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ABSTRACT

Objective: Plasticity of the neurons and the synchronization features are essential to bring out the intelligence in a biological specimen. Thus, in this 
study, we model the synchronistic behavior of neuronal firing to avail control system of cyber-physical system. 

Methods: We model and study the correlations between two or more neurons that belong to the same sets connected through a chain of networks. 
This will allow the synchronous controlling of several tem temporal cyber physical system. Furthermore, a brief review of neuronal oscillations is also 
discussed.

Results and Discussion: Once the reliability of a chain activates neurons that of the other chain consequently, it gets merged and this merging is what 
forms the model formation at the neural level.  This will aid us in understanding nature of functioning of cortical circuits which maintains synfire chain 
to give rise to appropriate computations.
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INTRODUCTION

Synchronous firing chains or synfire chains is a feed-forward network 
of multi-layered neurons, wherein neuronal spiking activity broadcast 
itself to other neurons in a synchronization with other neuronal firing 
activities [1]. Sets of neuron receive afferent inputs the previous sets 
of activated neurons, thereby projecting its output to other neurons of 
consecutive sets for activation. Hence, as a whole, a neuron receives other 
afferents from the collectively coactivated networks and dispatch outputs 
to other neurons in the neural network. The idea behind pulse packet was 
developed in [2], where it was found that for neural network of size large 
enough, the pulse packet converges to the pattern of synchronous firing, 
on the other hand for small sized network, the pulse packet dispersed 
and remains indistinguishable from the background neural activity. It’s 
because in randomly connected balanced sparse network, where each 
neuron from this balanced network gets equal and proportional inhibition 
as excitation [3], forms an integrated fire neurons which in turn is known 
to have procedural parameters of activation for internetworked neuron 
with stable asynchronized irregular activity [3,4]. When a balanced 
network is set to function in a domain of asynchronized irregular activity; 
then, the neuronal firings are driven majorly by the fluctuations of input 
than of its mean input. Thus, the neurons activates irregularly even 
they are integrated to a large sum of inputs. This property of balanced 
networks and quick response to external stimuli [5,6]; put them a 
suitable regime for modeling and testing a cortical neural network. In 
the past, studies on isolated neocortical microcircuits showed that such 
spontaneous activity could be temporally precise even in the absence of 
sensory stimulation [7,8]. Precise repetitions of such pattern of neural 
activity serve as pathway for numerous other neural functions which 
guarantees a fixed level of network activity while allowing to learn and 
reproduce complicated spatiotemporal firing patterns.

This will aid us in understanding nature of functioning of cortical circuits 
which maintains synfire chain to give rise to appropriate computations. 
Thus, for learning it is prerequisite that the same training stimulus is 
feed to the system in repeated intervals. This stimuli is represented as 
sequences of activation patterns which latter drives the network; thereby 
forming a rule for network connectivity, developing rules for learning 
and finally used to build model of the problem. The previous studies 

showed that self-organizing neural networks with binary units can learn 
and represent temporal sequences of sensory inputs [9]. In this study, 
we aim to show that computational results developed in the modeling 
of a self-organizing neural network driven by synfire chains reproduce 
the same experimental data of fluctuations for synaptic connection 
strengths in cortex and hippocampus, offering an explanation for the 
experimentally observed distribution of synaptic efficacies and model 
building [10], which can later be used to form a structure of self-learning 
artificial neurons to carry various task of data processing.

METHODS

We begin the modeling by studying the correlations between two or 
more neurons that belong to the same sets connected through a chain of 
networks [11-13]. This connectivity between chain of networks is not 
assumed to be entirely random nor structured. Therefore, our model 
consists of many pairs of neurons that share at least sets of network as 
their common inputs and also deprived from any specific wiring unlike 
a random network; wherein pair of neurons shares a small number of 
common inputs.

Let us supposed that we have a total of excitatory neurons (EN) and 
inhibitory neurons (IN) where they are in the ratio of IN = 0.2 × EN. 
Now, that we need to find an evolutionary Hodgkin-Huxley equation 
for self-managing neurons. Therefore, to model the phenomenon 
of building the learning model for biological neurons, we require to 
merge the properties of artificial neural network with the biological 
neurons. Where the sequence of inputs of the firing neurons is affects 
the other subsequent sequence and consequently synapse formation 
before giving a unitary idea of stimuli. Thus, Wij be the weightage for 
the connection strength from neuron i to neuron j, similarly WIE, WEE 
and WEI represents weightage for inhibitory to excitatory connections, 
excitatory to excitatory and excitatory to inhibitory connections, 
respectively. The WEE and W EI are initialized as sparse random matrices 
with the range of connection probabilities between the value of 0.1 and 
0.2. Initially, the WIE connections are meant to freeze at their random 
initial values which are depicted from uniform distribution, latter 
followed by normalization [13,14]. Altogether, the sum of connections 
entering a neuron is in a sequence of 1 and 0; thereby, the binary 
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vectors are given by x(EN) ∈ {0, 1} and y(IN) ∈ {0, 1} for the excitatory 
and inhibitory neural activity at time step t, respectively. Hence, the 
sequencization of the network states at time step t + 1 is equivalent to:
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As the network equation continues to evolve xij and yki, the synaptic 
weights is given as:
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Ѳ is the Heaviside step function; TE and TI are the threshold values 
for excitatory and IN, where it is initially drawn from the uniform 
distribution within the interval [0, Tmax

E ] and [0, Tmax
I ]. ξEi (t) and 

ξIi (t) are white Gaussian noise processes with μξ [0.01, 0.05]. Here, one 
time step corresponds roughly to the duration of window of the spike 
time dependent plasticity. η is the learning rate.

Now, that the threshold value of the EN in response for a sequence of 
activated neurons is made pass through the previously generated 
targeted sequence code blocks of firing neuron states Sij

code block ; 
which is determined by the adaptation rate ηAD as:
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The inhibitory spike-timing dependent plasticity ji rule regulates the 
weights backward from inhibitory to EN which stabilizes the amount 
of excitatory and inhibitory to drive sensory information through the 
EN. Therefore, the evolutionary dynamics of the neuronal membrane 
potential that mediates the excitatory and inhibitory sequences through 
the network of membranes is governed by the above-deduced equation.

RESULTS AND DISCUSSION: DEVELOPMENT OF MICRO BRAIN (MB) 
FOR SIMULATING SENSATION

The response of synfire chain growth in training was remained stochastic 
but in our mathematical model of internetworked neurons we’ve found 
that repeated stimulations for training neurons changes the weights of 
the synaptic distribution and consequently forms a stable and strong 
connectivity within synaptic chain. Thus, the selection of postsynaptic 
targets is crucial for the formation of loop of synfire chains that stops its 
growth for the similar stimulation but keep on adjusting weights with 
chain growth emanating from the training neurons. Due to the spike 
time dependency plasticity rule, the targeted neurons spontaneously 
spike shortly after the training neurons. It is observed that the training 
neurons spike synchronously and make convergent connections to the 
same sequential set of neurons and strengthens these connections. Once 
strengthened connections are developed the prominent sets of neuron 
spikes is readily evoked in these targets on every run of the stimulation. 
For the targets, to overcome membrane noises, it is important that the 
synapses are cooperated through the convergent synapses. The next 
step follows for the closed loop of synfire chain is to propagate the 
firing chin to other neurons to recruit the new group in association with 
the previously recruited neurons. This iterative process yields stable 

topologies of synfire chains which are actively efficient in producing 
long stereotypical sequences of spikes for mediating training sets to 
other neurons; such that this chains consists of introductory sequence 
generated by training neurons in the first step and feeds this loop of 
strong synaptic connectivity to other pools of neurons, as network size 
is increased. Thereby, forming an interconnected network of neurons 
such as examples of which is displayed in Fig. 1. The internet worked 
structure of neurons is reacted in raster plots of the activity of the 
neuronal population consisting of inhibitory and EN, during a typical 
trial after the chain is fully formed.

In our mathematically framed large recurrent networks the potentiation 
decay of synapses, we found emergence of long and sequences of 
spikes. The sequences are produced by stable synfire chain topologies 
which self-organize through the growth process mentioned above. 
The localized distributions of synfire chain loops influence the rate of 
potentiation decay in the synaptic plasticity which primarily controls the 
shape of the global distributions of responsive stimulus emerged from 
the network in dynamically distributed synaptic weights and remains 
vulnerable until the synchronization is formed with the sequence from 
recruited neurons are synaptically withheld. As the sequence begins to 
emerge the neurons in the pool of networks are more likely to target the 
neurons in the chain. Such that this response of synapses throughout the 
network coevolved the spike activity forming an the emerging sequence 
and newly framed synaptic topology in awe of preferential targeting. 
This generalizes to other recurrent network developed in the previous 

Fig. 1: Illustration of the network model. (a) For a closed neural 
network where inputs are read through population of several 
inhibitory and excitatory units and develop an internal model 
based on sequence of connections from the reception of global 
inhibitory feedback from that unit, (b) volumetric transfection 
of inputs to excitatory and inhibitory inter-networked neurons 

through the input channel they are connected to different 
sources. Note that, each node a pool of population of neurons 

distinguished by different color and associated features

ba

Fig. 2: Network dynamics of cortical networks during the task 
using electroencephalography (EEG) and MB model. (a), The 

firing rate comparison with the frequency based oscillation of 
the two networks showing similar properties, (b) the sum of 

the activation variables for EEG and MB models are found to be 
approximate, and (c) its voltages traces coincide with the EEG 

data. Simulation time was 1000 ms
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steps mentioned above in which spike sequences emerge. Thus, when 
excited by the stimulation the response is in the form of coevolution of 
the sequence of network activity and its topological connectivity which 
is reflected back in the spectrum of sequence and length of the synfire 
chains and its distribution. The same is experimentally found similar 
(Fig. 2) between the electroencephalography data of cortical network 
and mathematically modeled MB. Note, that not every neuron is part of 
the chain formed in our study.

A natural extension of this mathematical investigation is to carry out 
the real-time problems with the MB so developed in the study in this 
way we found emergence more complex asymptotic synaptic topologies 
emerge. Hence, as shown in Fig. 3, we have simulated the MB to carry 
out the task to balance the 6 balls placed on one another 3 balls each 
and the MB is given control of the plank on which the forces in right, 
left and upward direction can be applied by it to stabilize the system 
under the influence of gravity with downward acceleration of 9.8 m/s2. 
This task and the learning involved in it is similar to the complex motor 
behaviors of a juggler, which spends most of his life in perfecting the 
technique. Thus, our goal herein is to employ the computational MB to 
learn the techniques of balancing autonomously by framing models of 
its own for the given condition and variables. From ordering of distinct 
elements involved within the task, we observed an emergent behavior 
with multiple complexity. For the successful completion of task, a 
single synfire chain is not capable to capture this tasks complexity 
therefore multiple branching chains are offered by the developed MB. 
In Fig. 3, we display the results of MB connectomes growth revealing 
the ideal sequence to adjust the plank and balls positions through 
hierarchical model formation from mediating synfire chain formations 

and consequently updating the self-built model of balancing at each 
step. Hence, the several groups of chains developed individually 
were ultimately merge to a single chain. Emergence of synfire groups 
encodes two disjoint sequences in the internetworked neurons, and 
these sequences are perfected at each step of loop formation for synfire 
chains. Although, occasionally this chains activated by spontaneous 
activity and influencing neurons in the network pool to preferentially 
target the partial chains. Once the reliability of a chain activates neurons 
that of the other chain consequently, it gets merged and this merging 
is what forms the model formation at the neural level. We believe the 
success of our work will aid in forming autonomous intelligent systems 
or autonomous data processors, or even soon we could digitize the 
human personality.
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Fig. 3: (a) The network of connections formed during the turing 
of the micro brain to reveal the right sequence (in the binary 

form, i.e., 100010…) to formulate a connection that stabilize and 
balances the basketballs stacked on one another over a plank 

during the simulation, (b) An instance from the simulation 
showing the attainment of control by the computational micro 
brain. The simulation is only meant to control the movement of 

plank in three directions under the influence of gravity
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