
Chapter 13

SMIL: Synchronized Multimedia

Integration Language

Dick C. A. Bulterman

Abstract The period from 1995 to 2010 can be considered to be networked

multimedia’s Golden Age: Many formats were defined that allowed content to be

captured, stored, retrieved, and presented in a networked, distributed environment.

The Golden Age happened because network infrastructures had enough bandwidth

available to meet the presentation needs for intramedia synchronization, and content

codecs were making even complex audio/video objects storable on network servers.

This period marked the end of the CD-ROM era for multimedia content distribu-

tion. Unlike the relative simplicity of CD-ROM multimedia, where timing con-

straints were well-understood and pre-delivery content customization was relatively

simple, the network multimedia era demanded new languages that would allow

content to be defined as a collection of independent media components that needed

to be located, fetched, synchronized, and presented on a large collection of user

devices (under greatly varying network characteristics). One of the most ambitious

projects to define an open and commonly available multimedia content integration

language was W3C’s SMIL. In a period of approximately ten years, SMIL grew

from a simple synchronization language to a full content integration and scheduling

facility for a wide range of Web documents. This chapter considers the timing and

synchronization aspects of SMIL.

Keywords Structured timing ⋅ Hierarchical synchronization ⋅ Web-based

multimedia

D. C. A. Bulterman (✉)

Vrije Universiteit Amsterdam and CWI, Amsterdam, The Netherlands

e-mail: dick.bulterman@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018

M. Montagud et al. (eds.), MediaSync,

https://doi.org/10.1007/978-3-319-65840-7_13

359

p.s.cesar@cwi.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-65840-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-65840-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-65840-7_13&domain=pdf

13.1 Introduction

This chapter provides an overview of the W3C Synchronized Multimedia Inte-

gration Language (SMIL), which was developed and is maintained by the World

Wide Web Consortium (W3C) [1]. SMIL has been defined as a series of W3C

Recommendations [2–5], the term used by W3C to indicate a member-reviewed and

member-approved standard for use within the W3C’s suite of protocols and for-

mats. SMIL is a comprehensive presentation format that can be used to structure the

timing, layout, and user control of a set of content objects. While SMIL can be used

to address a wide array of temporal control applications, this chapter will con-

centrate on SMIL as a multimedia presentation language.

The SMIL Recommendation is structured as a set of modules, each providing a

collection of elements, attributes, and attribute values that can be selectively

included when designing XML languages. The SMIL modules have also been

grouped into a number of profiles that each serves the implementation needs of

individual use domains. Since this book is particularly concerned with media

synchronization, the discussion of SMIL in this chapter will largely be limited to the

timing and synchronization aspects of the language. We will also consider how

timing and synchronization are influenced by user interaction: mostly by activating

temporal hyperlinks, but also where parts of a presentation are activated by

event-based user interaction.

In the sections below, we start with a short history of SMIL, tracing the roots of

the formats on which SMIL was based. We then provide a short primer on how

SMIL is structured, with enough background to understand the examples given later

in the chapter. We then consider the details of SMIL timing and interaction. We

close with a short reflection on the success and limitations of the language.1

13.2 A Brief History of SMIL

In 1996, W3C started an activity to determine how audio and video could best be

supported in the context of the a-temporal HTML text and image content that was

then dominant on the World Wide Web. This activity, lead by Philipp Hoschka,

resulted in the definition of the Synchronized Multimedia (SYMM) working group

[7]. The working group consisted of several major providers of media players and

embedded technology (most notably Apple, Intel, Microsoft, Philips, RealNet-

works), a collection of academic institutions (CWI, GMD, and INRIA), and

organizations interested in accessibility (WGBH and the Daisy consortium). After

about nine months of work, the group published the first version of SMIL in June

1998. The architecture of SMIL was based largely on CWI’s CMIF format [8], with

modifications, restrictions, and extensions flowing from the design-by-committee

1This chapter draws on material published in [6].

360 D. C. A. Bulterman

p.s.cesar@cwi.nl

process. Subsequent editions of SMIL, up to SMIL 3.0, were produced through

December 2008, when the working group ceased active development.

From its earliest version, SMIL differed significantly from other media support

activities available at that time. Unlike Apple’s Quicktime and the Windows Media

Player—the two dominant content delivery sources at the time—SMIL was not a

content object delivery platform in which a single video or audio item could be

played, but a presentation delivery platform, in which several independent media

objects could be gathered (potentially from multiple servers), scheduled, and then

presented via an open Web interface. Treating a media presentation as a collection

of objects rather than a single item remains a unique approach even in current

(W3C) multimedia recommendations.

The general model used by SMIL was that a media presentation consisted of an

XML-formatted scheduling file2 (the.smil presentation) and a series of external

media objects. A SMIL-compliant player would interpret the presentation file and

then implement a scheduling algorithm that would correspond to the needs of the

presentation specification. Different players could employ different implementation

strategies to meet the needs of the SMIL specification. Another innovation of SMIL

was a declarative approach to defining the media object interactions in a presen-

tation. SMIL is not a scripting or programming language that implements the

mechanics of content delivery and playout, but a specification language that allows

an author to define what they would like to have happen. It is up to the playout

engine to resolve any constraints at playback time, such as lack of network

bandwidth, limited screen size, or lack of interaction facilities.

The focus on media scheduling meant that SMIL was not a low-level content

creation language, but a media aggregation and synchronization language. In early

versions of SMIL, there was a rigid separation between content creation and content

scheduling: All objects scheduled by SMIL were required to be stored in external

files. Later versions relaxed this limitation, allowing plain and synchronized text to

be defined directly within the SMIL file.

In 1996, the Internet was a heterogeneous environment. SMIL was defined to

interact within this environment, with different user agents, different network

speeds, different client screen sizes, different user language preferences, and users

of differing natural abilities (in the sense that users could be deaf, blind, or

otherwise differently-abled). Interoperability was a key concern of SMIL, which

meant that limiting the specification to any one scripting language or any one

delivery platform would not meet the language’s needs. SMIL was largely suc-

cessful in providing an interoperable scheduling language. Unfortunately, unlike

text and images, there was—and is—no universally available set of video and audio

formats that could ensure interoperability of presentation content. Early commercial

and open implementations of SMIL-compliant players did not support interoper-

ability in content codecs. As a result, a SMIL presentation written for use with the

2SMIL was not only an XML-compliant language, it was the first XML language released as a

W3C recommendation.

13 SMIL: Synchronized Multimedia Integration Language 361

p.s.cesar@cwi.nl

RealNetworks G2 player could not be played with Apple’s Quicktime player, even

though both were early adopters of the SMIL language. This severely limited the

impact of SMIL.

13.3 SMIL Presentation Basics

A SMIL presentation is an XML-formatted specification containing references to

media content objects, a temporal scheduling, and synchronization model that

determineswhen these objects are presented (and howpersistent they are) and a layout

model that can help a playback agent determine where the objects should be placed

relative to one another. The specification also allows transitions, metadata, temporal

hyperlinks, and a host of other secondary presentation features to be defined. Most of

these are beyond the scope of this chapter (but are treated extensively in [6]).

In order to understand the basic structure of a simple SMIL presentation, con-

sider the following SMIL definition3:

3Line numbers have been added to simplify references in the text. They are not part of the SMIL

language.

362 D. C. A. Bulterman

p.s.cesar@cwi.nl

(This structure is reused later in this chapter.) Line 0 defines some XML basics for

this file: the DOCTYPE and the DTD. This defines the format of the SMIL file

itself, not of the presentation defined in the file. Line 1 defines the dialect of SMIL

used in this file and the SMIL profile (collection of modules) that is expected to be

supported by the SMIL agent processing the presentation.

Lines 2–14 provide information that the agent can use to process the file. It may

contain metadata defining the name, the author, and the system used to generate the

presentation. It also includes a layout specification that determines where objects

are placed and their relative layering. SMIL Layout was a contentious facility: Most

members of W3C wanted SMIL to use CSS layout features [9]. These gave the user

agent nearly total control over (relative) object placement. The SYMM group felt

that multimedia presentations were different from text content and that the semantic

meaning of object placement (such as having captions overlay or be close to

content) justified having a separate layout model.

Lines 15–25 define the presentation body. In this presentation, an image con-

taining a presentation title is presented in parallel with a sequence of video objects.

Both the title image and the sequence start at the same time. The members of the

sequence start when their predecessor is finished.

One design goal of SMIL was that simple things should be able to be done as

simply as possible, but that complex scheduling operations should also be possible

without having to resort to a scripting language. In that sense, the following min-

imalist SMIL presentation could be used to display a simple sequence of video

objects:

In this presentation, a default DTD and SMIL profile is used, as determined by

the user agent. The agent defines a default layout structure for the presentation. The

<body> element, which in SMIL defaults to the behavior of a <seq> element, is

used to structure the presentation of a series of videos. The implicit duration of the

videos themselves determines the length of the presentation. Granted, there is not

much control on where a user agent displays the content, but the authoring overload

of creating the presentation is minimal.

Finally, as a basic XML refresher:

• Each line of text between “<” and “>” characters is an XML statement.

• Each statement begins with an element name, defined by the language (in this

case, SMIL).

13 SMIL: Synchronized Multimedia Integration Language 363

p.s.cesar@cwi.nl

• Each element defines a number of attributes (such as “src”). Attributes may

allow attribute values to be defined (constrained by the language).

Of course, the full XML specification is slightly more complex than this sum-

mary, but this should be enough to understand the examples below.

13.4 SMIL Timing and Synchronization

SMIL timing defines when elements in a presentation get scheduled and, once

scheduled, how long they will be active. The SMIL timing facilities are the core

contribution of the SMIL standard: using the elements and attributes defined in the

SMIL Recommendation, time can be integrated into any XML language.

In a SMIL-based document, every media object and nearly every structural

element has a specific timing scope. While media timing plays an important role in

determining the overall duration of a presentation, the structure of the document is

also used to simplify and optimize the rendering of media presentations. SMIL

timing defines a collection of elements that determine the relative start and end

times of document objects and a collection of attributes that control the duration,

persistence, repetition, and accuracy of timing relations in a document. SMIL can

be used directly as the host language for a document (as is done in the various

SMIL profiles), but it can also serve as the basis for integrating time-based coor-

dination of otherwise static elements (as is done in SVG animation and in

XHTML + SMIL).

13.5 SMIL Timing Model Basics

The timing approach used by SMIL to specify the (relative) begin times of media

objects and their durations is based on a structured timing model. This means that

the nested presentation structure in a SMIL document—and not only hard-coded

clock values—is used to define the high-level activation and synchronization of

objects. For many simple SMIL documents, this timing is implied: The SMIL agent

can figure them out at presentation time. If more precise control over a presentation

is required (such as inserting delays or specifying interactive behavior), SMIL also

provides more complex timing mechanisms.

13.5.1 A Simple Slideshow Presentation

We introduce the timing issues addressed by SMIL in terms of the slideshow

presentation depicted in Fig. 13.1. This presentation contains a single background

364 D. C. A. Bulterman

p.s.cesar@cwi.nl

image on top of which a sequence of slides is placed, each with an accompanying

image containing a text label and an audio file containing spoken commentary. The

presentation also contains a single background music object that is played

throughout the presentation. The timing in this presentation is dominated by two

object sets: a background music object, which determines the duration of the total

presentation, and various spoken commentary objects, which determine the dura-

tion of each of the image slides. This means that an outer time base for the entire

presentation is defined and a set of inner time bases for each slide in the

presentation.

13.5.2 Media Object and Presentation Timing Definitions

A basic property of multimedia presentations is that they require some degree of

temporal coordination among the objects being presented. The more complex a

presentation—in terms of either number of simultaneous objects or number of

synchronization control points—the greater the amount of control information

required. SMIL uses timing elements and timing attributes to provide the activation

and synchronization control information in a presentation. In general, timing

attributes are used to control the timing behavior of media object, and timing

elements are used to control the behavior of the presentation as a whole.

13.5.2.1 Media Timing

Multimedia presentations typically contain two types of media objects: discrete

media and continuous media. Discrete media objects, such as the text labels, the

background image, and each of the slide images in Fig. 13.1, have no implicit

duration. If referenced in a SMIL file without any additional timing attributes, their

duration will be 0 s—which is not very long. Continuous media, such as the

background music object and each of the spoken commentaries in Fig. 13.1, have

implicit durations that are defined within their media encodings. If referenced in a

SMIL file without any additional timing attributes, they will be rendered for the full

duration defined by the object.

In Fig. 13.1, each slide image and the associated text labels should be displayed

for duration that is defined by the accompanying spoken commentaries. (Each slide/

text/audio group will have different durations, since not all spoken commentary is

equally long.) SMIL provides a range of attributes that allow the duration of objects

to be explicitly defined and refined, and it provides a general inheritance model in

which the durations of both discrete and continuous media can be obtained by the

context in which a media object is presented in relation to other objects. This allows

the durations of the images and text to match that of the spoken audio.

13 SMIL: Synchronized Multimedia Integration Language 365

p.s.cesar@cwi.nl

13.5.2.2 Presentation Timing

A SMIL file contains references to one or more of media objects and a set of timing

primitives that determine when these objects get started relative to one another. The

total timing of each of the media objects, plus any additional timing control defined

in the SMIL file, determines the duration of the composite presentation. Sometimes,

this composite duration can be calculated in advance, but often it cannot.

The basic timing of the slideshow presentation described in Fig. 13.1 is deter-

ministic: That is, we can determine the full timing in advance of the presentation’s

execution by evaluating the timing of each of the continuous media objects. It is

important to understand, however, that the presentation is only deterministic if

several potential presentation-time delays are ignored—these include any streaming

delays associated with bringing the media object from a server to the presentation

device, or any delays at the client associated with decoding and rendering indi-

vidual media objects. For local presentations, such as CD-ROM multimedia, it is

safe to assume that all the delays in the system can be predicted in advance and

factored into the presentation timing. For Web-based multimedia, where the delays

when obtaining media may be considerable (and unpredictable) and where there

may be wide variability in the performance of end-user devices, assuming that

presentations are fully deterministic which is a dangerous strategy.

A presentation with uncertain timing characteristics is non-deterministic. In

addition to the network streaming delays discussed above, non-deterministic timing

can also be the result of content substitution within the presentation or as a result of

using interactive, event-based presentation timing. SMIL has elements and attri-

butes to handle these cases as well.

Fig. 13.1 Elements used in a slideshow presentation

366 D. C. A. Bulterman

p.s.cesar@cwi.nl

13.5.3 SMIL and Timelines

A timeline metaphor is often used to model presentations. A timeline is a simple

graph showing time on one axis and one or more media objects on the other axis.

An example timeline, showing the elements and objects in Fig. 13.1, is shown in

Fig. 13.2. This timeline shows the media sorted by layout: The left axis shows the

various classes of media objects used, and the bottom axis shows the cumulative

duration. It is also possible to define separate lines for each media object, but this is

usually less space efficient.

A timeline exposes the exact temporal relationships among media items. These

can translated to a text format by assigning explicit begin times for each media

object and defining durations to discrete objects. One such encoding is the time-list

structure of the following code fragment. The background audio and image objects

(lines 0 and 1) are followed by the set of slide images (lines 2–8), the spoken

commentary (lines 9–15), and the image-encoded text labels (lines 16–22). The

begin times are determined by the duration of the spoken commentary objects.

While this example could be used as the basis for SMIL timing, this would be

unwise, since it is insensitive to delays and requires that all timing relationships be

pre-calculated.

Fig. 13.2 Timeline representation of presentation in Fig. 13.1

13 SMIL: Synchronized Multimedia Integration Language 367

p.s.cesar@cwi.nl

A better approach is to use structure-based timing primitives, since this allows

timing to be deduced from the content rather than duplicating content and timing

information.

13.5.4 SMIL and Structure-Based Timing

The main advantage of the timeline model is that it is an easy-to-understand rep-

resentation of continuous media objects under deterministic timing conditions. As

such, it is a representation used often in video and audio media editors. Unfortu-

nately, while deterministic timing is good for modeling video tape, it does not scale

well to most Web environments: If one of the image objects arrives later than

planned, or if the presentation agent is slow in rendering the audio, the timeline

does not really help in maintaining order among objects. Things become even more

troublesome if we don’t know the implicit duration of the audio items when con-

structing the timeline or if the duration of the object changes over the lifetime of the

presentation. (Since the SMIL file does not contain the media—it contains a pointer

to the media—the timing and the update histories of the media object are decoupled

from its use.) Finally, if we add content substitution or interactive timing to the

presentation (such as having the follow-on slide begin on a mouse click rather than

at a fixed time), the timeline representation loses almost all of its utility.

In order to provide a more realistic framework for Web documents, SMIL is

based on a structured timing framework in which the structured relationships

among objects can be used to define most timing. SMIL encodes its timing

368 D. C. A. Bulterman

p.s.cesar@cwi.nl

relationships by defining a logical timing hierarchy rather than an exact timeline.

The hierarchy for Fig. 13.1 is shown in Fig. 13.3. Here, we see a set of yellow

logical parallel nodes (P0–P7) and one blue logical sequential node (S0). The

parallel components say activate the sub-components together as a unit, and the

sequential component says activate the sub-components sequentially. The SMIL

textual encoding of the presentation hierarchy is as follows:

While a timeline can state that objects I2, C2, and L2 all start at 7 s into the

presentation and that they each have duration of 9 s, the SMIL hierarchy can state

what is really going on logically:

• That objects Ci, Ii, and Li are to be treated as a logical group that get scheduled

together (that is, they begin and end together);

• That the duration of Ii and Li depends on the duration of Ci,

• That all three objects are to begin after object Ci−1—and, by extension, Ii−1 and

Li−1—end.

Note that none of these relationships depends on the exact duration of any of the

objects—you can construct a SMIL file before you know anything about the actual

media being used.

A single timeline for one instance of a SMIL specification (that is, for one of

the—potentially many—run-time uses of the presentation) can be constructed by

combining the structured composition of objects with a model of the execution

environment that contains information on the performance of the network

13 SMIL: Synchronized Multimedia Integration Language 369

p.s.cesar@cwi.nl

connection, the preferences of the user, etc. A timeline model based on the explicit

media timings alone is not rich enough to model the various structured paths

throughout a SMIL presentation.

13.5.5 Durations, Time, and Timebases

One of the most powerful features of SMIL is a flexible time model in which

various aspects of an element’s behavior can be determined by the context in which

it is being presented. In order to use this model, it is important to understand a

number of temporal distinctions and constraints applied by the SMIL model. These

include defining the active period of an element and defining the way that delays

and relative starting/ending times can be expressed in a document.

13.5.5.1 Defining the Active Period of an Element

Most media formats require that the duration of all of the component media objects

be explicitly defined. SMIL has several attributes that support direct duration

definition, but it also provides attributes that allow you to specify or limit several

layers of logical object durations. These layered durations, which are illustrated in

Fig. 13.4, are as follows:

Fig. 13.3 The SMIL structured representation of the presentation in Fig. 13.1

370 D. C. A. Bulterman

p.s.cesar@cwi.nl

Fig. 13.4 SMIL durations

13 SMIL: Synchronized Multimedia Integration Language 371

p.s.cesar@cwi.nl

• Intrinsic duration: This is the duration of amedia object as encoded in the (external

to SMIL)mediafile.Most discretemedia items such as images or plain text have an

intrinsic duration of 0 s; some quasi-discrete media—such as animated images—

may have a longer intrinsic duration. Continuous media objects have duration that

is equal to the temporal length of the object. Many media formats (but not all!)

define the intrinsic duration explicitly in the media encoding.

• Implicit duration: This is the duration that SMIL uses as the basis for scheduling

an object. It is usually equal to the intrinsic duration, if available. Discrete

objects are modeled as having an implicit duration of 0 s. If the intrinsic

duration for continuous objects is not available (such as often this case with

MP3 objects), the SMIL agent typically will have to scan the entire object to

determine its duration. (This can be a time-consuming process.) The implicit

duration forms the starting point for the calculation of other logical timing

durations have been defined within SMIL. Note that the implicit duration is a

SMIL concept, separate from an object’s intrinsic duration. See Fig. 13.4a.

• Simple duration: It is possible to modify an object’s implicit duration with an

explicit duration via SMIL’s dur attribute. The result of applying an explicit

duration (if any) to an object yields its simple duration. (If the implicit duration

is not modified by a dur attribute, then the implicit and simple durations are the

same.) The simple duration of an object may be longer or shorter than the

implicit duration. Simple durations can also be defined to have special values

that logically limit or stretch the duration of objects; these are the media and

indefinite values, as discussed below. See Fig. 13.4b.

• Active duration: SMIL defines a number of attributes that allow an element to be

repeated. These attributes modify the element’s simple duration, and the resulting

repeated duration is called the object’s active duration. If an element’s simple

duration is shorter than its implicit duration, only the first part of the element will

be repeated. If the element’s simple duration is longer than its implicit duration,

the entire element plus the temporal difference between the implicit and simple

durations will be repeated. (During this “extra” time, either nothing will be

rendered or the final frame/sample of the media object will be rendered: The

behavior depends on the media type.) The end attribute can be used to define

when the active duration ends. If an element does not repeat and is not shortened

by end, its simple and active durations are the same. See Fig. 13.4c.

• Rendered duration: The active duration of an element ends after its dur/end and

repeat attributes have been applied. This does not mean that an object disap-

pears at the end of its active duration. SMIL provides an attribute to control the

persistence of an object after its active duration has ended: the fill attribute. If fill

is set to “freeze,” the element will remain rendered until the end of its parent

time container. If fill is set to “remove,” the object is removed from the screen as

soon as its active duration ends. For discrete media with a fill = “freeze”

attribute, the object will simply be rendered as if its active duration was

extended; for visual continuous media, the last frame or sample of the object

will be rendered.

372 D. C. A. Bulterman

p.s.cesar@cwi.nl

It is important to understand that each of these durations applies to every tem-

poral element in SMIL. Every element has an implicit, simple, active, and rendered

duration. Luckily, most of these durations will be managed by the SMIL agent, but

understanding each of these durations, and their impact on presentation timing, can

help clarify why a SMIL agent behaves the way it does.

13.5.5.2 Clock Values

Many timing attributes are based on clock values. These values can take several

different forms, and they may serve as all or part of an attribute’s time value. All

clock values represent a relative time and have meaning only within the context of a

time container.

Clock values may be given in four general forms:

• Full clock values: These are times represented as a colon-separated list of hours,

minutes, seconds, and fractions of a second. (If days, months, or years need to

be specified, then absolute wall clock timing may be used instead.) This is a

relative time and has meaning only within the context of a time container’s

syncbase. (Syncbases are described below.)

• Partial clock values: These are times represented as a shorthand notation for full

clock values, containing minutes, seconds, and (optionally) fractions of a

second.

• Timecount values: These are numbers with an optional type string and an

optional fractional component. An integer clock value with no type string (such

as “10”) implies a timecount in seconds; it is equivalent to “10 s.” Allowed type

strings are “h,” “min,” “s,” and “ms.”

• Wallclock values: These are absolute times represented in three parts: a date

field, a time field, and an (optional) timezone field. These times are absolute.

13.5.5.3 Syncbases

Except in the special case of wallclock timing, every clock value in SMIL is relative

to some other part of the document. The child elements of a <par> container are

started relative to the start time of that parent, while the child elements of a <seq>

container are started relative to the end of their predecessor (except for the first

child, which starts at the beginning of its parent). Every element in a SMIL spec-

ification has a specific temporal reference point: the syncbase. Most elements never

have to specify their syncbase reference explicitly since the common SMIL time

containers do this by default. Sometimes, however, an element may want to specify

a non-default syncbase as its reference object. SMIL supports this functionality

using explicit syncbase timing. An explicit syncbase is a named element (within the

same host document) that has a temporal context, and which is not a child of the

element in which it is being referenced. (This is less complex than it reads.) A

13 SMIL: Synchronized Multimedia Integration Language 373

p.s.cesar@cwi.nl

syncbase timing reference contains a temporal event that is used as the scheduling

base for the referencing object. This timing reference can be further modified with a

clock value. In order to fully appreciate the role of syncbase timing, we first need to

consider the elements and attributes defined for less complex operations, but to give

a taste of what’s ahead, consider the following fragment:

This element on line 2 starts an associated video object. In some other part of the

document, an image containing a text label is started 10 s after the video begins.

The label remains visible until the end of the video.

Syncbase timing can be very complex, and its use in simple documents is rare.

Still, for certain applications, it can be a powerful construct.

13.5.6 Basic Time Containers

SMIL supports the <par>, <seq>, and <excl> elements.

Element: <par>

The most general of SMIL’s timing containers is the <par>. The <par> defines a

local time container that can be used to activate one or more child elements. The

children of a <par> container are all rendered in “parallel.” In terms of SMIL’s

timing model, this does not mean that they get rendered at the same time, but that

they share a common syncbase defined by the <par> container. Any or all of the

children may be active at any time that the parent <par> is active.

The basic timing structure of the <par> is illustrated in Fig. 13.5. The default

syncbase of the <par> is the beginning of the element. That is, by default, all

children of a <par> element start when the <par> itself starts. (This is illustrated by

nodes “a” and “b”.) As defined above, timing attributes can specify other begin

times. By default, the <par> ends when the last child ends, although the exact

ending behavior of the <par> is determined by the endsync attribute.

Element: <seq>

A relatively unique timing container is the <seq> element. The children of a <seq>

are rendered in such a way that a successor child never can begin before its

predecessor child completes. In other words, the syncbase of each child is the end

374 D. C. A. Bulterman

p.s.cesar@cwi.nl

of the active duration of its predecessor. A successor element may have an addi-

tional start delay, but this delay cannot resolve to be negative in relation to the end

time of its predecessor. The <seq> ends when its last child has ended. Unlike the

<par>, the <seq> does not support the endsync attribute: Since there is only one

child active at a time in a <seq>, there is no need to select among children to

determine the container’s end.

The basic timing structure of the <seq> is illustrated in Fig. 13.6. The <seq> is

especially useful when describing timing in a non-deterministic environment; by

specifying that a set of elements logically follow one another, a delay in one

element can be easily passed to its successors.

Starting with SMIL 3.0, a seemingly minor change was made to the <seq>

container: The restriction that only a nonnegative offset could be used as the value

for the begin attribute was removed from the specification. This allowed children

the <seq>, just as <par> and <excl>, to have event-based starting times rather than

only fixed scheduled begins. As with many seemingly simple changes, the impact

of this was non-trivial.

Element: <excl>

An <excl> container will start at the temporal moment defined by its parent time

container, modified by the value of the begin attribute. The begin time determi-

nation for the <excl> is identical to that of the <par>. The critical difference

between a <par> and an <excl> is that at most one child of an <excl> may be

Fig. 13.5 The temporal scope of the <par> element

Fig. 13.6 The temporal scope of the <seq> element

13 SMIL: Synchronized Multimedia Integration Language 375

p.s.cesar@cwi.nl

active at any one time. Nothing may violate this condition. Under certain cir-

cumstances, inactive children of an <excl> may be in a paused state and may

respond to certain UI events. For a temporal perspective, they are not active during

these periods.

Unlike the children of a <par>, the children have a default begin time of

indefinite. This means that, unless the time gets resolved during the active duration

of the <excl>, they will never begin. The children of an <excl> may make

unrestricted SMIL temporal semantics to define their begin times. As with the

<par>, no content may be rendered before the start of the active duration of the

<excl>. If a continuous media element is scheduled to begin before the start of the

parent <excl>, only that portion that falls within the temporal scope of the

<excl>’s active duration will be rendered.

13.5.6.1 Dealing with Cycles and Unknown Begin Times

It is possible to define a cycle by having the begin times of a collection of objects

depend entirely on the begin or end of each other. In these cases, it will be

impossible to ever define a resolved begin time. Usually, none of the elements in

the cycle will be activated; a SMIL player may reject to start a presentation if a

cycle is detected.

If begin times are unresolved, they cannot be used to build a timing instance for

the object. Elements may become resolved during the active duration of their

parent, but if they are not resolved, they are ignored for timing purposes.

13.5.7 Nested Composition of Timing Elements

The basic time containers can be nested in a presentation hierarchy. That is, any

child of either a <par> or <seq> (or <excl>) can be a simple media object or an

embedded time container. As in SMIL 1.0, the hierarchy can represent relatively

static presentation timing. The introduction of event-based activation/termination in

SMIL 2.0 also allows a dynamic activation path to be defined. Most of the children

of a time container will influence the timing behavior of that container, but some

children—such as the <a> element, or the <switch>—are timing transparent. This

means that they do not contribute to the determination of the container’s duration.

13.5.8 Special Timing Values

SMIL defines two special timing values that can be used to specify the temporal

context of an element. These are indefinite and media.

376 D. C. A. Bulterman

p.s.cesar@cwi.nl

Value: indefinite

The indefinite value can be used to indicate that a timing dependency (either a

begin/end time or duration) is to be determined outside of the element in which the

indefinite value appears. While many SMIL authors (and some SMIL imple-

menters!) assume that indefinite is synonymous with “forever,” it is really syn-

onymous with “I have no local idea …”. As we will see later in this chapter, an

attribute assignment of dur = “indefinite” simply means that some other part of the

SMIL specification—either the parent time container or some other element—will

determine the element’s duration. Only if no other part of the document constrains

the duration will an indefinite value result in an unlimited duration, but even then, a

value of indefinite can never result in a presentation that a user (or user agent)

cannot end.

Value: media

The attribute value media can be applied to obtain the desired timing value directly

from the associated media item. Although it is not often required to use the media

value explicitly (mostly because this will be the default behavior), it is sometimes

useful to set duration or end time to media when you want to exert explicit control

in complex timing situations.

13.5.9 Interactive Timing and Events

In the normal course of processing, the activation hierarchy of a SMIL document

determines the rendering of document elements. The user can influence the ele-

ments selected by using SMIL events. The event architecture allows document

components that are waiting to be activated or terminated to actually start or

stop. There are several uses of events allowed in SMIL 2.0, but perhaps the most

important new semantic introduced in SMIL 3.0 was the combination of events and

the begin/end attributes. In further combination with the <excl> element, events

provide a very powerful mechanism for conditional content activation.

SMIL also supports a rich hyperlinking architecture. Unlike links in XHTML,

the fundamental concept of the SMIL link is that it models a temporal seek in a

presentation. Rather than simply activating a target element, the target play state

that is activated is identical to the state that the presentation would have been in if

the target point had been arrived at “naturally.” (One exception is that all inter-

vening event-based activation is ignored.) This means that all nodes temporally

between the source and destination of the link need to be evaluated to see if they

would have contributed to the final target play state. The temporal seeking and

activation facility allow very polished presentation construction—but its imple-

mentation in the agent is not for the fainthearted.

Figure 13.7 illustrates the temporal composition of the example presentation in

Fig. 13.1. Note that the <par> and <seq> elements are nested as green and blue

13 SMIL: Synchronized Multimedia Integration Language 377

p.s.cesar@cwi.nl

boxes, respectively. (The node labels of the structure containers are placed in

brackets at the bottom of each container.)

13.5.10 Applying SMIL Timing Attributes

SMIL was designed so that obvious structural relationships between elements—and

the intrinsic duration of continuous media objects—could be used to specify most

timing and synchronization relationships explicitly. There are many occasions,

however, when the default synchronization behavior might not be expressive

enough to build a particular media message. For this reason, SMIL provides a host

of timing control attributes.

13.5.11 General Timing Control Attributes

The general timing control attributes supported by SMIL are begin, dur, and end.

The begin attribute controls when a particular element starts relative to its syncbase,

the dur attribute controls the element’s simple duration, and the end attribute

controls the end of the active duration. (In general, begin + dur = end, but this is

not always true.)

All three of these attributes retain their behavior from SMIL 1.0. The principal

SMIL 2.0 extension to begin and end is that they attributes support a list of begin/

Fig. 13.7 Pure structural representation of the presentation in Fig. 13.1

378 D. C. A. Bulterman

p.s.cesar@cwi.nl

end times instead of a single begin/end value. This is not particularly useful for

simple SMIL applications, but it is very useful if a combination of SMIL’s

scheduled and event-based timing is used.

Attribute: begin

Each of SMIL’s time containers defines a default begin time for its children. The

default for <par> is the start of that <par>, while the default for a <seq> depends

on the lexical order of its children: The first child starts at the start of the <seq>,

and each successive child starts after the preceding child has ended. SMIL allows

this default behavior to be overridden by the begin attribute. Usually, this clock

value contains a nonzero positive temporal offset, such as:

All of these values represent a begin delay of 10 s. Given a choice, the second

version, line 2, is preferred as it gives a reasonable balance between clarity and

brevity. Recall that each of these notations defines a 10-s delay from the implied

syncbase of the element containing the begin attribute. (This is usually either the

start of a parent <par> or the end of a predecessor child in a <seq>.)

The begin attribute and the <seq> element.

There is one restriction on the use of the begin attribute that is important for all

SMIL versions: A <seq> time container may only have a single begin attribute

value and that value must contain a nonnegative clock value. Multiple begin time

lists are not allowed in a <seq>, and neither is explicit syncbase timing. In the

following set of statements, line 4 is not valid SMIL, but lines 5 through 7 are valid

and provide the same functionality as was intended in line 4:

Attribute: dur

The dur attribute establishes the simple duration of an element. When used with a

media object, it defines how much of that media object will be used. When used

with a time container, it defines a limit on the simple duration of that container. If

the defined duration is longer than the time container or media object, temporal and

13 SMIL: Synchronized Multimedia Integration Language 379

p.s.cesar@cwi.nl

rendering padding will result. The various types of duration qualifiers supported by

SMIL were shown in Fig. 13.4.

Attribute: end

A SMIL element ends at the end of its active duration. This is determined by either

the element’s content or the parent time container. An element can also specify a

non-default end time via the end attribute. The end attribute is very similar to the

begin attribute.

The end attribute provides explicit control over the end of the active duration. As

with begin, the end attribute can specify a single clock value or an explicit syncbase

(with optional clock value offset), or a list of values. Unlike the begin attribute,

there is no restriction on the use of end with <seq> elements. Note that even if

multiple end times are specified, the associated element will end only once—this is

when the first end condition is met.

The following fragments give examples of the use of the end attribute:

The first two of these statements have obvious behavior. Line 2 says that the

video will end whenever the temporal element snarf ends. (This is an example of

syncbase timing.) Line 3 states that the video will end at either 35 s after the start of

its rendering or 5 s after the end of the syncbase element snarf.

Combined Use of begin, dur, and end

It is possible to combine the use of the begin, end, and dur attributes on an element.

Combining begin and dur usually results in obvious behavior, since they both relate

to the simple duration of an object. Since the end attribute overrides the default end

of the active (not simple) duration, the resulting behavior is not always obvious.

13.5.12 Object Persistence Attributes

Two attributes control the persistence of objects after they have completed their

active duration: fill and fillDefault. In this chapter, we consider simple uses of fill

behavior.

Attribute: fill

SMIL allows an object to remain visible after the end of its active duration by

specifying a fill attribute. If fill is set to “freeze,” the object will remain visible until

the end of its parent time container. If it is set to “remove,” the object is removed as

soon as its active duration ends. The default for visual media is effectively “freeze”;

fill has no meaning for audio media. There are some special cases for fill that allow

380 D. C. A. Bulterman

p.s.cesar@cwi.nl

the visibility of an object to extend past the active duration of its parent (such as

when transitions exist). The value of fill also determines how long an object remains

“clickable” for linking and interaction.

If the fill attribute is applied to a time container, then the rendering state of all of

the children (and descendants of the children) is set to their respective fill behavior

at the moment the active duration of the container ends.

13.5.13 Extended Timing Control Attributes

SMIL 2.0 introduced two attributes that provide extra duration control: min andmax.

These attributes can be used to define a lower or upper bound on the active duration

of the containing element, regardless of that element’s other timing characteristics.

SMIL also supports the ending of a time container via the endsync attribute.

Attribute: min

The min attribute can be used to specify an explicit minimum active duration on an

element. It accepts either a clock value or “media” as values. The default value of

min is “0,” which is the same as saying that the value is unconstrained. The value

media may only be used on media objects; its use says the minimum duration is the

implicit value of the media object.

Attribute: max

The max attribute can be used to constrain the maximum active duration of an

element. It is similar to min, except that an explicit value of indefinite can be

specified. (This is also the default.)

The behavior of the max attribute is predictable, although finding relevant use

cases can be a challenge. For example, consider the following statements:

Line 0 states that the element a will play for a maximum of 30 s or until the

element bazinga ends (if this is earlier). The same behavior applies to video element

b (line 1).

Attribute: endsync

Where min and max provide clock value-based constraints on element timing,

SMIL provides the endsync attribute to provide logical control on timed objects. As

in SMIL 1.0, if a <par> has multiple children, it can specify that the entire <par>

ends when the first child ends, when the last child ends, or when a named child ends

using the endsync attribute. This attribute can be assigned to the <par> and <excl>

time containers.

13 SMIL: Synchronized Multimedia Integration Language 381

p.s.cesar@cwi.nl

The following fragment illustrates endsync behavior:

The <par> ends when the snarf ends; if this is later than the end of bazinga, the

last frame of bazinga will be frozen. The default value of endsync is “last.” An

element with the assignment endsync = “all” waits for all of its children to play to

completion at least once, regardless of whether they have scheduled or interactive

begin times.

The behavior of the endsync attribute is intuitive, except when combined with

the dur and/or end attributes. This is because having both an endsync and a dur or

end will cause conflicting definitions of element duration. In order to resolve these

conflicts, the following rules are applied by a SMIL agent:

• If dur and endsync are specified on the same element, the endsync is ignored.

• If end and endsync are specified on the same element, the endsync is ignored.

13.5.14 Repeating Objects and Substructures

The default behavior of all elements is that they play once, for either an implicit or

explicit duration. The SMIL repeatCount attribute allows an iteration factor to be

defined that acts as a multiplier of the object’s simple duration. (The resulting

duration is the active duration.) A special value indefinite is used to specify that an

element repeats continually until its (parent) timing context ends. The repeatDur

attribute defines duration for all of the repeated iterations.

Attribute: repeatCount

The repeatCount attribute makes the element’s content sub-presentation or media

object to repeat the stated number of times. Its value can be either a number or

indefinite. A numeric value indicates the media object plays that number of times.

Fractional values, specified with decimal points, can be used as well.

The following statement specifies that snarf is to be repeated 4.5 times:

If the associated audio file was 4 s long (its implicit duration), then the active

duration of snarf is 18 s.

A repeat count may also be applied to time containers. As is shown in the

following fragment, the simple duration of the container is repeated for the number

of iterations specified by the repeatCount.

382 D. C. A. Bulterman

p.s.cesar@cwi.nl

In this example, the active duration will depend on the implicit durations of the

media items; the simple duration will be the maximum of bazinga and snarf. The

active duration will be the simple duration times three.

Attribute: repeatDur

The repeatDur attribute is similar in most respects to repeatCount, except that

duration is given instead of a multiplier. It states that the element is to repeat its

playback until the specified duration has passed. The following statement specifies

that snarf is to be repeated for 15 s:

The actual number of times that the audio object is repeated depends on its

duration. If the audio object’s implicit duration is 3 s, it will repeat times. If its

implicit duration is 15 s, it will be played once. If its implicit duration is 25 s, only

the first 15 s will be played.

As with all elements, a timing constraint on a parent container will limit the

active duration of the children. As a result, in the following fragment, the audio

object will be rendered for 25 s:

13.5.14.1 Combing Repeat Behavior with Other Timing Attributes

It is possible to combine either repeatCount or repeatDur with other timing attri-

butes. The resulting timing usually results in predictable behavior for simple cases,

but sometimes the differences in manipulating the simple, active, and rendered

durations within one element can lead to SMIL statements that are not always easy

to understand.

The composite behavior is nearly always clear if the differences between the

various types of SMIL durations are well-understood. This becomes vital if use is

made of interactive behavior in SMIL, or if multiple begin times on objects are

used. If you plan to use SMIL Animation—or if the SMIL repeat attribute is used—

then a complete understanding of the SMIL timing model is essential. Interested

readers are encouraged to consult the standard text on SMIL [6]. As a last resort, the

SMIL specification can be consulted [x]: There you will find 156 pages of infor-

mation on the timing model alone.

13 SMIL: Synchronized Multimedia Integration Language 383

p.s.cesar@cwi.nl

13.6 Advanced Timing and Synchronization Attributes

SMIL provides a collection of advanced attributes to control synchronization

behavior and to facilitate integration of SMIL into other XML languages. While

these attributes are rather esoteric for a complete discussion here, we introduce them

briefly in the following sections.

13.6.1 SMIL Synchronization Control Attributes

In a perfect world, all of the defined timing in a specification would be implemented

perfectly by a SMIL agent. Unfortunately, the world is not only imperfect—it is

also unpredictable. In order to provide some measure of control in the face

unpredictably, SMIL provides three high-level synchronization control attributes:

syncBehavior, which allows a presentation to define whether there can be slippage

in implementing the composite timeline of the presentation; syncTolerance, which

defines how much slip is allowed; and syncMaster, which allows a particular ele-

ment to become the “master” timebase against which all others are measured.

13.6.1.1 XML Integration Support

When used in a native SMIL document (one in which the outer XML tag is

<SMIL>), the nature and meaning of various timing elements is clear. When

integrating SMIL timing into other XML languages, a mechanism is required to

identify timing containers. The SMIL specification does this using the timeCon-

tainer and timeAction attributes.

13.7 Summary and Conclusion

Support for a general model for timing and synchronization SMIL’s most important

contribution. The basic time container elements <seq> and <par> specify SMIL’s

simplest temporal relationships: those of playing in sequence and playing in par-

allel. The basic in-line timing values of the inline timing attributes begin, end, and

dur set an element’s timing as temporal offsets from the begin time it gets from its

time container parent. Syncbase values for the begin and end attributes synchronize

an element with the beginning or ending of other elements. The attributes re-

peatCount and repeatDur cause an element’s media object to repeat its playback. If,

after its start time, duration, and repeated duration, the element ends before the end

of its parent, the fill attribute defines the persistence of the element in SMIL’s

timing tree.

384 D. C. A. Bulterman

p.s.cesar@cwi.nl

All of the various options for timing and synchronization control have given

SMIL the reputation—in some circles—to being overly complex. Certainly for

developers of HTML5 [10], the impression existed that simpler was better. This

reputation is largely undeserved. In SMIL, very simple facilities exist for crafting

complex presentation based entirely on implicit timing control. The value of SMIL

is that complexity is available when it is needed without having to resort to

scripting. SMIL also provides a unified timing control model in which all elements

of a document have a common temporal basis. This “complexity” actually sim-

plifies the task of creating interactive presentations.

This book summarizes a number of timing formats that have been applied to

controlling content across the World Wide Web. SMIL was the first of these

formats to be captured in a set of standards that, for a long time, formed the basis of

timing in Web documents. There have been many uses of SMIL in embedded

applications, and nearly every smartphone on the planet carries a partial SMIL

implementation. Still, in terms of mass adoption at the end-user level, SMIL has

never been a great success. This has little to do with SMIL’s timing model or its use

of structure-based timing. SMIL has suffered from a lack of universally accepted

media codecs for video and audio content. This has crippled any hope of inter-

operability. The irony of this situation is that such interoperability forms one of the

core potential successes of SMIL, at least as far as the development of an abstract

timing model is concerned.

References

1. W3C, World Wide Web Consortium. http://w3.org/

2. Bugaj, S., Bulterman, D.C.A., Butterfield, B. et al.: Synchronized Multimedia Integration

Language (SMIL) 1.0 Specification, June 1998. https://www.w3.org/TR/1998/REC-smil-

19980615/

3. Ayers, J, Bulterman, D.C.A., Cohen, A. et al.: Synchronized Multimedia Integration

Language (SMIL 2.0), 2nd edn., Jan 2005. https://www.w3.org/TR/2005/REC-SMIL2-

20050107/

4. Bulterman, D.C.A., Grassel, G., Jansen, J. et al.: Synchronized Multimedia Integration

Language (SMIL 2.1), Dec 2005. https://www.w3.org/TR/2005/REC-SMIL2-20050107/

5. Bulterman, D.C.A., Jansen, J., Cesar, P.S. et al.: Synchronized Multimedia Integration

Language (SMIL 3.0), Dec 2008. https://www.w3.org/TR/SMIL/

6. Bulterman, D.C.A., Rutledge, L.: SMIL 3.0: Interactive Multimedia for the Web, Mobile

Devices and Daisy Talking Books. Springer (2008)

7. W3C Synchronized Multimedia Working Group. https://www.w3.org/AudioVideo/

8. Bulterman, Dick C.A.: Specification and support of adaptable networked multimedia.

Multimed. Syst. 1, 68 (1993). https://doi.org/10.1007/bf01213485

9. Bos, B. et al.: Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification, June 2011.

https://www.w3.org/TR/CSS2//

10. Hickson, I. et al.: HTML-5: A vocabulary and associated APIs for HTML and XHTML,

October 2014. https://www.w3.org/TR/html5/

13 SMIL: Synchronized Multimedia Integration Language 385

p.s.cesar@cwi.nl

http://w3.org/
https://www.w3.org/TR/1998/REC-smil-19980615/
https://www.w3.org/TR/1998/REC-smil-19980615/
https://www.w3.org/TR/2005/REC-SMIL2-20050107/
https://www.w3.org/TR/2005/REC-SMIL2-20050107/
https://www.w3.org/TR/2005/REC-SMIL2-20050107/
https://www.w3.org/TR/SMIL/
https://www.w3.org/AudioVideo/
http://dx.doi.org/10.1007/bf01213485
https://www.w3.org/TR/CSS2/
https://www.w3.org/TR/html5/

	Foreword
	Contents
	Contributors
	List of Acronyms
	List of Figures
	Introduction to the MediaSync Book
	Part I: Foundations
	Part II: Applications, Use Cases, and Requirements
	Part III: User Experience and Evaluation Methodologies
	Part IV: Document Formats and Standards
	Part V: Protocols, Algorithms, and Techniques

	Foundations
	1 Introduction to Media Synchronization (MediaSync)
	Abstract
	1.1 Introduction
	1.2 Media Synchronization Types and Examples
	1.3 Delays and MediaSync
	1.3.1 Delay and Delay Variability Factors
	1.3.2 Magnitudes of Delays and Delay Differences in Real Scenarios
	1.3.3 Human Perception of Delays and on Delay Differences

	1.4 Essential Aspects and Components of MediaSync Solutions
	1.4.1 Essential Aspects and Design Criteria
	1.4.2 Components of MediaSync Solutions

	1.5 Summary
	References

	2 Evolution of Temporal Multimedia Synchronization Principles
	2.1 Introduction
	2.2 Synchronization Formulation
	2.2.1 Continuous Multimedia Data Model
	2.2.2 Layers of Synchronization Demands
	2.2.3 Definition of Synchronization Skews

	2.3 A Historical View of Multimedia Synchronization Studies
	2.3.1 Years of Birth: In and Before 1980s
	2.3.2 Years of Understanding: Early 1990s
	2.3.3 Years of Blossoms: Late 1990s
	2.3.4 Years of Leaps: 2000 to Date
	2.3.5 Remarks

	2.4 Synchronization in Next-Generation Multimedia Systems
	2.4.1 New Multidimensional Synchronization Classification Model
	2.4.2 Multilocation Collaborative Synchronization Controls

	2.5 Conclusion
	References

	3 Theoretical Foundations: Formalized Temporal Models for Hyperlinked Multimedia Documents
	3.1 Introduction
	3.2 Fundamentals and Terms
	3.3 Temporal Models
	3.3.1 Point-Based Temporal Models
	3.3.2 Event-Based Temporal Models
	3.3.3 Interval-Based Temporal Models
	3.3.4 Other
	3.3.5 Summary

	3.4 Definition of Basic Multimedia Elements
	3.5 Formalized Temporal Models
	3.5.1 Point-Based Temporal Model
	3.5.2 Event-Based Temporal Model
	3.5.3 Interval-Based Temporal Model

	3.6 Exemplary Applications
	3.6.1 Basic Calculations and Definitions
	3.6.2 VCR Actions for Continuous Multimedia Elements
	3.6.3 Extended Interactivity and Navigation

	3.7 Conclusion
	References

	4 Time, Frequency and Phase Synchronisation for Multimedia—Basics, Issues, Developments and Opportunities
	Abstract
	4.1 Introduction
	4.1.1 The Basics of Timing
	4.1.2 Challenges for Timing in Information and Communications Technology (ICT) Infrastructure
	4.1.3 Time-Aware Applications, Computers and Communications Systems (TAACCS)

	4.2 Timing Synchronisation Techniques
	4.2.1 General Concepts
	4.2.2 Clock Skew and Drift

	4.3 Time Synchronisation Protocols
	4.4 Flooding Time Synchronisation Protocol (FTSP)
	4.4.1 Overview
	4.4.2 Synchronisation Errors

	4.5 The Network Time Protocol (NTP)
	4.5.1 Packet Structure and Processing
	4.5.2 NTP Process Flow
	4.5.3 Data Filter Algorithm
	4.5.4 Selection Algorithm
	4.5.5 Clustering Algorithm
	4.5.6 Combining Algorithm and Clock Discipline Algorithm
	4.5.7 Asymmetry Corrections

	4.6 Precision Time Protocol (PTP)
	4.6.1 Overview
	4.6.2 PTP Synchronisation
	4.6.3 Link Propagation Delay
	4.6.4 Synchronisation Process
	4.6.5 Asymmetry Corrections

	4.7 Frequency Synchronisation Over Packet Networks
	4.8 Time-Aware Networks: IEEE Time-Sensitive Networking (TSN) and Audio–Video Bridging (AVB) Standards
	4.8.1 Time Synchronisation
	4.8.2 Ensuring Timely Delivery

	4.9 Time Awareness on Endpoints
	4.10 Conclusions
	Chap4

	Definitions
	References

	Applications, Use Cases, and Requirements
	5 Simultaneous Output-Timing Control in Networked Games and Virtual Environments
	Abstract
	5.1 Introduction
	5.2 Necessity of Simultaneous Output
	5.3 Simultaneous Output-Timing Control
	5.3.1 Techniques for Control
	5.3.2 Dynamic Local Lag Control
	5.3.3 Group Synchronization Control
	5.3.4 Adaptive Δ-Causality Control
	5.3.5 Similarities and Differences Among Three Types of Control

	5.4 Improvement of Interactivity by Prediction Control
	5.5 Future Directions of Simultaneous Output-Timing Control
	5.6 Conclusions
	Acknowledgements
	Chap5

	Definitions
	References

	6 Automated Video Mashups: Research and Challenges
	6.1 Introduction
	6.2 Overview of Video Mashup
	6.3 Preprocessing
	6.4 Quality and Context Analysis
	6.4.1 Quality Analysis
	6.4.2 Context Analysis

	6.5 Cinematography Rules
	6.6 Overall Mashup Framework
	6.7 Evaluation
	6.8 Future Research Directions
	6.8.1 Narrative-Preserving Mashup
	6.8.2 Geographically Distributed Event
	6.8.3 Real-Time Mashup
	6.8.4 Other Challenges

	6.9 Conclusions
	References

	7 MediaSynch Issues for Computer-Supported Cooperative Work
	Abstract
	7.1 Introduction
	7.2 Overview of CSCW Systems
	7.3 Communication Architectures
	7.4 Synchronization Challenges
	7.5 Inter-protocol Coordination and Synchronization
	7.5.1 Early Flow Coordination Protocols
	7.5.2 Aggregate Transport-Level Protocols
	7.5.3 Flow Aggregation Techniques
	7.5.4 Congestion Manager
	7.5.5 Coordination Protocol

	7.6 Conclusion
	Chap7

	Definitions
	References

	User Experience and Evaluation Methodologies
	8 Perceiving, Interacting and Playing with Multimedia Delays
	8.1 Introduction
	8.2 Models, Approaches and Terminology
	8.3 Conversational Models in HCI
	8.4 Perceptual Models
	8.5 Sense of Agency in HCI and Cognitive Psychology
	8.6 Applied Studies on Delay
	8.6.1 Controlled Studies on Games
	8.6.2 Observational Studies on Games in Action
	8.6.3 Interactions Using Other Interfaces

	8.7 Uniting HCI, Psychology and Multimedia
	8.8 Conclusion
	References

	9 Methods for Human-Centered Evaluation of MediaSync in Real-Time Communication
	Abstract
	9.1 Introduction
	9.2 Factors Influencing the Impact of Delay
	9.2.1 System Factors
	9.2.2 User Factors
	9.2.3 Contextual Factors

	9.3 Conversation Analysis and Turn-Taking
	9.3.1 Basic Concepts
	9.3.2 Turn-Taking with Delay

	9.4 Subjective Tests Evaluating Effects of Delay
	9.4.1 Two-Party Conversation Test on Delay Sensitivity for Different Test Tasks
	9.4.2 Audio-Only and Audiovisual Two-Party Conversation Tests on Influence of Delay on Conversations
	9.4.2.1 Audio Tests Investigating Effects of Delay and Packet Loss
	9.4.2.2 Two-Party Delay and Audio–Video Synchronization Test

	9.4.3 Conversation Tests on the Impact of Delay, Audio Bandwidth, Task Type, and Group Size
	9.4.4 Audio and Audiovisual Multiparty Tests with Asymmetric Links
	9.4.5 Multiparty Desktop Telemeeting Tests
	9.4.5.1 Symmetric Experiment
	9.4.5.2 Qualification by Activity
	9.4.5.3 Asymmetric Experiment
	9.4.5.4 Multiparty and Two-Party Conversations

	9.4.6 Music Interaction Over Networks

	9.5 Recommended Delay Test Methods
	9.5.1 Task Design
	9.5.2 Test Conditions
	9.5.3 Types of Assessments
	9.5.4 Test Subjects
	9.5.5 Instructions and Training Session
	9.5.6 Comparison of Subjective Opinion and Performance Measures

	9.6 Conversational Surface Structure Analysis
	9.6.1 Method and Parameters
	9.6.2 Example Results

	9.7 Modeling the Quality Impact of Delay
	9.7.1 General Modeling Approach
	9.7.2 Link to Conversational Surface Structure Analysis
	9.7.3 Discussion

	9.8 Conclusions
	Chap9

	Definitions
	References

	10 Synchronization for Secondary Screens and Social TV: User Experience Aspects
	Abstract
	10.1 Introduction
	10.1.1 Studies and Experiments

	10.2 Synchronization in Second-Screen TV Applications
	10.2.1 Setting up the Synchronization Between the TV and the Second Screen
	10.2.2 Usability of Second-Screen Applications
	10.2.3 Guiding Attention and Distraction to the Correct Screen
	10.2.4 Synchronizing Time-Shifted Second-Screen Experiences
	10.2.5 Types of Content in Second-Screen Scenarios

	10.3 Synchronization in Social TV Applications
	10.3.1 Synchronizing Communication Channels
	10.3.2 Synchronizing Content While Communicating

	10.4 Conclusions
	Acknowledgments
	Chap10

	Definitions
	References

	11 Media Synchronization in Networked Multisensory Applications with Haptics
	Abstract
	11.1 Introduction
	11.2 Haptics
	11.2.1 Haptic Interface Devices
	11.2.1.1 Geomagic Touch
	11.2.1.2 SPIDAR
	11.2.1.3 FALCON

	11.2.2 Haptic Media

	11.3 Networked Multisensory Applications with Haptics
	11.3.1 Applications in Virtual Environment
	11.3.1.1 Remote Ikebana
	11.3.1.2 Networked Fruit Harvesting Game
	11.3.1.3 Networked Haptic Drum Performance
	11.3.1.4 Networked Balloon Bursting Game
	11.3.1.5 Remote Surgical Training

	11.3.2 Applications in Real Environment
	11.3.2.1 Remote Penmanship
	11.3.2.2 Networked Ensemble
	11.3.2.3 Remote Surgical Robot System

	11.4 Requirements for Media Synchronization
	11.5 Media Synchronization Algorithms Taking Account of Human Perception
	11.5.1 Virtual-Time Rendering Algorithm
	11.5.2 Enhanced Virtual-Time Rendering Algorithm
	11.5.3 Interstream Synchronization Algorithm with Group Synchronization Control

	11.6 Enhancement of Simultaneous Output-Timing Control
	11.7 Human Perception of Media Synchronization Errors
	11.8 Future Directions
	11.9 Conclusions
	Chap11

	Definitions
	References

	12 Olfaction-Enhanced Multimedia Synchronization
	Abstract
	12.1 Introduction
	12.1.1 Applications Domains for Olfaction-Enhanced Multimedia
	12.1.1.1 Olfaction in Entertainment, Film Industry, Gaming and Virtual Reality
	12.1.1.2 Olfaction in Tourism
	12.1.1.3 Olfaction in Education and Training
	12.1.1.4 Olfaction in Health

	12.2 MPEG-V and the Standardization Efforts for Olfaction-Enhanced Multimedia
	12.2.1 Multisensory Multimedia Synchronisation Based on MPEG-V

	12.3 Olfaction-Based Mulsemedia Synchronization: Implementation and Specification
	12.3.1 Olfaction-Based Mulsemedia Synchronization: Implementation
	12.3.2 Olfaction-Enhanced Multimedia Synchronization: Evaluation
	Outline placeholder
	Rationale for Experimental Design
	Olfactory-Enhanced Video Presentation Equipment
	Assessors, Screening and Training
	Laboratory Design
	Video Sequences, Scents
	Assessment Methodology and Questions
	Experimental Results
	Detection and Perception of Synchronization Error
	Detection of Skew—“Conceptual Delay”
	Perception of Skew—“Conceptual Delay”
	Detection of Skew—“Conceptual Jitter”
	Perception of skew—“conceptual jitter”

	12.4 Conclusions
	Chap12

	Definitions
	References

	Document Formats and Standards
	13 SMIL: Synchronized Multimedia Integration Language
	Abstract
	13.1 Introduction
	13.2 A Brief History of SMIL
	13.3 SMIL Presentation Basics
	13.4 SMIL Timing and Synchronization
	13.5 SMIL Timing Model Basics
	13.5.1 A Simple Slideshow Presentation
	13.5.2 Media Object and Presentation Timing Definitions
	13.5.2.1 Media Timing
	13.5.2.2 Presentation Timing

	13.5.3 SMIL and Timelines
	13.5.4 SMIL and Structure-Based Timing
	13.5.5 Durations, Time, and Timebases
	13.5.5.1 Defining the Active Period of an Element
	13.5.5.2 Clock Values
	13.5.5.3 Syncbases

	13.5.6 Basic Time Containers
	13.5.6.1 Dealing with Cycles and Unknown Begin Times

	13.5.7 Nested Composition of Timing Elements
	13.5.8 Special Timing Values
	13.5.9 Interactive Timing and Events
	13.5.10 Applying SMIL Timing Attributes
	13.5.11 General Timing Control Attributes
	13.5.12 Object Persistence Attributes
	13.5.13 Extended Timing Control Attributes
	13.5.14 Repeating Objects and Substructures
	13.5.14.1 Combing Repeat Behavior with Other Timing Attributes

	13.6 Advanced Timing and Synchronization Attributes
	13.6.1 SMIL Synchronization Control Attributes
	13.6.1.1 XML Integration Support

	13.7 Summary and Conclusion
	References

	14 Specifying Intermedia Synchronization with a Domain-Specific Language: The Nested Context Language (NCL)
	Abstract
	14.1 Introduction
	14.2 Related Work
	14.3 NCL
	14.3.1 The Nested Context Model (NCM)
	14.3.2 Describing Temporal Relationships with NCL
	14.3.3 Multi-Device Presentations

	14.4 Intermedia Synchronization Management
	14.4.1 Hypermedia Temporal Graph (HTG)
	14.4.2 Scheduling Plans

	14.5 Ginga
	14.5.1 Ginga IBB

	14.6 Conclusions
	References

	15 Time and Timing Within MPEG Standards
	Abstract
	15.1 Introduction: Relevance of Time and Timing in Media Delivery Technologies
	15.2 Importance of MPEG-2 Transport Streams in Media Delivery Systems
	15.3 Time and Timing Within MP2T
	15.3.1 MP2T Streams
	15.3.2 Clock References
	15.3.2.1 Phase-Locked Loop (PLL)
	15.3.2.2 System Clock Descriptor (SCD)

	15.3.3 Timestamps
	15.3.4 T-STD (Transport System Target Decoder)
	15.3.5 Delivery of Timeline for External Data

	15.4 Time and Timing Within MPEG-4 Systems
	15.4.1 MPEG-4 Systems
	15.4.2 Clock References
	15.4.2.1 Clock Reference Stream

	15.4.3 Timestamps

	15.5 Time and Timing Within MPEG-DASH
	15.5.1 MPEG-DASH
	15.5.2 Time-Related Information in MPEG-DASH
	15.5.3 Timelines in MPEG-DASH Linked to MP2T Streams

	15.6 Time Transmission in DVB Systems
	15.6.1 MPEG-2 PSI and DVB SI Tables
	15.6.2 Time-Related DVB SI Tables

	15.7 MMT: The Latest Media Delivery System
	15.7.1 MMT Architecture
	15.7.2 Content Model for MMT
	15.7.3 Timing Model for MMT

	15.8 Conclusion
	Chap15

	Definitions
	References

	16 Synchronization in MPEG-4 Systems
	Abstract
	16.1 Introduction
	16.2 Describing Synchronization of Media Objects
	16.2.1 MPEG-4 Object Descriptor Framework
	16.2.2 Synchronization Signaling: The Sync Layer
	16.2.2.1 Intra-stream Synchronization: Timestamps and Clocks
	16.2.2.2 Inter-stream Synchronization: Clock References

	16.3 Time and Synchronization in Scene Descriptions
	16.3.1 Timing in MPEG-4 BIFS
	16.3.1.1 Time in Animations
	16.3.1.2 Time in Media Handling
	16.3.1.3 Multiple Scene Timelines and Timeline Manipulations

	16.3.2 Timing in MPEG-4 LASeR
	16.3.3 Scene Timing in Broadcast Environment: The MPEG-4 Carousel

	16.4 Deployments
	16.5 Conclusion
	Chap16

	Definitions
	References

	17 Media Synchronization on the Web
	17.1 Introduction
	17.2 Central Terms
	17.3 Media Synchronization
	17.3.1 Challenges
	17.3.2 Approach

	17.4 The Motion Model
	17.5 Temporal Interoperability
	17.5.1 Internal Timing
	17.5.2 External Timing

	17.6 State of the Web
	17.6.1 HTML
	17.6.2 SMIL and Animations
	17.6.3 DOM Events
	17.6.4 The Event Loop
	17.6.5 High Resolution Time
	17.6.6 Web Audio API
	17.6.7 Media Capture
	17.6.8 WebRTC
	17.6.9 Summary

	17.7 Motion
	17.7.1 Timing Object API
	17.7.2 Programming with Motions
	17.7.3 Online Motion
	17.7.4 Synchronizing Audio and Video
	17.7.5 Synchronizing Timed Data

	17.8 Flexibility and Extensibility
	17.8.1 Multiple Small Players
	17.8.2 Dedicated Media Components
	17.8.3 Flexible Coupling
	17.8.4 Client-Side Synthesis

	17.9 Evaluation
	17.9.1 Motion Synchronization
	17.9.2 Synchronization of HTML5 Media Elements
	17.9.3 Summary

	17.10 Standardization
	17.11 Conclusions
	References

	18 Media Synchronisation for Television Services Through HbbTV
	Abstract
	18.1 Introduction
	18.1.1 Media Synchronisation
	18.1.2 HbbTV—Evolution and Market Role
	18.1.3 Use Cases
	18.1.4 Outline

	18.2 Media Synchronisation Based on DVB-CSS
	18.3 Multi-stream and Inter-device Media Synchronisation in HbbTV 2.0
	18.4 Device Discovery, Application Launch and App-to-App Communication
	18.4.1 Discovery
	18.4.2 Application Launch
	18.4.3 App-to-App Communication
	18.4.4 Alternative Solutions

	18.5 Application Scenarios, Integration and Deployment
	18.5.1 Setting up Media Synchronisation from a Companion Screen
	18.5.2 Generating and Maintaining Media Timelines
	18.5.2.1 Scenario 1—Using TEMI with Pre-produced Programmes
	18.5.2.2 Scenario 2—Live Productions

	18.6 Synchronisation of HbbTV Applications with Broadcast and Broadband Media
	18.6.1 EIT Present/Following
	18.6.2 Receiver Time/Clock
	18.6.3 Stream Events
	18.6.4 DVB-CSS Media Timelines
	18.6.5 Summary

	18.7 Conclusion
	Acknowledgements
	Chap18

	Definitions
	References

	Algorithms, Protocols and Techniques
	19 Video Delivery and Challenges: TV, Broadcast and Over The Top
	19.1 Introduction
	19.2 Broadcast as a Benchmark
	19.2.1 End-to-End Delay
	19.2.2 OTT Streaming

	19.3 Standards and Timing
	19.4 Timing and Asynchronous Production
	19.4.1 Media Source Synchronisation
	19.4.2 Responsiveness
	19.4.3 Playout Synchronisation

	19.5 Asynchronous Infrastructure
	19.6 An Asynchronous Future?
	19.7 Future Transport Protocols
	19.7.1 HTTP/2
	19.7.2 QUIC

	19.8 Conclusion
	References

	20 Camera Synchronization for Panoramic Videos
	20.1 Introduction
	20.2 The Bagadus Sport Analysis System
	20.2.1 Player Tracking System
	20.2.2 Coach Annotation System
	20.2.3 Video System
	20.2.4 Synchronization Challenges

	20.3 Camera Shutter Synchronization
	20.3.1 Software-Based Triggers
	20.3.2 Hardware-Based Triggers
	20.3.3 The Bagadus Shutter Synchronization

	20.4 Camera Exposure Synchronization
	20.4.1 Existing Exposure Approaches
	20.4.2 The Bagadus Automatic Exposure Approaches

	20.5 Conclusions
	References

	21 Merge and Forward: A Self-Organized Inter-Destination Media Synchronization Scheme for Adaptive Media Streaming over HTTP
	21.1 Introduction
	21.2 Merge and Forward—A Self-Organized IDMS Scheme
	21.2.1 Session Management for MPEG-DASH
	21.2.2 Unstructured Peer-to-Peer Overlay Construction and Synchronization
	21.2.3 Dynamic Adaptive Media Playout for IDMS
	21.2.4 Evaluation of Merge and Forward
	21.2.5 Evaluation of the Dynamic Adaptive Media Playout

	21.3 Crowd Sourcing IDMS User Studies
	21.3.1 Assessment Methodology, Stimuli, and Reaction Game
	21.3.2 Statistical Analysis of the Results

	21.4 Conclusion
	References

	22 Watermarking and Fingerprinting
	22.1 Introduction
	22.2 Watermarking
	22.2.1 Audio Watermarking
	22.2.2 Image Watermarking
	22.2.3 Video Watermarking

	22.3 Fingerprinting
	22.3.1 Audio Fingerprinting
	22.3.2 Image Fingerprinting
	22.3.3 Video Fingerprinting
	22.3.4 Music Fingerprinting
	22.3.5 Efficiency

	22.4 Error Correcting Codes
	22.5 Conclusions
	References

	23 Network Delay and Bandwidth Estimation for Cross-Device Synchronized Media
	Abstract
	23.1 Introduction
	23.2 Overview of Network Delays and Delay Estimation Techniques
	23.2.1 Serialization Delay
	23.2.2 Queuing Delay
	23.2.3 Propagation Delay
	23.2.4 Processing Delay
	23.2.5 Probe Reply Delay

	23.3 Bandwidth Estimation Techniques
	23.3.1 Variable Packet Size Probing
	23.3.2 Probe Gap Method Probing

	23.4 Use Case Study
	23.4.1 Reference Devices
	23.4.2 Sync Signalling and Delay Measurement
	23.4.3 Implementations
	23.4.4 Evaluation

	23.5 Conclusions
	Chap23

	Definitions
	References

	Afterword

