shared variable traverses

the processor-memory interconnection net work.

Pfister and Norton [22] argue for message combining in

multistage interconnection networks. They base their argu-

ment primarily on anticipated hot-spot contention for locks,

noting that they know of no quantitative evidence to sup-

port or deny the value of combining for general memory traf-

fic. (Hardware combining appears in the original designs

for the NYU UltraComputer [10], the IBM RP3 [21], and

the BBN Monarch [24].) Other researchers have suggested

adding special-purpose hardware solely for synchronization,

including synchronization variables in the switching nodes

of multistage interconnection networks [14] and lock queuing

mechanisms in the cache controllers of cache-coherent multi-

processors [9, 20]. The principal purpose of these mechanisms

is to reduce contention caused by busy waiting. Before adopt-

ing them, it is worth considering the extent to which software

techniques can achieve a similar effect.

Our results indicate that the cost of synchronization in

systems without combining, and the impact that synchro-

nization activity will have on overall system performance,

is much less than previously thought. This paper describes

novel algorithms that use distributed data structures to inl-

plement protocols for busy-wait synchronization. All that

our algorithms require in the way of hardware support is a

269

simple set of f et ch.and.@ operational and a memory hierar-

chy in which each processor is able to read some portion of

shared memory without using the interconnection network.

By allocating data structures appropriately, we ensure that

each processor busy waits only on locally-accessible variables

on which no other processor spins, thus eliminating hot-spot

contention caused by busy waiting. On a machine in which

shared memory is distributed (e.g., the BBN Butterfly [4],

the IBM RP3 [21], or a shared-memory hypercube [6]), a

processor busy waits only on flag variables located in its local

portion of the shared memory. On a machine with coherent

caches, a processor busy waits only on flag variables resident

in its cache; flag variables for different processors are placed

in different cache lines, to eliminate false sharing.

The implication of our work is that efficient synchroniza-

tion algorithms can be constructed in sojtwar-e for shared-

memory multiprocessors of arbitrary size. Special-purpose

synchronization hardware can offer only a small constant fac-

tor of additional performance for mutual exclusion, and at

best a logarithmic factor for barrier synchronization.z In ad-

dition, the feasibility and performance of busy-waiting al-

gorithms with local-only spinning provicles a case against

“dance-hall” architectures, in which shared memory locations

are equally far from all processors.

We present scalable algorithms for mutual exclusion spin

locks, reader-writer spin locks, and multi-processor barriers

in section 2. We relate these algorithms to previous work in

section 3, and present performance results in section 4 for

both a distributed shared-memory multiprocessor (the BBN

Butterfly 1), and a machine with coherent caches (the Se-

quent Symmetry Model B), Our architectural conclusions are

summarized in section 5.

2 Scalable Synchronization

In this section we present novel busy-wait algorithms for mu-

tual exclusion, reader-writer control, and barrier synchroniza-

tion. All are designed to use local-only spinning. The reader-

writer lock requires atomic fetch.and-store (xmem) 3 and

compare.and-swap4 instructions. a specified ‘new’ value is

written into the memory location.) The mutual-exclusion

lock requires f etch_and-store, and benefits from the avail-

ability of compare-and-swap. The barrier requires nothing

more than the usual atomicity of memory reads and writes.

Our pseudo-code notation is meant to be more-or-less self

explanatory. Line breaks terminate statements (except in

obvious cases of run-on), and indentation indicates nesting

in control constructs. The keyword shared indicates that a

1A fetch_and-@ operation [15] reads, modifies, and writes a

memory)ocat ion atomically. Common f et ch_and_@ operations in-

clude test-aud_set, fetch-and-store (swap), fetch. and_add, and

compare-and-swap.

211arclware combining can reduce the time to achieve a barrier from

O(log P) to O(1) steps if processors happen to arrive at the barrier

simultaneously.

3fetch.and-store (x, new)~ old := ‘x; ‘x := new; return old

4compare.s.nd-swap (x, old, new) G

cc := (-X = old); if CC. then ‘x := new; fi; return cc

declared variable is to be shared by all processors. This decla-

ration implies no particular physical location for the variable,

but we often specify locations in comments andlor accompa-

nying text. The keywords processor private indicate that

each processor is to have a separate, independent copy of a

declared variable.

2.1 Mutual Exclusion

Our spin lock algorithm (called the MCS lock, after our ini-

tials):

guarantees FIFO ordering of lock acquisitions;

spins on locally-accessible flag variables only;

requires a small constant amount of space per lock; and

works equally well (requiring only 0[1) network transac-

tions per loci acqu~sit~on) o; ma~hirie~ with and without

coherent caches.

The MCS lock (algorithm 1) was inspired by the QOSB

(Queue On Synch Bit) hardware primitive proposed for the

cache controllers of the Wisconsin Multicube [9], but is imple-

mented entirely in software. Like QOSB, our lock algorithm

maintains a queue of processors requesting a lock; this or-

ganization enables each processor to busy wait on a unique,

locally-accessible ffag variable.

type qnode = record

next : ‘qnode // ptr to successor in queue

locked : Boolean // busy-waiting necessary

type lock = “qnode // ptr to tail of queue

// I points to a queue link record allocated

// (in an enclosing scope) in shared memory
// locally-accessible to the invoking processor

procedure acquire-lock(L : ‘lock; I : ‘Anode)

var pred : ‘qnode

I->next := nil // initially, no succeesor
pred := fetch-and.store(L, I) // queue for lock

if pred != nil // lock was not free
I->locked := true // prepare to spin

pred->next := I // link behind predecessor

repeat while I->locked // busy-wait for lock

procedure releaseJock(L : ‘lock; I : ‘qnode)

if I->next = nil // no known successor
if compare_and_swap(L, I, nil)

return // no successor, lock free
repeat while I->next = nil // wait for SUCC.

I->next->locked := false // pass lock

Algorithm 1: A queue-based spin lock with local-only spin-

ning.

To use our locking algorithm, a process allocates a locally-

accessible record containing alink pointer and a Boolean flag

in a scope enclosing the calls to the locking primitives (each

processor can use asingle statically-allocated record if lock

acquisitions are never nested). Oneadditional private tempo-

rary variable is employed during the acquire-lock operation.

Processors holdingor waiting for the same lock are chained

together by the links in the local records. Each processor

270

spins on its own local flag. The lock itself contains a pointer

to the record for the processor at the tail of the queue, or

nilifthelock is not held. Each processor inthe queue holds

the address of the record for the processor behind it—the

processor it should resume after acquiring and releasing the

lock. Compare.and.svap enables a processor to determine

whether it is the only processor in the queue, and if so re-

move itself correctly, as a single atomic action. The spin in

acquire-1. ockwaits forthe lock to become free. The spin in

release.lock compensates for the timing window between

the fetch_and_store and the assignment to pred->next in

acquire_lock. Both spins are local.

Alternative code for the release-lock operation, without

compare-and.swap, appears in algorithm 2. Like the code in

procedure releaseJock(L : “lock; I : “qnode)
var old-tail : ‘qnode
if I->nekt = nil // no known successor

old.tail := fetch. and-store (L, nil)
if old-tail = I // really no successor

return

// We accidentally removed some processors

// from the queue and have to put them back.
usurper := fetch-snd-store(L, old-tail)

/1 wait for pointer to victim list
repeat while I->next = nil
if usurper != nil

// usurper in queue ahead of our victims
// lmk victims after the last usurper
ueurper->next := I->next

else // pass lock to first victim

I->next->locked := false

else // pass lock to successor
I->next->locked := false

Algorithm 2: Code for release-lock, without compare--

and-swap.

algorithm 1, it spins on locally-accessible, processor-specific

memory locations only, requires constant space per lock, and

requires only 0(1) network transactions regardless of whether

themachine provides coherent caches. It does not guarantee

FIFO ordering, however, and admits the theoretical possibil-

ityofstarvation, though lock acquisitions arelikely to remain

very nearly FIFO in practice. Acorrectness proof for the

MCS lock appears in a technical report [18].

2.2 Reader-Writer Control

The MCS spin lock algorithm can be modified to grant con-

current access to readers without affecting any of the lock’s

fundamental properties. As with traditional semaphore-

based approaches to reader-writer synchronization [7], we can

design versions that provide fair access to both readers and

writers, or that grant preferential access to one or the other.

We present a fair version here. A read request is granted

when all previous write requests have completed. A write

request is granted when all previous read and write requests

have completed.

Code forthereader-writer lock appears inalgoritl~m3. As

in the MCS spin lock, wemaintain a linked list of requesting

processors. Inthiscaae, however, weallow arequester toread

and write fields inthelink record ofitspreclecessor (if any).

To ensure that the record is still valid (and has not been

deallocated or reused), we require that a processor access

its predecessor’s record before initializing the record’s next

pointer. Atthesame time, we force every processor that has

a successor to wait for its next pointer to become non-nil,

evenifthe pointer willnever beused. Asinthe MCSlock, the

existenceofa successor is determined byexamining L->tail.

A reader can begin reading if its predecessors a reader

that is already active, but it must first unblock its successor

(ifany) ifthatsuccessor isawaiting reader. Toensure that

areaderis never left blocked while its predecessor is reading,

each reader uses compare.and-swap to atomically test if its

predecessors an active reader, and if not, notify itsprede-

cessor that it has a waiting reader as a successor.

Similarly, a writer can proceed if its predecessor is done and

there are no active readers. A writer whose precedessor is a

writer can proceed as soon as its predecessor is done, as in the

MCS lock. A writer whose predecessor is a reader must go

through anaclditional protocol using a count of active read-

ers, since some readers that started earlier may still be active.

When the last reader of agroup finishes (reader-count =

O)}it must resume the writer (if any) next inline for access.

This mayrequire areader toresume a writer that is not its

direct successor. When awriter is next inline for access, we

write its name in aglobal location. We use fetch-and-store

to read and erase this location atomically, ensuring that a

writer proceeds on its own if and only if no reader is going

to try to resume it. To rnakesure that reader-count never

reaches zero prematurely, we increment it bejore resuming a

blocked reader, and before updating the next pointer of a

reader whose reading successor proceeds on its own.

type qnode = record

class : (reading, writing)
next : ‘qnode

state : record
blocked : Boolean // need to spin

successor-class : (none, reader, writer)
type lock = record

tail : ‘qnode := nil
reader-count : integer := O
next. writer : ‘qnode := nil

// I points to a queue link record allocated
// (in an enclosing scope) in shared memory

// locally-accessible to the invoking processor

procedure start-write(L : “lock; I : “qnode)

with 1-, L-
class := writing; next := nil;
state := [true, none]

pred : ‘qnode := fetch-and-store(ktail, I)
if pred = nil

next-writer := I
if reader-count = O and

fetch.and-store(&next_writer,nil)”I

// no reader who will resume me
blocked := false

else

// must update successor-class before
// updating next
pred->successor-class := writer
pred->next := I

repeat while blocked

271

procedure start. read(L : ‘lock; I : ‘qnode)
with 1-, L-

class := reading; next := nil

state := [true, none]

pred : “qnode := fetch. and.store(&tail, I)

if pred = nil
atomic-increment (reader-count)
blocked := false // for euccessor

else
if pred->class = writing or

compare-and. swap(ttpred->sta te,
[true, none], [true, reader])

// pred is a writer, or a waiting
II reader. pred will increment

// reader-count and release me
pred->next := I
repeat while blocked

else

// increment reader. count and go
atomic-increment (reader- cowmt)

pred->next := I
blocked := false

if successor-class = reader
repeat while next = nil
atomic-increment (reader-count)

next->blocked := falee

procedure end-write(L: ‘lock; I : ‘qnode)
with 1-, L“

if next != nil or not
compare_ and. swap(&tail, I, nil)

// wait until succ inspecte my state

repeat while next = nil
if next->class ❑ reading

atomic-increment (reader-tout)

next->blocked := false

procedure end-read(L : ‘lock; I : ‘qnode)
with 1-, L-

if next != nil or not
compare -and- swap(&tail, I,

// wait until succ inspectsmy
repeat while next = nil
if successor-class = writer

next-writer := next

nil)
state

if fetch-and-decrement (reader-count) = 1
// IJm last reader, wake writer if any

w : ‘qnode :=
fetch-and-store (&next-writer, nil)

if w != nil
w->blocked := false

Algorithm: Afairreader-writer lock with local-only spin-

ning.

2.3 Barrier Synchronization

We have devised a new barrier algorithm that

●

●

●

●

spins on locally -accessible fiag variables only;

requires only O(P) space for P processors;

performs the theoretical minimum number of network

transactions (2P – 2) on machines without

and

performs O(log P) network transactions on

path.

broadcast;

its critical

To synchronize P processors, our barrier employs a pair of

P-node trees. J3achprocessor isassigned aunique tree node,

which is linke(l into an arrival tree by a parent link, and into

awakeuptrecl)y a set of child links. It is useful to think of

these as separate trees, because the fan-in in the arrival tree

differs fromthe fan-out inthewakeuptree.5 A processor does

not examine ormodifythe state of any other nodes except to

signal its arrivalat the barrier besetting aflag initsparent’s

node, and when notified by its parent that the barrier hae

been achieved, to notify each of its children by setting a flag

in each of their nodes. Each processor epins only on flag

variables in its own tree node. To achieve a barrier, each

processor executes the code shown in algorithm 4.

Our tree barrier achieves the theoretical lower bound on the

number of network transactions needed to achieve a barrier

on machines that lack broadcast. At least P — 1 processors

must signal their arrival to some other processor, recluiring

P– 1 network transactions, and must then be informed of

wakeup, requiring another P – 1 network transactions. The

length of the critical path in our algorithm is proportional

to ~log4Pl + (log2P1. The first term is the time to propa-

gate arrival up to the root, and the second term is the time

to propagate wakeup back down to all of the leaves. On a

machine with coherent caches and unlimited replication of

cache lines, we could replace the wakeup phase of our algo-

rithm with a busy wait on a global flag. We explore this

alternative on the Sequent Symmetry in section 4.2.

3 Related Work

In [18] we survey existing spin lock and barrier algorithms, ex-

amining their clifferences in cletail and in many cases present-

ing improvements over previous-published versions. Many of

these algorithms appear in the performance results of sec-

tion 4; we describe them briefly here.

3.1 Spin locks

The simplest algorithm for mutual exclusion repeatedly polls

a Boolean flag with a test-and-set instruction, attempting

to acquire the lock by changing the flag from false to true.

A processor releases the lock by setting it to false. Proto-

cols based on the so-called test-and–test.and. set [25] reduce

memory and interconnection network contention by polling

with read requests, issuing a test.and-set only when the

lock appears to be free. Such protocols eliminate contention

on cache-coherent machines while the lock is held but with

5We use a fall-out of 2 because it results in the the shortest critical

path required to resume F’ spinning processors for a tree of uniform de-

gree. We use a fan-iu of 4 (1) because it produced the best performance

in Yewj Tzeng, and Lawrie’s experiments [27] with a related technique

they call software combining, and (2) because the ability to pack four

bytes in a word permits an optimization on many machines in which a

parent can inspect status information for all of its children simultane-

ously at the same cost as inspecting the status of only one. Alex Schiiffer

and Paul Dietz have pointed out that slightly better performance might

be obtained in the wakeup tree.by {assigning more children to processors

near the root.

272

type treenode = record

usense : Boolean

parentpointer : ‘Boolean

childpointers : array [0..1] of “Boolean

havechild : array [0..3] of Boolean

cnotready ! array [0..3] of Boolm.n

dummy : Boolean // pseudo-data

processor private vpid : integer

// a unique “virtual processor” index

processor private sense : Boolean

shared nodes : array [0. .P-1] of treenode

// nodes [vpid] is allocated in shared nesrory
// locally-accessible to processor vpid

// for each processor i, sense is initially true
// in nodes [i]:

// havechild[j] = (4*i+j < P)

~~ parentpointer =
&node.s[floor((i-1) /4)], cnotready[(i-1) mod 4],

// or &dummy if i = O

// childpointers [O] = &nodes [2*i+l] .wsense,

// or &dummy if 2*i+l >= P

// childpointers[l] = &nodes [2*i+2]. wsense,

II or &dummy if 2*i+2 >= P

// initially,

/1 cnotready = havechild and wsense = false

procedure tree-barrier
with nodes[vpid] do

repeat until cnotready =
[false, false, false, false]

cnotready := havechild // init for next time

parentpointer- := false // signal parent

if vpid != O
// not root, wait until parent wakes nre

repeat until Wsense = sense

// signal children in wakeup tree

childpointers[O]- := senee

childpointers[l]” := sense

sense := not sense

Algorithm 14: Ascalable, cfistributed, tree-basecl barrier with

only local spinning.

P competing processors can still induce O(P) network traffic

(as opposed to O(1) for the MCS lock) each time the lock

is freed. Alternatively, atest-and.set lock can be designed

to pause between its polling operations. Anderson [3] found

exponential backoff to be the most effective form of delay;

ourexperiments confirm this result.

A “ticket lock” [18] (analogous to a busy-wait implemen-

tation of a semaphore constructed using an eventcount and

a sequencer [23]) consists of a pair of counters, one contain-

ingthenumber ofrequests toacquire thelock, and the other

the number of times the lock has been releasccf. A process

acquires the lock by performing a fetch_ and-increment on

therequest counter andwaiting until the result (its ticket) is

equal tothe value of the release counter. It releases the lock

byincrementing the release counter. The ticket lock ensures

that processors acquire the lock in FIFO order, and reduces

the number of fetch-and-(D operations per lock acquisition.

Contention isstill aproblem, butthe countingiuherent inthe

lock allows us to introduces very effective form of backoff,

in which each processor waits for a period of time propor-

tional to the difference between the values of its ticket and

the release counter.

In an attempt to eliminate contention entirely, Ander-

son [3] has proposed a locking algorithm that requires only

a constant nulnber of memory references through the in-

terconnection network per lock acquisition/release on cache-

coherent multiprocessors. The trick is for each processor to

use fetch.and-increment to obtain the address of a location

on which to spin. Each processor spins on a different loca-

tion, in a different cache line. Anderson’s experiments indi-

cate that his algorithm outperforms a test-and-set lock with

exponential backoff when contention forthelock is high [3].

A similar lock has been devised by Graunke and Thakkar

[11]. Unfortunately, ntither lock generalizes tomultiproces-

sors without coherent caches, and both rec~uire statically-

allocated space per jock linear in the number of processors.

3.2 Barriers

In the simplest barrier algorithms (still widely used in prac-

tice), each processor increments a centralized sharecf count as

it reaches the barrier, and spins until that count (or aflag set

by the last arriving processor) indicates that all processors

are present. Like the simple test-and-set spin lock, such

centralized barriers induce enormous amounts of contention.

Moreover, Agarwala.nd Cherian [2] found backofl schemesto

beoflimited [lscfor large numbers ofproccssors. Ourrwsults

(see section 4) confirm this conclusion.

In a study of what they call “software combining,” Yew,

Tzeng, and Lawrie ~J7] note that their technique could be

used to implement a barrier. They organize processors into

groups ofk, forsome k,andeachgroup is assigned toaunique

leaf ofak-ary tree. Each processor performs a fetch-and--

increment on the count in its group’s leaf node; the last

processor to arrive at anocle continues upwards, increment-

ing a count in the node’s parent. Continuing in this fashion,

a single processor reaches the root of the tree and initiates a

reverse wave of wakeup operations. Straightforward applica-

tion of software combining suggests the use of fetch-and--

decrement for wakeup, but we observe in [18] that simple

reads and writes suffice. A combining tree barrier still spins

on non-local locations, but causes less contention than a cen-

tralized counter barrier, since at most k–l processors share

any individual variable.

I-Iensgen, !i’inkel, and Manber [12] and Lubachevsky [17]

have devised tree-sty le’’tournarnent” barriers. Intheir algo-

rithms, processors start at the leaves of a binary tree. One

processor from each node contioues up the tree to the next

“round” of the tournament. The “winning” processor is stati-

callydeterminecl; thereis no need for fetch.and-@. In IIens-

gen, Finkel, and Manber’s tournament barrier, and in one

of two tournament barriers proposed by Lubachevsky, pro-

cessors spin for wakeup on a single global flag, set by the

tournament champion, ‘This technique works well on cache-

coherent machines with broadcast and unlimited cache line

replication, but does not work well on distributed-memory

machines. Lubachevsky presents a second tournament

rier that emplc)ys a tree for wakeup as well as arrival;

bar-

this

273

barrier will work well on cache-coherent machines that limit

cache line replication, but does not permit local-only spin-

ning on distributed-memory machines. In [18] we present a

bidirectional tournament barrier (basedon Hensgen, Finkel,

and Manber’s algorithm) that spins only on locally-accessible

variables, even on distributed-memory machines. As shown

in section 4, however, the resulting barrier is slightly slower

than algorithm 4. The latter employs a squatter tree, with

processors assigned to both internal and external nodes.

To the best of our knowledge, only one barrier other than

our tree or modified tournament achieves the goal of local-

only spinning on machines without coherent caches (though

its authors did not address this issue). Hensgcn, Finkel, and

Manber [12] describe a “dissemination barrier” based on their

own algorithm for disseminating information in a distributed

systcm, and on an earlier “butterfly barrier” of f3rooks [5].

Processors in a butterfly or dissemination barrier engage in a

series of symmetric, pairwise synchronizations, with no dis-

tinguished latecomer or champion. Thedissemination barrier

performs O(Plog P) accesses across the interconnectio nnet-

work, but only O(log P) on its critical path. If these accesses

contend for a serialized resource such as a central processor-

memory bus, then a tree or tournament barrier, with only

O(P) network accesses, would be expected to out-perform

it. }lo\vever, onmachines inwllich m~lltiple illclependent net-

work accesses can proceed in parallel, our experiments indi-

cate that the dissemination barrier outperforms its competi-

tors by a small constant factor.

4 Empirical Performance Results

We have measured the performance of various spin lock and

barrier algorithms on the BBN Butterfly 1, a distributed

shared memory multiprocessor, and the Sequent Symmetry

Model B, a cache-coherent, shared-bus multiprocessor. We

were unable to test our reader-writer lock on either of these

machines because of the lack of a compare.and.swap instruc-

tion, though recent experiments on a BBN TC2000 [19] con-

firm that it scales extremely well. The MCS lock was imple-

mented using the alternative version of release.lock from

algorithm 2. Anyone wishing to reproduce our results or ex-

tend our work to other machines can obtain copies of our

C and assembler source code via anonymous ftp from ti-

tan.rice.edu (/public/scalable-synch).

Our results were obtained by embedding a lock acquisi-

tion/release pair or a barrier episode inside a loop and av-

eraging over a large number of operations. In the spin lock

graphs, each data point (P, 1’) represents the average time

T for an individual processor to acquire and release the lock

once, with P processors competing for access. In the barrier

graphs, points represent the average time required for P pro-

cessors to achieve a single barrier. Reported values include

the overhead of an iteration of the test loop. To eliminate

any eflects due to timer interrupts or scheduler activity, on

the Butterffy all timing measurements were maclc with inter-

rupts disabled; on the Symmetry, the tmp-affinity system

call was used to bind processes to processors.

600 I

550

1

Q-Q test & set

o. MOticket

/

p

500 0.. a test & set, linear backofi ““.s.

450
..

- Anderson A.“

400–

350-

200-

150 –

100-

..,..*...... .,.,..,...*.,..

O 10 20 30 40 50 60 70 80

Processors

Figure 1: Performance of spin locks on the Butterfly.

90

~

H Anderson

~ o test & set, exp. backoff

so — ticket, prop. backoff

70 ‘1
— MCS

60

Time ~.
(,,s)

40

30

20

4 .,,W ., .,., .,,.,, , ! . .,,,,,.,,*.,.,,...,.*,,.,,**. O

10
1

o~
O 10 20 30 40 50 60 70 80

Processors

Figure 2: Performance of selected spin locks on the Butterfly.

4.1 Spin locks

Figure 1 shows the performance on the Butterfly of several

spin lock algorithms. (Measurements were made for all num-

bers of processors; the tick marks simply differentiate be-

tween line types.) Figure 2 provides an expanded view of the

four best performers, and figure 3 shows analogous results on

the Symmetry. Since the Symmetry lacks an atomic fetch--

and.increment instruction, a ticket lock cannot be readily

implemented and Anderson’s lock is implemented as he sug-

gests [3], by protecting its data structures with an outer

test-and-set lock. So long as Anderson’s lock is used for

critical sections whose length exceeds that of the operations

on its own data structures, processors do not seriously com-

pete for the outer lock. In the absence of coherent caches, we

modified Andenon’s algorithm on the Butterfly to scatter the

slots of its array across the available processor nodes. This

modification reduces the impact of contention by spreading

274

30

27

24

21

18

Time 15,
(ps)

12

9

6

3

0’

- test & test & set

Q...Qtest & set, exp. backoff e

= MCS

A--A Anderson

A

7’
..IJ.,,J,,IT.CI..Q..O

I I I I I I [[I

02468101214161S

Processors

Figure 3: Performance of spin locks on the Symmetry.

it throughout the interconnection network and memory.

The top two curves in figure 1 are for simple test.and.set

and ticket locks without backoff. They scale extremely badly.

Most of the concern in the literature over synchronization-

induced contention appears to have been based on the be-

havior represented by the top curve in this graph. Linear

backoff in a test-and-set lock doesn’t help much, but expo-

nential backoff for the test.and.set lock and proportional

backoff for the ticket lock lead to much better scaling behav-

ior. The MCS lock scales best of all. Figure 2 suggests that

these three algorithms would continue to perform well even

with thousands of processors competing. The slope of the

curve for the MCS lock is 0.00025 ps per processor.

In many of the curves, the time to acquire and release a

lock in the single processor case is significantly larger than the

time required when multiple processors are competing for the

lock. Theprincipal reason for this apparent anomaly is that

parts of each acquire/release protocol can execute in parallel

when multiple processors compete. What we are measuring

in our trials with many processors is not the time to exe-

cute an acquire/release pair from start to finish, but rather

the length of time between consecutive lock acquisitions on

separate processors. Complicating matters is that the time

required toreleasean MCS lock depends on whether another

processor is waiting.

The peak in the cost of the MCS lock on two processors

reflects the lack of compare-and-swap. Some fraction of the

time, a processor releasing the lock finds that its next vari-

able is nil but then discovers that it has a successor after

all when it performs its fetch_and-store on the lock’s tail

pointer. Entering this timing window necessitates an addi-

tional fetch-and.store to restore the state of the queue,

with a consequent chop in performance. The longer criti-

cal sections on the Symmetry (introduced to be fair to An-

derson’s lock) reduce the likelihood of hitting the window,

thereby reducing the size of the two-processor peak. With

compare.and-swap that peak would disappear altogether.

PmziizJ
test-and-set 1420% 96%

test-and-set w/ linear backoff 882% 67%

test_and-set wi exp. backoff 32% 4%

ticket 992% 97%

ticket w/ prop. backoff 53% 8%

Anderson 75% 67%

MCS 4% 2%

Table 1: Incrcase in network latency (relative to that of an

idle machine) on the Butterfly caused by 60 processors com-

peting for a btlsy-wait lock.

Several factors skew the absolute numbers on the Butterfly,

making them somewhat misleading. First, thetest-and.set

lock is implemented completely in line, while the others use

subroutine calls. Second, the atomic operations on the But-

terflyare inordinately expensive in comparison to their non-

atomic counterparts. Third, those operations take 16-bit

operands, and cannot be used to manipulate pointers clirectly.

We bclievc thcnurnberson the Symmetryto bemorercpre-

tentative ofactual lock costsou modern machines; ourreceut

experience on lhe TC2000 confirms this belief. Wenote that

thesingle-proc.cssor latency of the MCS lock onthe Symme-

tryisonly 31% higher than that of thesimple test.and-set

lock.

In an attempt to uncover contention not evident in the spin

lock timing measurements, reobtained anestirnateof aver-

age network latencyon the Butterfly by measuring the total

time required to probe the network interface controller on

each of the processor nodes during a spin lock test. Table 1

presents our resultsin the form of percentage increases over

the value measured on an idle machine. In the Lock Node

column, probes were made from the processor on which the

lock itself resided (this processor was otherwise idle in all our

tests); in the Idle Node column, probes were made from an-

other processor not participating inthespin lock test. Values

in the two columns are very different for the test-and-set

and ticket locks (particularly without backoff) because com-

petition for access to the lock is focused on a central hot spot,

and steals network interface bandwidth from the process at-

tempting to perform the latency measurement on the lock

node. Values in the two columns are similar for Anderson’s

lock because its data structure (and hence its induceclcor~-

tention) is distributed throughout the machine. Values are

both similar and low for the MCS lock because its data struc-

ture is distributed and because each processor refrains from

spinning on the remote portions of that data structure.

4.2 Barriers

Figure 4 shows the performance on the Butterfly of several

275

6000

5500 –
Q. .m~~~~t~~ ,0

,..
. counter, exp. backoff ,..

5000 – ,H
A.. .A counter, prop. backoff .“

4500- a., e combining tree ,a”

4000- O-M bidlrectionaf tournament..’”

3500 – _ tree
..

..

fjy; 3000

I

x dissemination ..
d“

2500
...*

..
,.. ,,...””

2000
,.. ...””

,..
,..,

1500 –
,,..A

,d ...”,...,
1000– ..

:“:::.:.:”.””.::%:::::::::::::”’””
x,

o I I I I I I I I
10 20 30 40 50 60 70 80

Processors

Figure 4: Performance of barriers on the Butterfly.

450

I

_ bidirectional tournament

A.Atree
400 = dissemination

350
i I

300

‘ime 250(ps)
200

:<-::::1

...*,.
150

,a,..&,.,4,..,.&.”.b”””A”A”&”&....&.

,a,,.b”’~

100 ,:

50

o~
O 10 20 30 40 50 60 70 80

Processors

Figure 5: Performance of selected barriers on the Butterffy.

barrier algorithms. The upper three curves represent central-

ized, counter-based barriers. The top one uses no backoff.

The next uses exponential backoff. The third backs off in

proportion to the total number of processors in the barrier,

with the hope that doing so will not only allow the remain-

ing processors to reach the barrier, but also allow proces-

sors that have already arrived to notice that the barrier has

been achieved. At a minimum, these three barriers require

time linear in the number of participating processors. The

combining tree barrier [27] (modified to avoid fetch-and-@

operations during wakeup [1S]) appears to perform logarith-

mically, but it still spins on remote locations, and has a large

enough constant to take it out of the running.

Timings for the three most scalable algorithms on the But-

terfly appear in expanded form in figure 5. The cfissemina-

tion barrier [12] performs best, followed by our tree barrier

(algorithm 4), and by Hensgen, Finkel, and Manber’s tourna-

ment barrier [12] (with our code [18] for wakeup on machines

120 I
x dissemination

_ tree

/

--- tournament (flag wakeup)

‘“’”6 arrivaf tree

Q counter

&
o I

I I I I I I 1 I I

24681012141618

Processors

Figure 6: Performance of barriers on the Symmetry.

lacking broadcast—see section 3). All three of these barriers

scale logarithmically in the number of participating proces-

sors, with reasonable constants.

The comparative performance of barriers on the Symmetry

is heavily influenced by the presence of coherent caches. Fig-

ure 6 presents results for the dissemination, tree, and tourna-

ment barriers (this time with the original wakeup flag for the

tournament), logether with two other algorithms that capi-

talize on the caches. One is a simple centralized barrier; the

other combines the arrival phase of our tree barrier with a

central wakeup flag. Since the bus-based architecture of the

Symmetry serializes all network accesses, each algorithm’s

scaling behavior is ultimately determined by the number of

network accesses it requires. The dissemination barrier re-

quires O(P log P); each of the other algorithms requires only

O(F’). Our experiments show that the arrival tree outper-

forms even the counter-based barrier for more than 16 pro-

cessors; its O(F’) writes are cheaper than the latter’s O(P)

f et ch.and-~ operations,

4.3 The Importance of Local Shared

Memory

Because our software techniques can eliminate contention by

spinning on locally-accessible locations, they argue in favor

of architectures in which shared memory is physically clis-

tributed or coherently cached. On “dance hall” machines,

in which shared memory must always be accessed through

the processor-memory interconnect, we see no way to elim-

inate synchronization-related contention in software (except

perhaps with a very high latency mechanism based on in-

terprocessor messages or interrupts). All that any algorithm

can do on such a machine is reduce the impact of hot spots,

by distributing load throughout the memory and intercon-

nection network.

Dance hall machines include bus-based multiprocessors

without coherent caches, and multistage interconnection net-

276

2500 1 I

1
,4.. .Atree, remote

2250 i“
●. ~.* dissemination, remote

,..
&i’

2000 - tree, locaf ...”

— dissemination, local ‘“”4
1750

,.A

A:,..

1500 ,,A
1

Time ~250

1-*:

,A’”

(ps)
~.,

.*

1000

*...
,.,...,.

A..

750
... .,...*’:

,,,.A” ,.,...’””””

500 ~...~ :“”’”*’”’”*
.,,,.*

250 .a;~””<,..

0 i“ ,
I I I I I I I I

O 10 20 30 40 50 60 70 80

Processors

Figure 7: Performance of tree and dissemination barriers on

the Butterfly with and without local access to shared memory.

work architectures such as Cedar [26], the BBN Monarch [24],

and the NYU Ultracomputer [10]. Both Cedar and the Ultra-

computer include processor-local memory, but only for pri-

vate code and data. The Monarch provides a small amount of

local memory as a “poor man’s instruction cache.” In none of

these machines can local memory be modified remotely. We

consider the lack of local shared memory to be a significant

architectural shortcoming; the inability to take full advantage

of techniques such as those described in this paper is a strong

argument against the construction of dance hall machines.

To quantify the importance of local shared memory, we

used our Butterfly 1 to simulate a machine in which all shared

memory is accessed through the interconnection network. By

flipping a bit in the segment register for the synchronization

variables on which a processor spins, we can cause the pro-

cessor to go out through the network to reach these variables

(even though they are in its own memory), without going

through the network to reach code and private data. This

trick effectively flattens the two-level shared memory hierar-

chy of the Butterfly into a single level organization similar to

that of Cedar, the Monarch, or the Ultracomputer.

Figure 7 compares the performance of the dissemination

and tree barrier algorithms for one and two level memory

hierarchies. The bottom two curves are the same as in fig-

ures 4 and 5. The top two curves show the corresponding

performance of the barrier algorithms when all accesses to

shared memory are forced to go through the interconnection

network: the time to achieve a barrier increases linearly with

the number of processors participating.

In a related experiment, we measured the impact on net-

work latency of executing the dissemination or tree barriers

with and without local access to shared memory. The results

appear in table 4.3. As in table 1, we probed the network

interface controller on each processor to compare network la-

tency of an idle machine with the latency

a 60 processor barrier. Table 1 shows that

observed during

when processors

barrier local polling network polling

t rec 10% 124%

dissemination 18% 117%

Table 2: Increase in network latency (relative to that of an

idle machine) on the Butterfly caused by 60 processor barriers

using local and network polling strategies.

are able to spiu on shared locations locally, average network

latency increases only slightly. With only network access to

shared memory, latency more than doubles.

s Discussion and Conclusions

The principal conclusion of our work is that memory and

interconnect contention due to busy-wait synchronization in

shared-memory multiprocessors need not be a problem. This

conclusion runs counter to widely-held beliefs. We have pre-

sented empirical performance results for a wide variety of

busy-wait algorithms on both a cache-coherent multiproces-

sor and a mul liprocessor with distributed shared memory.

These results demonstrate that appropriate algorithms that

exploit locality i n a machine’s memory hierarchy can virtually

eliminate synch ionization-relaterl contention.

Although the scalable algorithms presented in this paper

are unlikely to match the synchronization performance of

a combining network, they will come close enough to pro-

vide an extremely attractive alternative to complex, expen-

sive hardwa,re.” All that our algorithms require is locally-

accessible shared memory and common atomic instructions.

The scalable barrier algorithms rely only on atomic read and

write. The M(.-!S lock uses fetch.and.store and (if avail-

able) compare.-and.swap. Each of these instructions is useful

for more than busy-wait locks. Herlihy has shown, for exam-

ple [13], that compare_and.swap is a universal primitive for

building non-blocking concurrent data structures. Because

of their general utility, f et ch-and.~ instructions are sub-

stantially more attractive to the programmer than special-

purpose synchronization primitives.

Our measurements on the Sequent Symmetry indicate

that special-purpose synchronization mechanisms such as the

QOSB instruction [9] are unlikely to outperform our MCS

lock by more than 30%. A QOSB lock will have higher single-

proccssor latency than a test-and-set lock [9, p.6S], and

its performance should be essentially the same as the MCS

lock when competition for a lock is high. Goodman, Ver-

non, and Woest suggest that a QOSB-like mechanism can be

implemented al very little incremental cost (given that they

are already constructing large cohereut caches with multi-

dimensional snooping). We believe that this cost must be

extremely low to make it worth the effort.

Of course, increasing the performance of busy-wait locks

and barriers is not the only possible rationale for implement-

6Pfister and N1orton [22] estimate that message combining will in-

crease the size and/or cost of an interconnection network 6- to 32-fold.

277

ing synchronization mechanisms in hardware. Recent work

on weakly-consistent shared memory [1, 8, 16] has suggested

the need for synchronization “fences” that provide clean

points for memory semantics. Combining net works, likewise,

may improve the performance of memory with bursty access

patterns (caused, for example, by sharing after a barrier).

We do not claim that hardware support for synchronization

is unnecessary, merely that the most commonly-cited ratio-

nale for it—that it is essential to reduce contention due to

synchronization—is invalid,

For future shared-memory multiprocessors, our results ar-

gue in favor of providing distributed memory or coherent

caches, rat her than dance-hall memory wit bout coherent

caches (as in Cedar, the Monarch, or the Ultracomputer).

Our results also indicate that combining networks for such

machines must be justified on grounds other than the re-

duction of synchronization overhead. We strongly suggest

that future multiprocessors include a full set of fetch.and.~

operations (especially fetch-and-store and compare_and_-

swap).

References

p]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S. V. Adve and M. D. Hill. Weak ordering—a new definition.

In Proc. Znt’l. Symp. on Computer Architecture, pages 2-14,

May 1990.

A. Agarwaland M. Cherian. Adaptive backoff synchronize-

tion techniques. In Proc. Int’1. Symp, on Computer Archi-

tecture, pages 396-406, May 1989.

T. E. Anderson. The performance implications of spin-

waiting alternatives for shared memory multiprocessors. In

Proc. 19891nt’1. Conf. on Parallel Processing, pages II-170-

11-174, Aug. 1989.

BBN Laboratories. Butterfly parallel processor overview.

Technical Report 6148, Version 1, BBN Laboratories, Cam-

bridge, MA, Mar. 1986.

E. D. Brooks 111. The butterfly barrier. International Journal

of Pam//el Programming, 15(4):295-307, 1986.

E, D. Brooks III. Theshared memory hypercube. Pamltel

Computing, 6:235-245, 1988.

P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent

control with headers’ and ‘writers’. CACM, 14(10):667-668,

Oct. 1971.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,

A. Gupta, and J. L. Hennessy. Memory consistency and

event ordering in scalable shared-memory multiprocessors.

In Proc. Int’1. Symp. on Computer Architecture, pages 15-

26, May 1990.

J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient syn-

chronization primitives for large-scale cache- coherent multi-

processors. In Proc, 3rd Int’1. Conf. on Architectural Support

for Programming Languages and Operating Systems, pages

64-75, Apr. 1989.

[10] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe,

L. Rudolph, and M. Snir. The NYU Ultracomputer — de-

signing an MIMD shared memory parallel computer. IEEE

Transactions on Computers, C-32(2):175-189, Feb. 1983.

[11] G. Graunke and S. Thakkar. Synchronization algorithms for

shared-memory multiprocessors. IEEE Computer, 23(6) :60-

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

69, June 1990.

D. Hensgen, R. Finkel, and U. Manber. Two algorithms for

barrier synchronization. International Journal of Pamllel

Progmmming, 17(1):1-17, 1988.

M. Herlihy. A methodology for implementing highly concur-

rent data structures. In Proc. %d ACM Symp, on Principles

and Pmctice of Pamllel Progmmming, pages 197–206, Mar.

1990!

D. N. Jayasimha. Distributed synchronizers. In Proe. J988

Int’1. Conj. on PamUel Processing, pages 23-27, Aug. 1988.

C. P. Kruskal, L. Rudolph, and M. Snir. Efficient synchro-

nization on multiprocessors with shared memory. In Proc. 5th

ACM Symp. on Principles of Distributed Computing, pages

218-228, 1986.

J. Lee and U. Ramachandran. Synchronization with multi-

processor caches. In Proc. Int’1. Symp. on Computer Archi-

tecture, pages 27–37, May 1990.

B. Lubachevsky. Synchronization barrier and related tools

for shared memory parallel programming. In Proc. 1989 Int ‘1.

Conf. on Parallel Processing, pages 11-175-11-179, Aug.

1989.

J. M. Mellor-Crummey and M. L. Scott. Algorithms for

scalable synchronization on shared-memory multiprocessors.

Technical Report 342, Computer Science Department, Uni-

versity of Rochester, Apr. 1990. Also COMP TR90-114, De-

partment of Computer Science, Rice University, May 1990;

revised version to appear in ACM Transactions on Computer

Systems.

J. M. Mellor-Crummey and M. L. Scott. Scalable reader-

writer synchronization for shared-memory multiprocessors.

In Proc. 3rd A CM Symp. on Principles and Practice of Par-

allel Programming, Apr. 1991.

P1596 Working Group of the IEEE Computer Society Mi-

croprocessor Standards Committee. SCI (scalable coherent

interface): An overview of extended cache-coherence proto-

cols, Feb. 5, 1990. Draft 0.59 P1596/Part III-D.

G. Pfister et al. The IBM research parallel processor proto-

type (RP3): Introduction and architecture. In Proc. 1985

Znt ‘1. C’onj. on Pamllel Processing, pages 764-771, Aug.

1985.

G. F. Pfister and V. A. Norton. “Hot spot” contention and

combining in multistage interconnection networks. IEEE

Z’mmsactions on Computers, C-34(1O):943-948, Oct. 1985.

D. P. Reed and R. K. Kanodia. Synchronization with

eventcounts and sequencers. Communications of the ACM,

22(2):115-123, Feb. 1979.

R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S.

Tomlinson. The Monarch parallel processor hardware design.

computer, 23(4):18-30, Apr. 1990.

L. Rudolph and Z. Segall. Dynamic decentralized cache

schemes for MIMD parallel processors. In Proc. Int ‘1. Symp.

on Computer Architecture, pages 340–347, 1984.

P.-C. Yew. Architecture of the Cedar parallel supercomputer.

CSRD report 609, Center for Supercomputing Research

and Development, University of Illinois Urbana-Champaign,

Aug. 1986.

P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributing hot-

spot addressing in large-scale multiprocessors. IEEE Trarw-

actions on Computers, C-36(4):388–395, Apr. 1987.

278

