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Abstract— We present a model that is capable of synchroniz-
ing expressive gestures with speech. The model, implemented on
a Honda humanoid robot, can generate a full range of gesture
types, such as emblems, iconic and metaphoric gestures, deictic
pointing and beat gestures. Arbitrary input text is analyzed
with a part-of-speech tagger and a text-to-speech engine for
timing information of spoken words. In addition, style tags can
be optionally added to specify the level of excitement or topic
changes. The text, combined with any tags, is then processed by
several grammars, one for each gesture type to produce several
candidate gestures for each word of the text. The model then
selects probabilistically amongst the gesture types based on the
desired degree of expressivity. Once a gesture type is selected,
it coincides with a particular gesture template, consisting of
trajectory curves that define the gesture. Speech timing patterns
and style parameters are used to modulate the shape of the
curve before it sent to the whole body control system on the
robot. Evaluation of the model’s parameters were performed,
demonstrating the ability of observers to differentiate varying
levels of expressiveness, excitement and speech synchronization.
Modification of gesture speed for trajectory tracking found that
positive associations like happiness and excitement accompa-
nied faster speeds, with negative associations like sadness or
tiredness occurred at slower speeds.

I. INTRODUCTION

Many people feel a natural affinity for humanoid robots

because their appearance and features are similar to our own.

Beyond appearance, the expectations for the level of behavior

and functionality of these humanoid robots are raised for the

same reason that if a robot looks like us, it should behave

and communicate like us. With this in mind, we decided

to develop a model for synchronized gesture and speech

communication for humanoid robots.

The phenomenon of gesture as a communication modality

has been investigated for many years, dating back to at

least the nineteenth century[7]. More recently, there has been

growing evidence that gesture and speech are simultaneously

generated from a common thought source, the hypothesized

growth point[13]. The combination of symbolic characteris-

tics of human spoken language with the imagery of gesture

complete the expression of human thought.

Gesture itself has been categorized into different types[13]:

• Emblems are self-contained gestures whose meaning

can be understood without spoken words. They can be

culturally-specific and tend to be more constrained in

their expression. Mainly, there are specific ways one

can act out the gesture before the meaning becomes

confused or lost. For example, waving the hand to

say goodbye or gesturing someone to come closer are

emblems.

• Iconics refer to concrete things and actions when used

in conjunction with words. Tracing out a trajectory of

a path or specifying how big something is with your

hands spaced apart are examples.

• Metaphorics provide imagery of the abstract. This is a

very useful function for gesture in that it can help people

visualize difficult concepts that are entirely imaginative.

For example, a person may refer to the different sides of

an argument by appearing to be holding invisible items

in her left and right hands.

• Deictics utilize parts of the body to point out both con-

crete and abstract things during conversation. Typically,

one uses an arm with the index finger extended at the

target of interest (real or imaginary).

• Beats are rhythmic hand motions that move up and

down in synchrony with the cadences of speech. They

can be one handed or two-handed, and can vary in the

hand shapes used. Although beats have little semantic

content, the manner in which they are performed can

convey emphasis, emotion and personality.

Our main contribution is a model for generating all of

these types of gestures in a humanoid robot from arbitrary

input text. Unlike other approaches, we do not require

the text to be annotated with the semantic structure of

the sentences to be spoken or explicit mark-up of gesture

directives. Instead, automatic methods are used for analyzing

text. However, in cases where stylistic preferences cannot be

extracted from text alone (e.g., saying something in a calm

or excited way), we provide various tags that can be added

to the text. The model has a gesture selection component

that analyzes the text to determine appropriate gestures with

the goal that even in the presence of unrecognized word

meanings, appropriate default gesticulation can be produced.

The gesture modification component adjusts trajectories to

synchronize with the timing of speech as well as adjustments

to infuse emotion and style variation. Probabilistic elements

incorporated in gesture selection and modification ensure

the gesture sequences produced will not appear unnaturally

deterministic for multiple instances of the same text input.

Our approach allows gesture to be added as a fast post-

process to spoken text and does not require careful linguistic

analysis and annotation of text that would involve a sig-
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nificant level of expertise and manual effort. For example,

gestures are automatically added to pre-existing text of

speeches to create multi-modal presentations on a Honda

humanoid robot (Figure 6 ). The robot’s lack of visible facial

expression underscores the need for more expressive bodily

communication. Although the model focuses on parameters

for designing the trajectories of the arms and hands, the

physical expression of gesture in our model also influences

torso and head orientation.

Section II reviews previous research in robotics and virtual

embodied conversational agents to produce expressive body

motion. We provide an overview of the model in Section III.

Section IV describes the design and development of our

gesture model and how we address the problems of gesture

selection and gesture modification. Section V describes our

implementation and examples of gesture in our model. We

evaluate some parameters of our model in Section VI and

conclude with discussion and future work in Section VII.

II. RELATED WORK

Although there has been research in the area of gesture

recognition and analysis for humanoid robots[1], limited

gesture phenomena have been modeled for expression on

humanoid robots. Deictic gestures were used in [22] to es-

tablish common object referents between humans and robots.

Emblems for displaying emotional states were implemented

on the WE-4RII robot[6]. These systems focused on one

particular type of gesture and do not attempt to model a gen-

eral framework for handling all types of gesture. The study

in [14] found relationships between the physical properties

of robot gesture and human emotional perception of those

gestures. While not specifically gesture, arm movements

synchronized to music for dance were implemented on an

HRP-2 robot platform[19]. Our model is also concerned with

synchronizing arm movements to an external data stream,

mainly input text.

In the area of embodied conversational agents, there has

been active work in developing complex gesture models for

animating virtual characters. The main goals are producing

meaningful and synchronized arm motions to match either

synthetic or recorded speech. This work can be compared

on the basis of several design choices in their respective

algorithms: input to the gesture planner, gesture selection

and gesture modification.

Gesture systems for animation often utilize motion-

captured data and recorded dialog of a human performance.

In [20], both motion capture data and speech segments

are recombined under constraints obtained analyzing gesture

structure to create expressive hand motions for dialog. In

[11] and [10], motion-captured gesture clips are matched

up to prosody features from live speech using probabilistic

models to generate real-time gestures. Although the use

of prosody can effectively express emphasis and emotional

cues, semantic meanings of words cannot be conveyed. In

cases where the input is text, some systems assume that

the text has been annotated to indicate what type of gesture

and their parameters to use [4], [9]. In [15], higher level

semantic tags for the theme, rheme and focus of a sentence

are manually provided and a probabilistic model derived

from training data is used to gesture in a given speaker’s

style. Although manual annotation offers direct control of

how gestures can be coordinated with speech, it requires

significant effort to linguistically analyze the text and assign

gesture parameters. It is also susceptible to deterministic

gesture behavior if only one type of gesture is defined for a

particular text sequence. In our model, a single expressivity

parameter can be used to control selection from a range of

possible gesture interpretations for a text sequence.

Several gesture models focus on the role of gesture in

conversation in conjunction with automated dialog managers

[24] that provide communicative goals that are passed onto

a gesture planner for eventual expression with speech. With

additional information provided by the communication goal,

text can be annotated precisely with specific iconic repre-

sentations parameterized by form features like hand locations

and palm orientation [9], [18]. However, some robot applica-

tions use manual user input (Wizard-of-Oz methods) or pre-

scripted dialog to generate speech. Therefore, we attempt to

reconstruct the communicative intent through text and parts-

of-speech analysis to select appropriate gestures.

The BEAT gesture system[2] is closest in philosophy to

our own model in that their system generates synchronized

gesture with synthesized speech. They feature an extensible

rule set for suggesting what types of gestures to perform and

establish beat gestures as a default gesture when no other

gesture types are suggested. Our model extends this idea

by allowing simultaneous analysis of the text using multiple

grammars designed for each type of gesture (emblems, icon-

ics, etc.) and probabilistically selects amongst the various

candidate gestures based on different factors.

Once the gesture types have been selected, the trajectories

can be modified for different reasons. The trajectories for

the resulting arm motion can be modified for the purpose

of synchronization to speech[26]. Additionally, trajectories

can be parameterized along different expressive axes[3], [4],

[17].

There are several unique challenges to implementing a

gesture system on a physical robot rather than a virtual

character. Current humanoid robots tend to have less degrees

of freedom than a virtual character, potentially decreasing

the expressiveness of the gestures produced. We also desire

the gesture planning time to be as fast as possible in

interactive applications where a robot must respond quickly

to interactive queries from its human partner. Finally, the

motions produced by the robot must be dynamically safe as

well as collision-free. From an application standpoint, even if

the robot has no advance knowledge of the text to be spoken,

reasonable gesture behavior should be shown.

III. MODEL OVERVIEW

Our gesture system takes as input arbitrary text sentences

and outputs synchronized synthetic speech and gestures,

included coordinated head and torso movements. Figure 1

describes the process starting from the top left where the
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Fig. 1. Overview of our gesture model.

sample text is initially processed separately in parallel by a

part-of-speech tagger and a text-to-speech (TTS) engine used

to determine word timings. The model is initially configured

by providing grammars for the different gesture types and

deciding on a parameter value for expressivity, which defines

the personality of the robot presenter. Once the system is

configured, arbitrary text can be provided to the gesture

model to generate co-expressed speech and gesture.

Once the text is tagged by part-of-speech, it is simultane-

ously processed by five different grammars, each designed

to identify appropriate candidates for each gesture type:

emblem, metaphoric, iconic, deictic and beat gestures. There

is also an option to do nothing to prevent excessive gesture.

In our system, all gesture strokes (the portion of gesture

associated with meaning) begin on word boundaries. As a

word usually is the minimal encapsulation of a thought, we

believe this is a valid assumption to make as the growth

point hypothesis suggests that gesture types will not change

in the middle of a word. For each word in the input sentence,

there can be up to six different possibilities of gesture that

can be expressed. Section IV-B describes how we select

which gesture to use. Once both processes for selecting

gesture types and timing information have been completed,

this information is combined in a process that selects the

basic trajectory shapes by gesture type and then modulates

the shape of the trajectory using timing information to start

gesture strokes on certain words. In addition, optional tags

can be added to the input text to provide contextual hints

such as change for indicating a change of topic and excited or

calm for controlling the degree of excitement in the speaker.

These hints are usually difficult if not impossible to pick up

just from text alone. The final gesture plan, consisting of

the continuous stitched sequence of gesture trajectories for

both arms is then sent to a gesture generation module to be

expressed on the robot. Speech is generated at the same time

in parallel with the gestures.

IV. MODEL DESIGN

In designing the requirements for our model, we envi-

sioned the gesture system to be a reusable component not tied

to a particular application. We wanted existing applications

in our robot like the memory game described in [16] to

benefit immediately from the greater expressivity of gestures

without requiring substantial rewriting or modification of all

the dialog text. If an application designer had to annotate

gestures for all text, we felt that the manual labor involved

would be a disincentive to use gesture. Instead, the gesture

system attempts to analyze and process the text and can

add gesture independently of the application. However, we

do not preclude other modules from annotating the speech

text to provide more guidance over gesture selection and

modification and make use of this extra contextual or stylistic

information when available.

A. Gesture Analysis

Using the approach and gesture lexicon (lexemes) of [15],

we studied several videos of dynamic presenters (Elizabeth

Gilbert, J.J. Abrams, Isaac Mizrahi and Tony Robbins) from

the TED conference series [23] and analyzed them with the

ANVIL video annotation tool. A sample annotation is shown

in Figure 2. The lexemes and gesture phases, denoting the
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Fig. 2. Anvil Annotation

start, main stroke and retraction of gestures over time were

annotated manually for these videos. It was important to

study more than one speaker to look for general patterns of

gesture formation across speakers and not build in rules that

may be specific to only one person. Although the individual

mannerisms and frequency of different gesture were very

different for each speaker, we were able to identify several

trends.

• There are limited sets of gestures to be represented

which reduce the complexity of modeling. Defining

the gesture lexicon and defining appropriate parame-

terizations to their trajectories produce a more compact

and less data-intensive model than resorting to many

examples of motion-captured gesture data.

• Specific gestures tend to be associated with certain

words, phrases or part-of-speech. For example, the erupt

gesture where the arms gesture outward typically occurs

on verbs.

• Catchments[13] were observed where the style of ges-

ture beats tends to stay the same within a contextual

topic, and can change as the topic changes. This mo-

tivated defining a change tag for the input text. An

example of catchments is shown in Figure 3 where the

speaker’s pose and hand beats change when different

phrases are spoken.

• The same words may map to several different gestures,

influenced by many contextual factors as well as adja-

cent word use.

Fig. 3. Sample gesture sequence indicating context change.

These insights influenced our gesture selection model during

gesture planning.

B. Gesture Selection

To minimize the number of parameters that need to be

specified for gesture selection, the different gesture types

were placed in a hierarchy of increasing expressivity (no

gesture, beats, iconic gestures, metaphoric gestures, deictics

and emblems) whose members make up the set G. Intuitively,

gestures with increasing expressivity convey more imagery

of the content of the accompanying speech. For example,

beats serve mainly to emphasize words, whereas iconic

gestures provide specific imagery to help describe items

being spoken about. This concept is similar to level-based

language analysis [12], where our hierarchy of gesture types

correspond to the language elements in different layers. It

was also important to offer the possibility of not gesturing

at all as gesturing without pause can appear overly active

and tends to muddle the overall communication.

The distribution of gesture occurrence for each gesture

type i, i ∈ G, is represented by a normal distribution

centered over different values of an expressivity parameter x

(Figure 4). Given the mean µi and variance σ2
i for a given

gesture type i, the weight function wi(x) for selecting a

gesture type i is modeled as a Gaussian over expressivity

values:

wi(x) =
1

σi

√
2π

e−(x−µi)
2/(2σ2

i
) (1)

where x ∈ [0, 1] represents expressivity. We set emblem

gestures with a high mean and relatively low variance while

iconic, metaphoric and deictic gestures have their means

centered at intermediate values of x. The distribution for no

gestures and beats are set fairly wide over the entire range

of expressivity.

Different types of gestures can be generated for the same

sequence of words. We use the expressivity parameter to

model the relative probability that certain gesture types will

be selected (if at all). The input text (that may contain

style or part-of-speech tags) is parsed independently through

multiple grammars designed for each gesture type to produce

several candidate gestures for each word of the text. With this

scheme, it is possible that a gesture type can be assigned to

an individual word or a sequence of words. Consequently,

each word in the input text can be labeled with one or more

gesture type candidates. We defined the grammar rules based

on video analysis of speakers as described in Section IV-A.

Selecting an expressivity value for x determines the relative

weighting wi(x) of each gesture type i. All candidate gesture

types for a given word are collected in the set C ⊆ G, the

relative weights for each gesture type are re-weighted by

the total sum of weights of the set of available candidate

gestures, C, to produce a probability of selecting that gesture

type i:

pi(x) =
wi(x)∑

j∈C

wj(x)
. (2)

The computed probabilities for pi(x), i ∈ C are used to

select the final gesture expressed. Once a gesture type is

selected, it is assigned to all the words it spans.

C. Grammar Parsing

The input text is first automatically tagged by the Stan-

ford Log-linear Part-Of-Speech Tagger[25] to assign part

of speech (e.g., noun, verb, adjective) to each word. The
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Fig. 4. Normal distribution for determining weights of gesture types over
the range of expressivity.

tagged text is processed by several context-free grammars

defined for each gesture type (emblem, metaphoric gestures,

iconic gestures, etc.). Within a gesture type’s grammar, rules

are defined to choose which subtype of gesture to use. For

example, within an emblem type, finding the text pattern

”goodbye” will cause a hand-waving gesture to be selected.

In addition to words, the grammar may act on part of

speech, such as specifying eruptive-type gestures (outward

arm motions) for verbs or cyclic arm motions for verbs in

progressive tense (ending in ing). Grammars can also extract

higher level patterns. For example, the grammar for finding

iconic gestures may look for phrases that match the pattern:

between ... and ..., to direct body orientation changes on

certain words. The grammars we use have the following

sample form:

Sentence → KeyWord1

Sentence → Sentence KeyWord2

Sentence KeyWord3

Sentence → KeyWord4

KeyWord1 → Gesture1

KeyWord2 → Gesture2

KeyWord3 → Gesture3

KeyWord4 → Gesture4,

where KeyWordi represents different sets of candidate

words and/or tags and Gesturei defines the corresponding

gesture lexemes to use. For example, in our iconic gesture,

Keywordsize contains the words ”large” and ”big” and maps

to Gesturedistance where both hands are held apart.

D. Gesture Modification

The selection of gesture lexemes corresponds to the selec-

tion of a gesture template consisting of the basic trajectory

shape for the hand positions of the stroke portion of the

gesture over time as well as time trajectories for wrist

rotation and hand shape. Hand shape is controlled by one

parameter ranging from 0 (open hand) to 1 (closed fist).

The trajectories are stored as a set of key points for each

parameter value. Kochanek-Bartels (TCB) cubic splines[8]

are used to define trajectory curves by interpolating over the

key points. TCB (tension-continuity-bias) splines have useful

shape parameters that can control how smoothly or tightly

the trajectories follow the key points, offering expressive

variability (see Figure 5). Since gesture strokes are tied

together with continuous spline trajectories, gestures are

blended together smoothly and preparatory motion leading

to a gesture stroke can occur prior to a word utterance.

Fig. 5. The same hand trajectory with different values of tension in the
TCB-spline curves.

1) Style Parametrization: The trajectory curves are func-

tions of style parameters such as excitement and these param-

eter values can change with context or catchment changes.

We define parameters for controlling the styles of gestures,

S = {A,F, Ti, Ci, Bi, ti|i = 0 · · ·n}, (3)

where n is the number of key frames for the current gesture

lexeme, A is Amplitude, F is frequency for this gesture

lexeme since some gestures have a repetitive sequence, Ti is

tension,Ci is continuity,Bi is bias, and ti is time for keyframe

i which is normalized to be from 0 to 1.

A scalar value α is randomly generated within a numeric

range based on the style tag value ([0.6, 1] for excited,

[0.3, 0.7] for neutral and [0.0, 0.4] for calm). This parameter

α is used to perturb the starting positions of gesture strokes

by adding offsets to the defined template position or modify-

ing the shape of the trajectory by defining the parameters A,

F , Bi and Ti in Equation 3 as linear transformations of α.

More sophisticated functions of α and style parameters can

be defined, perhaps derived from empirical data or based on

new style tags.

The number of hands involved in the gesture is also

considered. In our model, there are two mechanisms where

hands can change. The first is a change of topic and the

second is the prescribing of specific hands for specific

gestures. Head motions are defined by directing the robot

to look at the centroid of the active hand positions involved

in a gesture. If a gesture is one-handed, the robot only looks

at the active hand. This has the natural effect of the robot’s

head following its own hand motions while expressing itself.

Alternatively, the control of head motion can be given over

to another process such as an attention-guided vision system.

V. RESULTS

We implemented our gesture model on a Honda humanoid

robot[5]. For controlling the robot, we used real-time col-

lision avoidance whole body motion control described in
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[21]. The controller performs task-based control to try its

best to match the end-effectors of the arms to the targeted

trajectory curves, while keeping constraints such as balance

and velocity limits. The degrees of freedom for the arm and

torso are both recruited to match the trajectory constraints,

allowing changes in body pose. This allowed our model to

focus on the shapes of hand and arm trajectories without too

much concern for self-collisions as the collision avoidance

system would automatically adjust trajectories smoothly to

avoid collisions or in the worst case stop motion just be-

fore collision. The controller has adjustable parameters for

maximum velocity of end effectors and time constants for

how tightly the trajectory is followed over time. A large

time constant can create very smooth arm motions, but fine

details of the trajectory can be lost. Alternatively, a small

time constant can capture many trajectory details but may

make the arms appear jerky if the trajectories change shape

rapidly.

Figure 6 features still frames from three different ges-

ture sequences. The top (A) sequence demonstrates context

change as described in Figure 3. The middle (B) sequence

demonstrates an emblem gesture of waving goodbye for the

phrase ”bye-bye”. The last sequence shows an metaphoric

gesture of tracing a circle as the robot speaks the phrase

”circle around”. We have integrated the gesture module into

our robot architecture to add gesture behavior to interac-

tive applications like the memory game we use as one of

our research platforms (Figure 7). Videos of our gesture

sequences can be viewed via http://www.honda-ri.

com/HRI Us/Projects.

VI. EVALUATION

We performed four studies designed to evaluate various pa-

rameters of our model. The first three studies were conducted

from a sample of 29 adults. All gesture sequences were

generated from text excerpts of two speeches from the late

Soichiro Honda: ”What Mistakes Teach Us (1965)” (speech

A) and ”First, You Work for Yourself (1969)” (speech B).

In Study 1, we tested the ability of the model to generate

synchronized gesture and speech. Subjects were shown in

series two identical videos of a portion of the gesture

sequence generated with our model from speech B. However,

one video had the correct audio track from speech B, while

the other had audio from speech A. Respondents were

asked to identify which video was better synchronized with

the audio as well as which one seemed the most natural.

The majority of respondents (83%) correctly identified the

properly synchronized video with 76% describing it as the

most natural.

In Study 2, we sought to evaluate how effective the style

tags excited and calm were at modifying gesture sequences

from the same identical input text. Two adjacent videos of

gesturing robots (labeled Robot A and Robot B) generated

from speech A were used with Robot A set with the excited

tag and Robot B with the calm tag. Subjects were asked

to identify which robot appeared more excited, calm and

confident. From Figure 8, a large majority of subjects were

Fig. 6. Gestures on humanoid robot

Fig. 7. Gesture integrated into the memory game.
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Fig. 8. Study 2: Excited versus calm style parameters
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able to correctly identify the excited (97%) and calm (93%)

settings. There was less agreement over which robot seemed

the most confident, with a smaller majority (69%) associating

confidence with the excited robot. When asked, subjects

seemed to employ contrasting rationale, with both fast and

slow motions being associated with confidence by different

people. This suggests the importance of choosing style labels

for motion parameters not subject to different interpersonal

interpretation.

For study 3, we generated two groups of three gesture

sequences from speech B with different expressivity settings:

low (x = 0.05), medium (x = 0.5) and high (x = 0.95).

Group 1 videos had audio and Group 2 videos had no audio

track. The three unidentified videos for each group were

placed from left to right with a medium-low-high order

for Group 1 and high-low-medium for Group 2. Subjects

were then asked questions rating which video was the best

presenter, most graphic, least passionate and least expressive.

Reviewing Figure 9, a majority of subjects were able to

associate the qualities of least passionate and least expressive

with the low-expressivity gesture setting. Medium and high

expressivity settings were associated with “best presenter”

and “most graphic” qualities. Subjects appeared to have

more difficulty differentiating medium and high expressivity

settings. This is probably due to the medium and high

expressivity settings producing gesture type distributions

which were too similar to perceive differences. On the other

hand, the low expressivity settings feature a higher chance

of the robot doing nothing or using beat gestures which

may be more noticeable to a viewer. Subjects had a more

difficult time distinguishing different levels of expressivity

in the absence of sound. This may be partially explained by

the fact that the interpretation of expressive gesture types

like iconics and metaphorics are only meaningful with the

accompanying spoken words.

28%

52%
48%

17%
10%

3% 7%

69% 21%

38%

55%

7%

3%

93%

72%

93%

79%

17%

3%

17%

7%
7%

3%
10% 10% 10% 10%

7%

0%

20%

40%

60%

80%

100%

Audio No Audio Audio No Audio Audio No Audio Audio No Audio

Best Presenter Most Graphic Least Passionate Least Expressive

Neither

Same

Low

Medium

High 

Fig. 9. Expressivity settings with and without sound

In the final Study 4, we wished to determine the best speed

settings to use for arm motions. Twenty-five participants

between the ages of twenty-three to forty years-old watched

three video clips of the humanoid robot gesturing at different

speeds and were asked for their qualitative impressions.

The video consisted of the robot giving a short story about

geckos. The speed settings were adjusted by changing the

time constant of a second order system that controls how

quickly the robot’s end effectors converge to the target set

point of the commanded trajectory. The participants saw one

robot at slow speed, another robot at medium speed, and

the third robot at fast speed. The three video clips were

shown side-by-side, one at a time in two, thirty-five second

increments. The videos were shown in the random order of

medium, slow, fast, slow, medium, fast. Questions included

measures for positive impressions (e.g. Which robot seemed

to have the most fun?) and negative impressions (e.g. Which

robot seemed most nervous?). Each video clip was labeled

separately as A, B, or C with the speed label hidden.

The broader effect seemed to be that speed is associated

with positive and negative feelings. As speed level increased,

the robot’s behavior was associated more with positive

impressions. As speed level decreased, the robot’s behavior

was associated with negative impressions. For example, the

participants felt that the robot was excited (over 75%) and

happy (over 65%) when the speed level was fast (See Figure

10(a)). As the robots speed level decreased, more negative

impressions are associated with the robot’s behavior. For

example, participants felt that the robot was tired when its

speed was slow (60%) compared to medium (30%) and fast

(12%) speeds. See Figure 10(b).
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Fig. 10. Gesture impressions study

VII. DISCUSSION

We have shown that our gesture model can produce

synchronized gesture motions with arbitrary text input that

can demonstrate many different gesture types: emblems,

deictics, metaphoric and iconic gestures and beats. Evalu-

ation studies demonstrate the effectiveness of gesture and

speech synchronization and the ability of style tags and
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the expressivity parameter to alter an observer’s perception

of gesture style. Speed tests show an association of faster

gestures with positive impressions and slower gestures with

negative impressions. These findings are consistent with the

findings in [14] who also observed similar associations with

end-effector speeds.

A. Limitations and Future Work

The prototypical trajectories we designed for our model

were all hand-crafted and done with relatively little key

points (averaging about three). More realistic trajectories

could be created to enhance the realism of gestures and the

expressiveness of the robot. The robot we used only has

5 degrees of freedom in each arm, restricting the range of

motions we can perform. A robot with higher degrees of

freedom can use our gesture model with potentially greater

gesture expressiveness, especially with a more flexible wrist

and dextrous hands.

Our current gesture system expresses gesture motions and

speech simultaneously once the gesture plan is finalized, but

in an open-loop fashion. As others have done[9], we intend

to re-design the system to allow closed-loop feedback to

account for small system delays and re-adjust the timings

of gesture with speech. This will allow speech to be paused

to give more time for complicated and expressive gestures to

complete. In the current system, speech dictates the timing

of gestures completely, but gestures cannot affect speech

patterns.

The grammars used in our model contain relatively few

rules for each type of gesture. We can easily add more rules

to increase the number of successful mappings between input

text and appropriate gestures. New grammars can also be

added to the model to handle other non-text cues, such as

visual cues from a person. This would allow more appropri-

ate gestures to be generated in conversational settings and

provide greater awareness for turn-taking cues between the

robot and human partner. We would also like to improve the

number of stylistic parameters that can act on the gesture

model simultaneously. We believe that use of gesture during

communication enhances a person’s overall experience when

working with a humanoid robot due to the enhanced imagery

gesture provides in addition to speech.
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